
Graph Data Models and Relational Database Technology

Malcolm Crowe

Emeritus Professor, Computing Science

University of the West of Scotland

Paisley, United Kingdom

Email: Malcolm.Crowe@uws.ac.uk

Fritz Laux

Emeritus Professor, Business Computing

Universität Reutlingen

Reutlingen, Germany

Email: Fritz.Laux@reutlingen-university.de

Abstract—Recent work on database application development

platforms has sought to include a declarative formulation of a

conceptual data model in the application code, using

annotations or attributes. Some recent work has used metadata

to include the details of such formulations in the physical

database, and this approach brings significant advantages in

that the model can be enforced across a range of applications

for a single database. In previous work, we have discussed the

advantages for enterprise integration of typed graph data

models (TGM), which can play a similar role in graphical

databases, leveraging the existing support for the unified

modelling language UML. Ideally, the integration of systems

designed with different models, for example, graphical and

relational database, should also be supported. In this work, we

implement this approach, using metadata in a relational

database management system (DBMS).

Keywords—typed graph model; graph schema; relational

database; implementation; information integration.

I. INTRODUCTION

For many years, the process of database implementation
has included a conceptual data modeling phase, and this has
often been supported by declarative structures using
annotations or attributes [1]. Some recent DBMS have
included metadata in the relational model to form a bridge
with the physical database. This approach brings significant
advantages in that the data model can be enforced across all
applications for a single database. In previous work [2], we
provided mapping rules for TGM so that data models can
play a similar role in graphical databases, using the notations
of UML [3]. During such early conceptual model building,
incremental and interactive exploration can be helpful [4] as
fully automated integration tools may combine things in an
inappropriate way, and the use of data types [5] can help to
ensure that semantic information is included not merely in
the model, but also in the final database. In this short paper
we report on such an implementation of TGM, using
metadata in a relational DBMS [6], partly inspired by recent
developments in the PostgreSQL community [7].

As with the original relational model, the Typed Graph
Model (TGM) has a rigorous mathematical foundation as an
instance of a Graph Schema.

The plan of this short paper is to review the TGM in
Section II, and discuss the implementation details in Section
III, including an illustrative example. Section IV provides
some conclusions.

II. THE TYPED GRAPH MODEL AND INFORMATION

INTEGRATION

We will construct a TGM for a database by declaring
instances of nodes and edges as an alternative to specifying
tables of nodes and edges.

A. Typed Graphs formalism

In this section we review the informal definition of the
TGM from [2], using small letters for elements (nodes,
edges, data types, etc.) and capital letters for sets of
elements. Sets of sets are printed as bold capital letters. A
typical example would be n ∈ N ∈ N ⊆ ℘(N), where N is any
set and ℘(N) is the power-set of N.

Let T denote a set of simple or structured (complex) data
types. A data type t:=(l,d)∈T has a name l and a definition d.
Examples of simple (predefined) types are (int,ℤ),
(char,ASCII), (%,[0..100]) etc. It is also possible to define
complex data types like an order line
(OrderLine,(posNo,partNo,partDescription,quantity)). The
components need to be identified in T, e. g., (posNo,int>0).
Recursion is allowed as long as the defined structure has a
finite number of components.

Definition 1 (Typed Graph Schema, TGS) A typed graph

schema is a tuple TGS=(N
S
,E

S
,ϱ,T,τ,C) where:

• N
S
 is the set of named (labeled) objects (nodes) n with

properties of data type t:=(l,d)∈T, where l is the label

and d the data type definition.

• E
S
 is the set of named (labeled) edges e with a structured

property p:=(l,d)∈T, where l is the label and d the data

type definition.

• ϱ is a function that associates each edge e to a pair of

object sets (O,A), i. e., ϱ(e):=(O
e
,A

e
) with O

e
,A

e
∈℘(N

S
).

O
e
 is called the tail and A

e
 is called the head of an edge

e.

• τ is a function that assigns for each node n of an edge e

a pair of positive integers (i
n
,k

n
), i. e., τ

e
(n):=(i

n
,k

n
) with

i
n
∈N

0
 and k

n
∈N . The function τ defines the min-max

multiplicity of an edge connection. If the min-value i
n
 is

0 then the connection is optional.

• C is a set of integrity constraints, which the graph

database must obey.

33Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

The notation for defining data types T, which are used for
node types N

S
 and edge types E

S
, can be freely chosen: and

in this implementation SQL will be used for identifiers and
expressions, together with a strongly typed relational
database engine. The integrity constraints C restrict the
model beyond the structural limitations of the multiplicity τ
of edge connections. Typical constraints in C are semantic
restrictions of the content of an instance graph.

Definition 2 (Typed Graph Model) A typed graph Model

is a tuple TGM=(N,E,TGS,φ) where:

• N is the set of named (labeled) nodes n with data types

from N
S
 of schema TGS.

• E is the set of named (labeled) edges e with properties of

types from E
S
 of schema TGS.

• TGS is a typed graph schema as defined above..

• φ is a homomorphism that maps each node n and edge e

of TGM to the corresponding type element of TGS,

formally:

φ:TGM→TGS

n↦φ(n):=n
S
(∈N

S
)

e↦φ(e):=e
S

(∈E
S

)

The fact that φ maps each element (node or edge) to
exactly one data type implies that each element of the graph
model has a well-defined data type. The homomorphism is
structure preserving. This means that the cardinality of the
edge types is enforced, too. In this implementation, the
declaration of nodes and edge of the TGM develops the
associated TGS incrementally including the development of
the implied type system T. Data type and constraint checking
is applied for all nodes and edges before any insert, update,
or delete action can be committed.

B. The Data Integration Process

The full benefit of information integration requires the
integration of source data with their full semantics. We
believe a key success factor is to model the sources and
target information as accurately as possible. The expressive
power and flexibility of the TGM allows to describe the
meta-data of the sources and target precisely and in the same
model, which simplifies the matching and mapping of the
sources to the target. The tasks of the data integration
process are:

1) model sources as TGS Si (i = 1, 2, ..., n)
2) model target schema T as TGS G
3) match and map sources Si with TGS G
4) check and improve quality
5) convert TGS G back to T again
Steps 3 and 4 can occur together in an interactive process

once the basic model has been outlined. Such a process is
crucial for EII and other data integration projects, which
demand highly accurate information quality, which can be
further improved with the use of different mappings.

To start the process, it may be necessary to collect
structure and type information from a data expert or from

additional information. Where sources are databases, the
rigid structures provide a good starting point. Otherwise, the
relevant data must first be identified together with its meta-
data if available. This includes coding and names for the data
items. The measure units and other meta-data provided by
the data owner are used to adjust all measures to the same
scale. The paper of Laux [5] gives some examples how to
transform relational, object oriented, and XML-schemata
into a TGS.

If the source is unstructured or semi-structured, e.g.,
documents or XML/HTML data, concepts and mechanisms
from Information Retrieval (IR) and statistical analysis may
help to identify some implicit structure or identify outliers
and other susceptible data. If the data are self-describing
(JSON, key-value pairs, or XML) linguistic matching can be
applied with additional help from a thesaurus or ontology.
Nevertheless, it is advisable to validate the matching with
instance data or an information expert. We present two
possible TGS for a single enterprise in UML notation in
Figure 1. This little example demonstrates already the
flexibility of the model in terms of detail and abstraction.

III. IMPLEMENTATION IN THE RELATIONAL DATABASE

SCHEMA

The prerequisite for implementation of a typed graph
modelling system is to have a strong type system in the
RDBMS. If this is already available, then a graph modelling
capability can be added relatively simply, with slight
extensions to the normal SQL syntax for creating and
altering structured types, and some metadata for
distinguishing node and edge types from other kinds of
structured types.

Then the main difference between a graph schema as
described above and a schema in most DBMS is that
columns and attributes of database tables have a predefined
order. In addition, for a given node type or edge type, there is
a single base table containing the instances of that type. One
way to build a graph is to insert rows in these tables.

The aim of additional graph support in the DBMS is to
simplify the tasks of graph definition and searching. We add
CREATE and MATCH statements, which we describe next.

A. Graph-oriented syntax added to SQL

To the normal SQL CREATE syntax, we add an option
for constructing a graph inline:

Create: CREATE Node { Edge Node } {',' Node {

Edge Node }}.
Node: '(' NewG | id ')'.
NewG: id {':' label } [doc] .
–Edge: '-[' NewG ']->' | '<-[' NewG ']-' .

In this syntax, the strings enclosed in single quotes are

tokens, including several new token types for the TGM. In
corresponding source input, unquoted strings are used for
case-insensitive identifiers and double quoted strings for
case-sensitive identifiers, possibly containing other Unicode
characters. As usual in SQL, string constants in input will be

34Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

single quoted, and doc is a JSON-like structure providing a
set of properties and value expressions, possibly including
metadata definitions for ranges and multiplicity.

Such declarative statements build a base table in the
database for each label.

Nodes and edges and new node types and edge types can
be introduced with this syntax. The database engine
constructs a base table for each distinct label, with columns
sufficient to represent the associated properties. These
database base tables for node types (or edge types) contain a
single row for each node (resp. edge) including node
references. They can be equipped with indexes, constraints,
and triggers in the normal ways.

To the normal SQL DML, we add the syntax for the
MATCH query, which has a similar syntax, except that it
may contain unbound identifiers for nodes and edges, their
labels and/or their properties.

Match: MATCH Node {',' Node } [WhereClause]

Statement .

The first part of the MATCH clause defines a graph

expression. We say that a graph expression is bound if it
contains only constant values, and all its nodes and edges are
in the database. The MATCH algorithm proceeds along the
node expressions, matching more and more of its nodes and
edges with those in the database by assigning values to the
unbound identifiers. If we cannot progress to the next part of
the MATCH clause, we backtrack by undoing the last
binding and taking an alternative value. If the processing
reaches the end of the MATCH statement, the set of bindings
contributes a row in the default result, subject to the optional
WHERE condition. These rows then act as a source of
values for the following statement.

B. Outline of the usage of the TGM

Following the suggestion in [5] we will consider the use
of the TGM in analysis, where an interactive process is
envisaged. The nodes and edges contained in the database
combine to form a set of disjoint graphs that is initially
empty. Adding a node to the database adds a new entry to
this set. When an edge is added, either the two endpoints are
in the same graph, or else the edge will connect two
previously disjoint graphs. If each graph in the set is
identified by a representative node (such as the one with the
lowest uid) and maintains a list of the nodes and edges it
contains, it is easy to manage the set of graphs as data is
added to the database.

If an edge is removed, the graph containing it might now
be in at most two pieces: the simplest algorithm removes it
from the set and adds its nodes and edges back in.

The database with its added graph information can be
used directly in ordinary database application processing,
with the advantage of being able to perform graph-oriented
querying and graph-oriented stored procedures. The normal
processing of the database engine naturally enforces the type
requirements of the model, and also enforces any constraints
specified in graph-oriented metadata. The nodes and edges
are rows in ordinary tables that can be accessed and refined

using normal SQL statements. In particular, using the usual
dotted syntax, properties can be SET and updated, and can
be removed by being set to NULL.

As the TGM is developed and merged with other
graphical data, conflicts will be detected and diagnostics will
help to identify any obstacles to integrating a new part of the
model, so that the model as developed to that point can be
refined.

C. An example

To get started with a customer-supplier ordering system
we could have a number of problematic CREATE statements
such as:

CREATE
(Joe:Customer {"Name":'Joe Edwards',

Address:'10 Station Rd.'}),
(Joe)-[:Ordered {"Date":date'22/11/2002'}]->

(Ord201:"Order")-[:Item {Qty: 5}]->("16/50x100" :
WoodScrew),

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm":
WallPlug),

(Ord201)-[:Item {Qty: 1}]->("500ml" :
RubberGlue)

Primary keys for edges are here being left to the engine

to supply – they could be specified explicitly if preferred.
Name, Order and Date are in double quotes because they are
reserved words in SQL. By default, the entire CREATE
statement shown is considered a single transaction by the
database engine: if the syntax checker is happy with it, it will
be automatically committed.

It is easy to criticize what the user offers here: and the
graph would benefit from splitting up composite information
such as Fibre 12cm and 16/8x100 to clarify the meaning of
the components and facilitate processing. Such changes can
be made by the designer later.

Assuming the database is empty before we start, the first
line above, if committed, would create a new base table
CUSTOMER (a NodeType)

CREATE TYPE CUSTOMER as ("Name" char, ADDRESS

char) NodeType

The NodeType metadata flag adds as the first column a

primary key column ID of type char so that the new
CUSTOMER table has an initial row

 ('JOE','Joe Edwards','10 Station Rd.’)

That would work. The next line defines four more base

tables, two NodeTypes and two EdgeTypes:

CREATE TYPE "Order" NodeType
CREATE TYPE WOODSCREW NodeType
CREATE TYPE ORDERED as ("Date" date)

 EdgeType(CUSTOMER,"Order")
CREATE TYPE ITEM as (QTY int)
 EdgeType("Order",WOODSCREW)

35Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

This also will work, but is probably not what the analyst
wanted, because the Item edge type connects to nodes of
type WOODSCREW. If this is committed, we cannot later
have an Item edge connecting to a WALLPLUG.

But nothing is committed yet, so when the database
engine finds this difficulty, it simply replaces the
specification :WoodScrew in the second line by
:WoodScrew:&1 , and similar changes to WallPlug and
RubberGlue.

This adds a new anonymous base node type for these
node types, with a system-generated name

CREATE TYPE &1 NodeType

and the node type proposal becomes

CREATE TYPE ITEM as (QTY int)
 EdgeType("Order",WOODSCREW)

CREATE TYPE WoodScrew UNDER &1
CREATE TYPE WallPlug UNDER &1
CREATE TYPE RubberGlue UNDER &1

The analyst can be advised that this has been done, and

they can later choose a better name for the new NodeType
&1 (maybe PRODUCT?). This process of generalization can
be offered as a standard database transformation.

After the nodes and edges have been generated and the
transaction commits, the node and edge data would be
installed in the database as follows:

CUSTOMER ('Joe','Joe Edwards',
 '10 Station Rd.')
"Order" ('Ord201')
WOODSCREW ('16/50x100')
WALLPLUG ('Fiber 12cm')
RUBBERGLUE ('500ml')
ORDERED ('&2','Joe','Ord201',
 'date'22/11/2002')
ITEM ('&3','Ord201','16/50x100')
 ('&4','Ord201','Fiber 12cm')
 ('&5','Ord201','500ml')

 This is satisfyingly neat. We see that while the metadata

flag NodeType gave the node type a primary key as the first
column ID that is a primary key, the metadata flag EdgeType
has given the edge types three initial columns: ID, a primary
key, LEAVING, a foreign key to the leaving node type, and
ARRIVING, a foreign key to the arriving type. Note also
that ITEM’s arriving type is the new anonymous type &1.

It is noteworthy that this mechanism allows schemas to
evolve bottom-up during the database design, as envisaged in
[2]. The normal Schema-first strategy is still available, and
the two approaches can be combined for convenience. Either

way, the database will contain a rigorous and enforceable
relational schema at all stages, since any declarations that
would not be enforceable will be rejected before being
committed to the database.

During refinement of the model, there are opportunities
for adding constraints and other metadata. Such details, and
the enhanced diagnostics mentioned above, are the subject of
ongoing research. The conference presentation will provide
an opportunity for a demonstration of the process and more
details on MATCH.

IV. CONCLUSIONS

The purpose of this paper was to report some progress in
our Typed Graph Modeling workstream. The work is
available on Github [8] for free download and use and is not
covered by any patent or other restrictions.

The current “alpha” state of the software implements all
of the above ideas apart but lacks the suggested interaction
with the model designer. The test suite includes a version of
the running example together with others that demonstrate
the integration of the relational and typed graph model
concepts in Pyrrho DBMS.

REFERENCES

[1] Oracle, Oracle Product Documentation (Online), Available
from: https://docs.oracle.com/javaee/7/tutorial/persistence-
intro.htm#BNBPZ [retrieved: Feb, 2023]

[2] F. Laux and M. Crowe, “Information Integration using the
Typed Graph Model”, DBKDA 2021: The Thirteenth
International Conference on Advances in Databases,
Knowledge, and Data Applications, IARIA, May 2021, pp. 7-
14, ISSN: 2308-4332, ISBN: 978-1-61208-857-0

[3] E. J. Naiburg, and R. A. Maksimschuk, UML for database
design. Addison-Wesley Professional, 2001

[4] R. De Virgilio, A. Maccioni, A., R. Torloner, “Model-Driven
Design of Graph Databases”, in Yue, E. et al (eds) Conceptual
Modeling, 33rd International Conference (ER 2014), Springer,
Oct 2014, pp. 172-185, ISSN: 0302-9743 ISBN: 978-3-319-
12205-2

[5] F. Laux, “The Typed Graph Model”, DBKDA 2020 : The
Twelfth International Conference on Advances in Databases,
Knowledge, and Data Applications, IARIA, Sept 2020, pp.
13-19, ISSN: 2308-4332, ISBN: 978-1-61208-790-0

[6] M. Crowe, and F. Laux, “Database Technology Evolution”,
IARIA International Journal on Advanced is Software, vol 15
(3-4) 2022, pp. 224-234, ISSN: 1942-2628

[7] S. Shah, et al. The PostgreSQL Data Computing Platform
(PgDCP) (Online), Available from:
https://github.com/netspective-studios/PgDCP [retrieved: Feb
2023]

[8] M. Crowe, PyrrhoV7alpha,
https://github.com/MalcolmCrowe/ShareableDataStructures
[retrieved: Feb 2023]

36Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. Example TGM of a commercial enterprise showing two levels of detail

37Copyright (c) IARIA, 2023. ISBN: 978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications

