
Memory Efficient Data-Protection for Database
Utilizing Secure/Unsecured Area of Intel SGX

Masashi Yoshimura
Division of Information Science

Nara Institute of Science and Technology
Nara, Japan

email: yoshimura.masashi.yj6@is.naist.jp

Taisho Sasada
Division of Information Science

Nara Institute of Science and Technology
Research Fellow of the JSPS

Nara, Japan
email: sasada.taisho.su0@is.naist.jp

Yuzo Taenaka
Division of Information Science

Nara Institute of Science and Technology
Nara, Japan

email: yuzo@is.naist.jp

Youki Kadobayashi
Division of Information Science

Nara Institute of Science and Technology
Nara, Japan

email: youki-k@is.naist.jp

Abstract—With the spread of cloud computing, database ser-
vices have been provided on cloud platforms. As a Cloud Service
Provider (CSP) has the highest privilege in the cloud platform,
the CSP can get any data from the database even if a tenant
admin secures all components, such as OS, database software,
etc. as long as the database runs on the cloud. That is why
CSP has become a new threat source in cloud-based databases.
Trusted Execution Environment (TEE) is a key technology to
protect memory, process, and storage against data theft by a
CSP. It creates a secure area on the memory where the process
outside the secure area cannot access, thereby preventing any
access from CSP. However, since the secure area only has a
limited amount of memory resources on a server, the rest memory
resources keep vacant even when TEE exhaustively uses its
allocated memory resources. In the case of the high-load database
running on the secure area, almost all queries slow down due to
being full of consumed memory despite most of the memory
being free in the unsecured area. In this study, we design an
efficient memory management mechanism for TEE-based secure
database that effectively uses the resources of both the secure
and unsecured areas; the proposed system handles only sensitive
queries and data in the secure area while others in the unsecured
area. Experimental results show that our system improves both
resource utilization efficiency and execution speed compared to
the system processing all data in the secure area.

Index Terms—Data Protection; RDBMS; Intel SGX; Trusted
Execution Environment; Cloud Computing.

I. Introduction

Along with the widespread of using cloud platforms, most
services come to running on a cloud platform. Although
the cloud is very useful for flexible service management
adapting to time-varied workloads, it creates new threats to
cybersecurity. A cloud platform runs tenant processes on the
top of the virtualization layer, such as a hypervisor, and thus
all processes, memory, and storage are accessible from the
virtualization layer. That is, even if tenant admins strictly
secure their OS, service processes, and data, CSP is able to
affect processes, obtain data from storage or memory, etc.

One of the major and important systems running on the
cloud is a relational database management system (RDBMS),
which basically handles important data on the business. As
most business is driven by data these days, protecting data
is extremely essential for a database. For this purpose, most
RDBMS, such as MySQL or PostgreSQL, has an encryption
function that encrypts data on storage and protects against data
theft. Nevertheless, as mentioned before, CSP can compromise
even such encryption by taking process/memory from the
virtualization layer. Therefore, it is necessary to protect data
on RDBMS even on cloud systems consistently.

Existing studies provide a Trusted Execution Environment
(TEE)-based solution to protect the data of the database [1] [2].
TEE creates a secure area where user programs are decrypted
and executed directly on a CPU. As any process outside the
secure area cannot access process/memory in the secure area, a
database working in the secure area can protect its data in any
case. Although TEE protects data even on the cloud, TEE has
a limitation on the secure area; the secure area can only use
quite less memory than what hardware has to run the program.
That is why the performance of a high-load database hits the
ceiling even if its physical hardware has more memory and
most of it is still vacant. Studies [1] [3] run a database in the
secure area and face the problem, while a study [2] migrates
most of the process onto the unsecured area but increasing
communication between secure and unsecured area, and finally
these interactions become a performance bottleneck.

To overcome this problem, we propose a system that protects
data in RDBMSs that extends the upper limit of TEE-based
database performance. The main idea is to divide the whole
processes of a database into two: a series of processes for
sensitive data and a series of processes for other non-sensitive
data. The proposed system allows the user to define the confi-
dentiality of each column when creating the table and executes
the former process on the secure area while the latter on the
unsecured area, separately. The proposed system also reduces

38Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

the number of communication between the secure/unsecured
areas because each data is handled in the secure or unsecured
area all the time. The basic design of the RDBMS is based on
open-source Postgresql [3]. We implement our proposal using
Intel Software Guard Extensions (SGX), a hardware-based
TEE of Intel CPU. For performance evaluation, we compare
our proposal with the system processing all data in the secure
area. We confirmed that the proposed method reduces secure
area usage by 44% compared to existing methods and runs
over 3.3× faster than existing methods when dealing with a
large amount of data.

The structure of this paper is as follows: In Section 2, we
explain the related works of databases using TEE. In Section
3, we describe the preliminary of Intel SGX. In Section 4, we
explain the sensitive information and the design of our proposed
system. In Section 5, we show the result of the experimental
evaluation. In Section 6, we discuss the limitation of our
proposed system and security vulnerabilities and in Section 7,
we conclude our contribution.

II. Related Work
There are several TEE-based solutions to protect the data of

RDBMS as related work [1]–[3]. EnclaveDB [1] is a system
that makes Hekaton, an in-memory database engine included
in Microsoft SQL Server, available as an SGX application.
EnclaveDB ensures data confidentiality but handles all types
of queries in the secure area. Therefore, the unsecured area
has much vacant memory. CryptSQLite [3] proposed a system
that ensures the data confidentiality and integrity of SQLite by
storing all data in a secure area. That is the available memory
in the unsecured area remains free. StealthDB [2] executes
most of the database processes in the unsecured area while few
sensitive processes are in the secure area. Although it can use the
memory of both secure and unsecured areas, processes on the
secure and unsecured areas require many interactions to handle
a series of query processing. Encryption/decryption of data is
necessary to protect data from going back and forth between
secure and unsecured areas. Although this design contributes
to reducing the load on the secure area, the interaction and the
encryption/decryption are a very huge burden for the database.
This results in a large overhead for even a simple SELECT
statement that traverses a large amount of data. The proposed
method divides database processes for the secure or unsecured
area, similar to EnclaveDB or StealthDB, but makes these
processes independent so as to avoid communication between
secure and unsecured areas as much as possible. From this
design, we realize the efficient use of memory in the secure
area as well as the avoidance of performance bottlenecks
that happened in the communication between the secure and
unsecured area.

III. Intel SGX
Intel SGX utilizes the cryptographic engines in Intel CPU to

create an isolated environment (secure area) called Enclave. We
store data in Enclave, protecting program execution with guar-
anteed confidentiality and integrity. As Enclave does not provide

storage, Intel SGX provides a function called Sealing/Unsealing.
This function encrypts data using a key stored in the CPU;
nobody except the CPU decrypts it. Moreover, for integrity
assurance, Intel SGX provides a verification mechanism called
Remote Attestation (RA), which can verify the integrity of
programs within Enclave and the remote SGX platform. Thus,
a client communicating with a remote SGX platform can send
and receive data securely to and from CSPs using TLS sessions
generated by RA.

Although Intel SGX provides a useful mechanism for pro-
tecting processes and memory, data, the mechanism inevitably
includes several performance overheads. First, there is an
Enclave size limitation for each Intel CPU version. For example,
the 6th to 10th-generation Intel CPUs have a size limit of 128
MB, and the 3rd-generation Xeon scalable processors have a
maximum size limit of 512 GB. Second, Intel SGX supports
Enclave paging, but page swapping incurs an overhead of about
40,000 CPU cycles due to page copy and context switches and
so on [4]. Therefore, when we try to use many Enclave areas,
much overhead is incurred. Third, SGX applications provide
a transition between the Enclave process and the unsecured
process. The transition function from an unsecured process to
an Enclave process is called Ecall and the reverse transition
function is called Ocall. However, during Ocall/Ecall, SGX
performs context switches and flushes Translation Lookaside
Buffer, resulting in an overhead of about 8,000 to 17,000 CPU
cycles [5].

IV. Proposed Method
Before going into the detail of our proposal, we describe

the threat model. Our threat model is information leakage at a
database server. The adversary is a malicious CSP that has free
access to memory and storage. Specifically, the adversary can
steal data in memory by memory dump or cold boot attacks and
data in storage by physically obtaining storage devices. Note that
the retrieval of sensitive data or encryption keys directly from
Intel SGX [6] [7] is beyond the scope.

As a general database that supports many kinds of queries,
this paper limits the target queries for simplicity to basic
CRUD operations (CREATE, INSERT, SELECT, UPDATE,
and DELETE). Note that the support of queries such as
subqueries and joins is future work.

For making processes independent for the secure and un-
secured area, we design a table with secure columns. We
focused on the fact that database tables generally consist of
several columns having either sensitive data or non-sensitive
data. For example, suppose that a table in a database that
stores company employee information includes name, age, and
hometown. In this case, only the hometown is non-sensitive
information because of public data while name and age are
sensitive. As these sensitive or non-sensitive data are different
in a table, the proposed system allows users to define the
confidentiality of data on a column-by-column basis when the
table is created. In the proposed system, only the processing
of sensitive data is performed in the secure area, and all
other processing is performed in the unsecured area in order

39Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. Proposed System Overview.

to improve resource utilization efficiency. Figure 1 shows
this concept where columns of sensitive data, called sensitive
columns, (c1 and c2) are treated in the secure area while
columns of non-sensitive data, called non-sensitive columns,
are processed in the unsecured area.

A. Sensitive Information

The proposed architecture is shown in Figure 2. We handle
four types of information that may contain sensitive data in the
proposed architecture: (1) queries, (2) query trees, (3) plan trees,
and (4) sensitive buffer pools. We describe them one by one.
(1) Query: As queries may contain sensitive data (e.g., IN-
SERT statements including sensitive data or queries containing
WHERE clauses that specify values of sensitive data), all queries
must be processed in the secure area. If the query does not
contain sensitive data, data processing for the query is done in
the unsecured area.
(2) Query Tree: The query tree is an abstract syntax tree of a
query and therefore contains the same sensitive information as
the query. Therefore, our system processes the query tree in the
secure area.
(3) Plan Tree: A plan tree is a tree structure that shows the
optimal query plan for a query tree. As a plan tree is used to
issue instructions to process data in reality, it must be separated
for the secure and unsecured areas in accordance with sensitive
or non-sensitive columns. To avoid communication between two
areas, we here have to make two different (non-related) plan trees
for secure and unsecured areas.
(4) Buffer Pool: Since each record contains both non-sensitive
and sensitive data, the non-sensitive data of all records is
deployed in the non-sensitive buffer pool in the unsecured area
and the sensitive data of all records is deployed in the sensitive
buffer pool in the secure area. Each buffer pool is a fixed-length
array of pages with a specified size (8KB, the same as the default
setting of PostgreSQL), as in general RDBMS.

B. Design details of each module

The proposed system consists of 13 modules. We describe the
function and key points of each module in the proposed method.
Communication Process, Decryption: The Communication
Process (1O in Figure 2) performs RA and query reception. A
database client performs RA verification to determine whether
or not the cloud server’s platform (CPU) and the secure area
can be trusted. If the client accepts the RA verification results
and trusts the server platform and the secure area, the client
encrypts the query using the symmetric key generated in the
RA process and sends it to the cloud. After the communication
process receives the encrypted query, it is sent to the secure
area, and Decryption (2O in Figure 2) decrypts the query using
the symmetric key held within the secure area.
Parser: Parser (3O in Figure 2) generates a query tree from the
query in the secure area.
Query Planner: The query planner (4O in Figure 2) generates a
tree structure data called a plan tree representing the optimal
query plan. The query planner optimizes a query tree so
as to process the query efficiently, reducing the number of
computations or data access to storage. The optimization is done
for the entire query tree without taking care of non-sensitive or
sensitive columns in this module.
Query Separator: The query separator (5O in Figure 2) can
divide the optimal plan tree into a sensitive plan tree that handles
only sensitive columns and a non-sensitive plan tree that handles
only non-sensitive columns. If a query tree includes one or more
sensitive columns, the query separator creates a new plan tree,
called a sensitive plan tree, including sensitive columns only,
which has the same structure as the original plan tree. Regarding
non-sensitive columns, it makes the same tree remain non-
sensitive columns only, which is called a non-sensitive plan tree.
However, there are some queries that cannot be simply divided.
Figure 3 shows the division of the plan tree of SELECT (name,
club) FROM USER WHERE country = ’Japan’;. The table
USER consists of three columns: name, club, country. Only
name is a sensitive column in this case. In this query, the
name column data to be selected depends on WHERE country
= ’Japan’, but the country column cannot be included in the
sensitive plan tree because it is a non-sensitive column. In the
proposed system, the sensitive plan tree generated by the division
has an empty WHERE clause. After finishing the process of
the non-sensitive plan tree, the WHERE clause of the sensitive
plan tree refers to the identifiers (id1, id2, ..., id𝑛 in Figure 3)
of records satisfying WHERE country = ’Japan’. Division
of the plan tree is particularly important in the processing of
complex queries with multiple subqueries, and it is the future
work to design algorithms for processing like that queries
efficiently utilizing the secure areas and reducing the number
of communications between the secure and unsecured areas.
Query Executor: The Query Executor generates specific data
processing instructions according to a plan tree. As the query
separator makes two plan trees, non-sensitive and sensitive plan
trees, the query executor is also required to be two in order
to execute these two trees in the secure and unsecured area,

40Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 2. Architecture of the Proposed System.

Figure 3. Division of the Plan Tree.

Figure 4. Data Page Structure in PostgreSQL.

respectively. We call it running in the secure area as a sensitive
query executor while it is in the unsecured area as a non-sensitive
query executor. Their function of them is identical except for the
area they are running.
Buffer Manager: As a query is processed in parallel in both the
secure and unsecured area, two buffer managers work in those
areas, respectively, called sensitive and non-sensitive buffer
managers. The functionality of the buffer manager is to handle
the buffer pool based on data processing instructions issued by

the Query Executor. The buffer manager in the unsecured area
(8O in Figure 2) operates the non-sensitive buffer pool, while the
buffer manager in the secure area (9O in Figure 2) operates the
sensitive buffer pool.

Storage Engine: Storage Engine (10O in Figure 2) performs
general file I/O processing and store pages of buffer pool in the
storage. Storage engine stores sensitive buffer pools and non-
sensitive buffer pools in storage for persistent data. To protect
the sensitive buffer pool, the sensitive data in the buffer pool
needs to be encrypted before going to the unsecured area. The
encryption is done by using the sealing (11O in Figure 2) function
of Intel SGX, which is the encryption function using a secret
key of the CPU. To extract the encrypted data in the secure area,
unsealing (11O in Figure 2) function is provided.

We explain the page structure of the buffer pool and how pages
of the buffer pool are stored in the storage. The page structure
of the buffer pool is similar to that of PostgreSQL as shown in
Figure 4. PostgreSQL holds fixed-size memory for every page
and manages data with a record unit on a page. On a page, every
record is placed from the end of the page back-to-back, and those
pointers (P) indicating the location of every record are put one
by one after the header information. Note that a page contains the
page header (Header in Figure 4) and the record header (H1, H2,
H3 in Figure 4). The page structure of the proposed system is the
same as PostgreSQL but the page of the sensitive buffer pool has
only sensitive data of records and the page of the non-sensitive
buffer pool has only non-sensitive data of records. When storing
buffer pool pages, sensitive data must be encrypted by Intel SGX
sealing before storing sensitive pages. The simplest method is
to encrypt the entire sensitive page. However, since the length
of the encrypted byte array for the entire page exceeds 8KiB
(page size), it becomes impossible to manage the data by fixed-
length pages in the storage. In fact, it is sufficient to encrypt
only the sensitive data on the sensitive page. Thus, a method to
encrypt only the sensitive data of each record is considered, but it

41Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I
Student Table for Evaluation

columns id name university club
type integer char(100) char(100) char(50)
attribution normal sensitive normal sensitive

1 // Query-1
2 INSERT INTO STUDENT (id, name, university , club)
3 values (1, "John", "NAIST", "soccer");
4 // Query-2
5 UPDATE STUDENT set name = "Mike" where id = 1;
6 // Query-3
7 DELETE from STUDENT where id = 1;
8 // Query-4
9 SELECT * FROM STUDENT;

Figure 5. Transaction for Evaluation.

requires encryption of the number of records on a page, thereby
incurring extra overhead. Considering the above, the proposed
system adopts the method of encrypting all records (including
the header of each record) on a sensitive page at once. In this
way, only one encryption per page is required.
Vacuum Process: Vacuum Process is a background process that
periodically cleans up buffer pools becoming dirty as a result of
repeated data processing. This process runs in the secure area
and unsecured areas (12O, 13O in Figure 2) to handle sensitive and
non-sensitive buffer pools, respectively.

V. Evaluation
As a security evaluation, it is necessary to show that the

confidentiality of sensitive information is ensured. In this study,
the confidentiality of sensitive information means that the
sensitive information exists as plain text only in the secure area
and is always encrypted in the unsecured area. In Section IV, we
can see that all sensitive information is processed in the secure
area and is always encrypted before being sent to the unsecured
area, so confidentiality is ensured.

We evaluated the performance of the proposed system. The
experimental environment used for performance evaluation
was Ubuntu 20.04LTS OS, on Intel(R) Core(TM) i7-6700HQ
CPU @ 2.60GHz, 4 CPU cores, SODIMM DDR3-1600 8GiB
memory, Samsung SSD 860 500GiB. In this experimental
environment, the available secure area is limited to 128 MiB
at the same time due to the Intel CPU version. The proposed
system was implemented with C++ and Intel SGXSDK [8],
a development tool for SGX applications. In the performance
evaluation, we evaluated the secure area usage (the amount
of peak stack and heap memory in the secure area) and the
execution time (a period between receiving a query from a client
and generating a reply to the client) for the transaction of Figure
5. Note that the value of each query and the right-hand value of
the WHERE clause vary by transaction.

We compare the secure area usage and execution time for
processing 1, 10, 100, and 1000 transactions respectively on the
proposed system and a comparative system (same features as
EnclaveDB), which processes all data in the secure area. Also,

Figure 6. Peak Secure Stack and Heap Usage of Transactions.

Figure 7. Execution Time of Transactions.

we ran the system three times for each transaction volume and
used the average values of secure area usage and execution time
as the evaluation values. The evaluation of secure area usage
is shown in Figure 6, and the evaluation of execution time is
shown in Figure 7. As Figure 6 shows, the proposed system uses
less secure area than the comparative system for all 1, 10, 100,
and 1000 transactions. As Figure 7 shows, the execution times
of the proposed method and the comparative system are almost
the same for 1, 10, and 100 transactions, but the overhead of
the comparative system is about 3.3 times larger than that of the
proposed method for 1000 transactions. Since the secure area
available in the experimental environment is 128 MiB (96 MiB
excluding reserved area), paging occurs very frequently for 1000
transactions of the comparative system, which uses much more
than 96 MiB of the secure area. Thus, the proposed method
improves execution speed over the comparative system when
handling a large amount of sensitive data. In this evaluation, we
used our own tables and transactions with transaction volumes
of 100, 101, 102, and 103. It is future work to evaluate the results
for larger transaction volumes and standard benchmark tests.

We explain the amount of change in secure areas and the
number of communications between secure/unsecured areas as
the number of tables, columns, and records increases. Since the
database tables are managed in the unsecured area, the usage
of the secured area does not increase even if the number of
tables increases. When the number of sensitive columns or the
number of records containing sensitive data increases, the usage
of the secure area increases by the size of the secure area, but
the number of communications between the secure/unsecured
areas during query processing remains the same. However, if

42Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE II
Score Table

columns id name score1 score2
type integer char(100) integer integer
attribution non-sensitive sensitive non-sensitive sensitive

TABLE III
Score Database

id name score1 score2
1 John 86 68
2 Tom 95 98
3 Mike 58 99

the number of sensitive columns or records greatly increases,
the secure area will be overutilized, and resource utilization
efficiency will decrease. Thus, the proposed system can process
even a large database consisting of multiple tables without
incurring significant overhead if there is not a large amount
of sensitive data.

VI. Discussion
A. Extended RDBMS functionality

The current design ensures the confidentiality of sensitive
data for queries that perform basic CRUD operations, but there
are some queries that leak sensitive data. For example, suppose
there is a table SCORE such as TABLE II and a database such
as a TABLE III, and the query of Figure 8 is processed. In this
query, Since score1 is a non-sensitive column, WHERE score1
< · · · is performed in the unsecured area. Thus, the return
value of SELECT score2 FROM WHERE id = 2 must be used
in the unsecured area, leading to the leakage of sensitive data
because score2 is a sensitive column. However, since processes
in the secure area can directly handle data in the unsecured area,
we can compare sensitive data with non-sensitive data without
storing the non-sensitive data in the secure area. It is necessary
to process and evaluate such queries.

The system proposed in this study lacks important functions
such as a transaction manager and a log manager, which are
included in many RDBMS. It is necessary to evaluate whether or
not the addition of such functions will ensure the confidentiality
of sensitive data and whether or not the system can demonstrate
practical performance.

B. Reduce Overhead due to communication between secure
and unsecured area and Paging Reduction

As explained in Section III, communication between se-
cure/unsecured areas and page swapping due to excessive use

1 SELECT * FROM SCORE
2 WHERE score1 < (
3 SELECT score2 FROM SCORE
4 WHERE id = 2
5);

Figure 8. Sensitve Data Leakage Query.

of secure areas incurs a large overhead. In the proposed system,
these overheads are a serious problem when processing large
amounts of sensitive data. As solutions to these problems,
Intel SGX provides Switchless Call [9], which enables the
communication between secure/unsecured areas without context
switches and Eleos [10] enables paging within the secure area,
thus reducing the paging overhead. The implementation of these
techniques in our proposed system can improve performance.

C. Security Vulnerabilities
The secure area of Intel SGX is vulnerable to side-channel

attacks, which can leak secret keys and internal registers [6]
[7] [11] [12], but methods to mitigate these attacks significantly
with little overhead are being studied [13] [14].

VII. Conclusion
In this paper, we proposed data protection for RDBMS that

ensures data confidentiality while improving overall resource
utilization efficiency using Intel SGX, a TEE with high-security
features. The system efficiently utilizes the secure area by
offloading only sensitive data and the processes that handle them
to the secure area. In particular, in the case of handling both
sensitive data and large amounts of non-sensitive data, the pro-
posed system has improved both resource utilization efficiency
and execution speed compared to the system processing all data
in the secure area. We need to work on designing more query
support and other important modules in the future.

References
[1] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database using

SGX,” in IEEE S&P 2018, pp. 264–278, IEEE Computer Society, 2018.
[2] D. Vinayagamurthy, A. Gribov, and S. Gorbunov, “Stealthdb: a scalable

encrypted database with full SQL query support,” Proc. Priv. Enhancing
Technol., vol. 2019, no. 3, pp. 370–388, 2019.

[3] Y. Wang, Y. Shen, C. Su, J. Ma, L. Liu, and X. Dong, “Cryptsqlite: Sqlite
with high data security,” IEEE Transactions on Computers, vol. 69, no. 5,
pp. 666–678, 2019.

[4] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification structures,”
in ASPLOS’18, pp. 665–678, 2018.

[5] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with hotcalls:
A fast interface for sgx secure enclaves,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 2, pp. 81–93, 2017.

[6] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic
side channels for untrusted operating systems,” in IEEE S&P 2015,
pp. 640–656, 2015.

[7] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel sgx,” in Proceedings of the 10th European Workshop on Systems
Security, pp. 1–6, 2017.

[8] “Intel Software Guard Extensions (Intel SGX) SDK for Linux OS.”
https://download.01.org/intel-sgx/sgx-linux/2.13/docs/Intel SGX
Developer Reference Linux 2.13 Open Source.pdf.

[9] H. Tian et al., “Switchless calls made practical in intel sgx,” in SysTEX’18,
pp. 22–27, 2018.

[10] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless
os services for sgx enclaves,” in EuroSys’17, pp. 238–253, 2017.

[11] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” ASIA CCS ’16, (New York, NY, USA),
p. 317–328, Association for Computing Machinery, 2016.

[12] F. Brasser et al., “Software grand exposure: Sgx cache attacks are
practical.,” in WOOT, pp. 11–11, 2017.

[13] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs.,” in NDSS, 2017.

[14] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital {Side-
Channels} through obfuscated execution,” in 24th USENIX Security
Symposium (USENIX Security 15), pp. 431–446, 2015.

43Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

