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Abstract—Location data has been used for various purposes
in digitized society but includes waypoints directly related to
personal privacy, such as home addresses. To hide such sensitive
waypoints, some applications provide Endpoint Privacy Zones
(EPZs) that keep a portion of the track secret. However, most
service providers placing databases on a cloud face the potential
risk of exposing sensitive waypoints to cloud service providers.
Existing studies have proposed databases using Trusted Execution
Environments (TEE) that protects sensitive data in a trusted and
completely secure memory region. However, as TEE inevitably
limits the size of the trusted memory, databases proposed in
these studies cannot use the trusted memory efficiently due to the
fundamental design that handles all data in the trusted memory.
Moreover, the memory outside of the trusted memory, called
untrusted memory, remains vacant even if the trusted memory is
fully used, thereby leading to insufficient memory utilization on
a whole system and decreased database performance. In this
study, we propose MosaicDB, a memory-efficient and trusted
database for location data, using both trusted and untrusted
memory. To enhance memory utilization efficiency, MosaicDB
handles only sensitive waypoints within the EPZ in the trusted
memory while handling non-sensitive waypoints in the untrusted
memory. Experimental results show that MosaicDB improves
memory utilization efficiency, thereby achieving a 25% reduction
in execution time for selection queries compared to the database
that handles all data in the trusted memory.

Keywords—Database; Trusted Execution Environment; Intel
SGX; Location data; Endpoint Privacy Zones; Cloud Computing.

I. Introduction

In recent years, the popularity of Fitness Tracking Social
Networks (FTSNs) has expanded as the number of health-
conscious people has increased. FTSNs allow users to track
outdoor activities and share their routes with other users.
By sharing routes, users can enhance the enjoyment of their
activities and maintain their motivation. However, sharing
routes also raises privacy concerns, as other users can browse
routes that often include sensitive waypoints, such as homes or
workplaces.

FTSNs enable users to designate Endpoint Privacy Zones
(EPZs) to prevent privacy leakage from sharing routes. An EPZ
allows users to hide some routes, as shown in Figure 1. Ongoing
research is also being conducted to facilitate the establishment
of more robust EPZs [1][2]. That is, sensitive waypoints are
protected on an application. However, waypoints on a database
still suffer from an exposure risk in a cloud environment. As
modern application services, including database systems, are
deployed in a cloud environment, waypoints in the database may
be stolen by the Cloud Service Provider (CSP) with the highest

privileges on the cloud system. Although existing databases
offer disk-level encryption to protect sensitive data, a CSP may
steal unencrypted data or encryption keys directly from memory,
leading to significant privacy leakage, as shown in Figure 2.

To overcome these threats, databases using Trusted Execution
Environments (TEE) have been proposed [3][4][5][6]. TEE
creates a trusted region in memory using hardware-level security
mechanisms. Any privileged software, such as an operating
system and hypervisor, cannot directly read and write the
confidential data managed by a database since the trusted mem-
ory is completely isolated from the main (untrusted) memory.
However, as TEE severely restricts the size of the trusted
memory, databases proposed in these studies are now facing
a challenge of performance degradation due to a shortage of the
trusted memory. This challenge arises from their fundamental
design of handling all data in the trusted memory.

In this study, we propose MosaicDB, a memory-efficient and
trusted database for location data. MosaicDB selectively handles
location data (waypoints) in the trusted memory, following
the necessity of data protection in the application context.
As an application conceals all waypoints within EPZs and
exposes the remaining waypoints, we only need to protect
waypoints within EPZs. Moreover, the number of waypoints
within EPZs is less than that outside the EPZs. We utilize this
characteristics of location data and thus attempt to efficiently
use both trusted and untrusted memory. That is, MosaicDB
only protects waypoints within EPZs in the trusted memory so
that they are not exposed. As other waypoints outside EPZs
are already public on an application, MosaicDB handles them
without any special treatment in the untrusted memory. This
data management method based on application context allows
us to synchronously protect sensitive data that users do not want
to be exposed in the database, and to effectively utilize both
trusted and untrusted memory on the database server.

The structure of this paper is as follows: In Section II,
we provide an overview of the fundamental features of Intel
Software Guard Extensions (SGX), TEE employed in this study.
In Section III, we outline related works on databases utilizing
TEE and their challenges. In Section IV, we explore the detailed
design of MosaicDB and query processing flow. In Section V,
we present the results of the experimental evaluation. In Section
VI, we describe the limitations of MosaicDB and outline future
directions. Finally, in Section VII, we conclude the paper by
summarizing the contributions of this research.
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Figure 2. Threat of data theft by malicious cloud providers

II. Intel SGX
We protect the database using Intel SGX, the most widely used

TEE in cloud environments. SGX is installed in 6th generation
Intel CPUs and later, which creates a trusted region (known
as enclaves) in memory. SGX achieves the confidentiality and
integrity of sensitive processes using the encrypted and isolated
physical memory known as the enclave page cache (EPC). CPUs
fully control access to the enclave, thus preventing attacks
on processes from privileged software, such as the operating
system or hypervisor. This powerful protection provided by SGX
enables cloud users to safely execute processes in untrusted
cloud environments. The following subsections describe a
limitation of SGX, the sealing feature for secure data persistence,
and the remote attestation feature for secure communication
between a database and an application server.

A. Hardware limitation of the enclave
One of the major limitations of Intel SGX is the size of enclave

memory. Intel CPUs up to 10th generation support a maximum
enclave memory size of 128MB to 256MB, while Xeon
scalable processors from the 3rd generation and later support a
maximum enclave memory size of 512GB. When the enclave
memory footprint exceeds this size limitation, it leads to highly
inefficient EPC paging, significantly decreasing the performance

of processes runnning in enclaves. Although the available
enclave memory size has increased in 3rd generation and later
Xeon scalable processors, the available enclave memory size
will be smaller depending on the system configuration. For
example, in Microsoft Azure’s DCsv3 series, only 16GB of
enclave memory is available for a virtual machine with a total
of 32GB memory. Therefore, if the database uses only enclave
memory, the non-enclave memory cannot be used, resulting in
inefficient memory utilization.

B. Data persistence with sealing
Since the enclave is a memory region allocated to a process,

the data in the enclave will be lost when the process is stopped.
To address this, SGX provides sealing and unsealing functions
to persist data in storage securely. These functions enable the
encryption and decryption of protected data using an enclave-
specific key. However, cryptographic operations in sealing incur
significant overhead, requiring SGX applications to minimize
the frequency of sealing operations whenever possible. In this
study, we minimize this overhead by exclusively protecting
location data within the EPZ through sealing.

C. Authentication and key exchange with remote attestation
Remote attestation [7] is an authentication protocol that mutu-

ally verifies the integrity of enclaves between SGX applications.
It verifies the integrity of enclaves with which it communicates
and exchanges the key used to encrypt the communication
content, thereby ensuring secure communication between SGX
applications. Remote attestation is available only from codes in
the enclave. This study uses this protocol to secure communica-
tion between the application servers and databases.

III. Related work
Several databases using SGX have been proposed [3][4][5]

[6]. CryptSQLite [3] protects all the data in the enclave. Its
design is straightforward; however, it is suitable only for cases
involving small-scale data because the memory load in the
enclave increases as the data size increases.

EnclaveDB [4] uses SGX to protect tables managed in
memory. The simple design of protecting the entire table
makes it easy to integrate into existing RDBMSs; however, this
consumes a significant amount of the enclave memory while
making it impractical to utilize untrusted memory efficiently.

StealthDB [5] addressed the problem of excessive enclave
memory usage by protecting only primitive operators (e.g.,
≧, ≤, +, ∗) that process unencrypted data in the enclave. The
amount of memory used by the operations remains almost
constant, minimizing the utilization of the enclave memory
in all database query processing and acheiving high memory
utilization efficiency. However, an increase in the transitions be-
tween the enclave and untrusted memory significantly degrades
database performance.

Yoshimura et al. [6] proposed an RDBMS designed to reduce
enclave memory usage and transitions between the enclave
and untrusted memory by protecting only specific columns
in the enclave. This approach boosts the memory utilization
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Figure 3. Concept of MosaicDB

efficiency as long as there are few columns under protection.
However, when dealing with location data that includes columns
such as latitude, longitude, and time, nearly all columns
require protection, which can decrease the memory utilization
efficiency. This method also does not allow selective protection
of specific data (row) based on application context. This leads
to unnecessary protection of non-sensitive data in the specific
application context.

Based on the above considerations, we propose a memory-
efficient and trusted database that uses both enclave and
untrusted memory, focusing on location data.

IV. MosaicDB
In this section, we describe our threat model, fundamental

design, and detailed query execution flow in MosaicDB.

A. Threat model
To design the architecture of MosaicDB, we define our threat

model. Our threat model assumes a CSP as an main adversary
able to access all the software (such as an operating system
and hypervisor) and hardware except for enclaves. A CSP
can continuously access the database’s memory using memory
dump or cold boot attacks. Since we assume that a CSP cannot
tamper with the code and data in the enclave or the SGX
hardware, attacks on SGX hardware [8][9][10] are beyond the
scope of this study. Note that while we assume a malicious
CSP is the most critical threat, any malicious software, such as
malware in the database server, is also considered a threat in this
study. Furthermore, we assume that FTSN users appropriately
keep sensitive waypoints private using their defined EPZs.
Therefore, attacks that attempt to identify sensitive waypoints
using publicly disclosed waypoints discussed in [1][2] are
beyond the scope of this study.

B. MosaicDB concept and archtecture
A concept of MosaicDB is shown in Figure 3. MosaicDB

capitalizes on the fact that location data outside the EPZ is
public in the application context, reducing the need to handle

it as sensitive data in the database. When inserting location
data, MosaicDB checks whether location data is included within
the EPZ by calculating the geographical distance between the
center of the EPZ stored in MosaicDB and location data. In all
operations performed by MosaicDB, the location data within
the EPZ are managed in the enclave, whereas other location
data is managed in the untrusted memory. MosaicDB manages
location data by utilizing both memory and storage, similar to
typical RDBMSs. MosaicDB encrypts the location data loaded
into the enclave by using the sealing before persistence.

The architecture of MosaicDB is shown in Figure 4. Mo-
saicDB has general components in the typical RDBMSs, such
as the parser, planner, executor, and storage engine. To realize
location data management using both the enclave and untrusted
memory, we duplicate the executor, responsible for query
execution, and the storage engine, which accesses data on buffers
and storage, respectively. The executor and storage engine within
the enclave handle queries involving sensitive location data,
whereas those in untrusted memory execute queries related
to non-sensitive location data. The parser, which generates an
abstract syntax tree from a query string; the planner, which
generates an execution plan; and the preprocessor, which checks
whether the location data is contained within the EPZ, are
placed in the enclave because they handle unencrypted location
data that may or may not be within the EPZ. The following
subsections describe the query execution flow using these
components.

C. Query execution flow
We will describe the query execution flow of MosaicDB by

dividing it into three parts. Note that MosaicDB is currently
designed to handle only simple CRUD (CREATE, INSERT,
UPDATE, DELETE) queries, and supporting more complex
queries is future work.
1) Query analysis and optimization

In the initial stage of query execution, MosaicDB analyzes
queries and creates optimized execution plans. The network
module ( 1O in Figure 4) first receives the encrypted query string
from the client, and the decryptor ( 2O in Figure 4) decrypts
the query string in the enclave. The keys used for encryption
and decryption are exchanged via remote attestation when the
client connects to the database. Then, the parser ( 3O in Figure 4)
generates a query tree, which is an abstract syntax tree, from the
query string and passes it to the planner. Finally, the planner ( 4O in
Figure 4) generates a plan tree, which is an optimized execution
plan, from the query tree and passes it to the preprocessor ( 5O in
Figure 4).
2) Checking location data within the EPZ

If the query is INSERT, the preprocessor checks whether the
location data in the plan tree is contained within the EPZ. If
contained within the EPZ, it passes the plan tree to the trusted
executor; otherwise, it passes it to the untrusted executor ( 6O in
Figure 4). If the query is not INSERT, the checking process is
ignored because the plan tree of a query like SELECT * FROM
locations; does not contain location data, and the plan tree
is passed to both the trusted and untrusted executors. EPZs are
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Figure 4. Overview of MosaicDB

cached in memory as an dictionary with user ID as a key (EPZ
cache in Figure 4) because reading EPZ records on the storage
has an extra cost because of sealing. Through an evaluation,
we will confirm that the EPZ cache can effectively mitigate
overhead, even with an increased number of EPZs.
3) Processing the plan tree in the enclave and untrusted

memory
The trusted and untrusted executors execute queries according

to the plan tree. The execution process performed by the trusted
and untrusted executors is largely similar to a typical RDBMS,
but there is a difference in terms of the query execution results.
In MosaicDB, if the execution of either the trusted or untrusted
executor fails, the final query execution result is a failure. This
allows data updates caused by failed transactions to be rolled
back, thereby preventing data inconsistency.

The trusted and untrusted storage engines ( 7O in Figure 4)
engines insert, scan, update, and delete location data in memory
and storage according to requests from the executor. The location
data is managed in buffers (Trusted / Untrusted Buffer in Figure
4), which are located in the enclave and untrusted memory
respectively. They are organized into fixed-length blocks called
pages. The location data within the EPZ are stored in a page in
the enclave (Secure page in Figure 5), and other location data
is stored in a page in the untrusted memory (Normal page in
Figure 5). The secure page is encrypted using the sealing and
is decrypted only in the enclave, so an attacker cannot steal the
location data in the secure page. The metadata page in the normal
buffer is a page that stores metadata such as the page IDs of
secure / unsecure pages, and is referenced from both the enclave
and untrusted memory. After query execution, the executors
return the result to the client via the network module. In the
case of queries that need to return records, the merged records
obtained in the trusted and untrusted executors are encrypted
and returned.
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Figure 5. Page management in MosaicDB

V. Evaluation

To evaluate the overhead and memory utilization efficiency
of MosaicDB, we compare the execution times and memory
usage of INSERT and SELECT queries between MosaicDB
and the baseline, where all the location data is managed in the
enclave. In the current implementation, the execution flows of
UPDATE and DELETE queries are almost the same as those of
a typical RDBMS; therefore, we exclude these queries from the
evaluation.

We used an Intel(R) NUC Kit NUC7PJYH as the experi-
mental environment. The CPU is an Intel(R) Pentium(R) Silver
J5005, the memory is 16 GB, and the storage is 256 GB.
For the experiments, we used Geolife trajectory datasets [11]
provided by Microsoft from which we extracted the amount of
data required for each experiment. All EPZs in the experiment
were set to be within 5 km of Peking University, where the
location data in the dataset is concentrated.
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Figure 6. Execution time of INSERT

A. Execution Time
We evaluated the execution times of INSERT and SELECT

queries while varying the data size. We conducted two different
experiments for INSERT queries. One experiment involved
keeping the number of EPZs fixed while varying the data
volume, and the other involved maintaining a fixed data volume
while changing the number of EPZs. In the former experiment,
we fixed the number of EPZs to one. In the latter experiment,
the maximum number of EPZs was set to ten, which aligns with
the typical number of EPZs expected in general FTSNs. We
used 100,000 records in the latter experiment, and the execution
times were averaged over ten runs in both experiments. Finally,
the green line in Figure 6, 8 represents the proportion of location
data within the EPZ.

Figure 6 shows that MosaicDB increases an overhead by 1.2
to 1.6 times compared to the baseline in INSERT query. On
the other hand, an increase in the number of EPZs resulted
in minimal additional overhead, as shown in Figure 7. This
indicates that the increase in the number of EPZs can be reduced
by EPZCache, while there is some overhead in MosaicDB. When
there are no EPZs, MosaicDB’s execution time is at its slowest
because all location data is processed in the untrusted memory.
Query processing in the untrusted memory involves additional
overhead, such as plan tree serialization and deserialization, as
well as additional transitions between the enclave and untrusted
memory, making it more costly than executing queries in the
enclave.

Figure 8 shows that MosaicDB can reduce SELECT query
execution time by up to 25% compared to the baseline.
MosaicDB achieves this performance improvement due to the
reduced overhead of sealing, as it does not encrypt location data
outside the EPZ, unlike the baseline.

B. Memory Usage
We estimated the memory usage of MosaicDB while varying

the amount of data stored in the enclave and untrusted memory
for INSERT and SELECT queries. Since MosaicDB determines
whether to store location data in the enclave or untrusted

Figure 7. Execution time of INSERT while varying number of EPZs

Figure 8. Execution time of SELECT

memory during insertion, the amount of location data stored in
the enclave or untrusted memory remains constant for INSERT
and SELECT queries. Consequently, we calculate the memory
usage as the product of the number of records and the size of a
record.

Figure 9 shows that both the enclave and untrusted memory
are used when the number of records exceeds 100,000. This
observation aligns with the trend in Figure 6 and Figure 8,
where the proportion of location data within the EPZ decreases
as the number of records increases. It suggests that if the
proportion of location data within the EPZ is sufficiently small,
MosaicDB can effectively utilize the untrusted memory while
keeping the enclave memory usage in check. For instance, if
the proportion of location data within the EPZ is around 10%,
approximately 90% of location data can be accommodated in
the untrusted memory. Thus, we conclude that MosaicDB allows
for more efficient utilization of the server’s memory compared
to conventional methods that manage all data in the enclave.

5Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-138-1

DBKDA 2024 : The Sixteenth International Conference on Advances in Databases, Knowledge, and Data Applications



Figure 9. Enclave / untrusted memory usage in MosaicDB

VI. Discussion
In this section, we discuss the necessity of additional evalua-

tion experiments to demonstrate the practicality of MosaicDB,
as well as the limitations and future directions of MosaicDB.

A. Extended evaluation queries
In this paper, we evaluated the execution time and memory

usage of the MosaicDB by using only simple INSERT and
SELECT queries. However, the basic evaluation of these queries
alone is insufficient to demonstrate the practicality of MosaicDB
in FTSNs. For example, in real FTSNs, queries that simul-
taneously process location data and other data (e.g., queries
that JOIN location data and other data) must be executed with
high throughput; however, the performance of the MosaicDB in
executing such queries has not been measured. In addition, such
queries tend to consume a large amount of temporary buffer
space in the RDBMS, which affects not only the execution
time but also memory usage in the enclave. Therefore, it
is necessary to confirm whether MosaicDB can improve the
memory utilization efficiency for such queries in the future.

B. Evaluation of actual memory load
In our evaluation, we estimated the memory usage by

quantifying the amount of location data stored in the enclave and
untrusted memory. However, for a more accurate evaluation of
the memory utilization efficiency of MosaicDB, it is necessary
to measure the actual memory load on both the enclave and
untrusted memory. In the first generation of SGX, the physical
memory usage of the enclave is determined during enclave
initialization, making the physical memory usage unsuitable for
evaluation. Therefore, we plan to measure the enclave memory
load by monitoring the SGX paging.

C. More flexible memory management
Considering memory efficiency, it is ideal to distribute the

utilization of both the enclave and untrusted memory evenly.
However, in MosaicDB, all location data outside the EPZ are
stored in the untrusted memory. Consequently, there is a risk

of overloading the untrusted memory when there is an extreme
shortage of location data within the EPZ or an abundance of
enclaves. A more flexible approach to data management tailored
to the load conditions of the enclave and untrusted memory is
necessary to address these variations in application conditions
and database server memory setups.

VII. Conclusions
In this paper, we proposed MosaicDB, a memory-efficient

and trusted database that manages location data using both
the enclave and untrusted memory in SGX. MosaicDB utilizes
the characteristics of FTSNs and protects only the location
data within the EPZ in the enclave so that both the enclave
and untrusted memory can be effectively utilized. Performance
evaluation showed that MosaicDB can efficiently utilize the
entire memory of the server. The extension of evaluation queries,
evaluation of the actual memory load, and more flexible memory
management are future works.
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