
Graph Data Models and Relational Database Technology 

 

Malcolm Crowe 

Emeritus Professor, Computing Science 

University of the West of Scotland 

Paisley, United Kingdom 

Email: Malcolm.Crowe@uws.ac.uk 

Fritz Laux 

Emeritus Professor, Business Computing 

Universität Reutlingen 

Reutlingen, Germany 

Email: Fritz.Laux@reutlingen-university.de

 
Abstract—Recent work on database application development 

platforms has sought to include a declarative formulation of a 

conceptual data model in the application code, using 

annotations or attributes. Some recent work has used metadata 

to include the details of such formulations in the physical 

database, and this approach brings significant advantages in 

that the model can be enforced across a range of applications 

for a single database. In previous work, we have discussed the 

advantages for enterprise integration of typed graph data 

models (TGM), which can play a similar role in graphical 

databases, leveraging the existing support for the unified 

modelling language UML. Ideally, the integration of systems 

designed with different models, for example, graphical and 

relational database, should also be supported. In this work, we 

implement this approach, using metadata in a relational 

database management system (DBMS). 

Keywords—typed graph model; graph schema; relational 

database; implementation; information integration. 

I.  INTRODUCTION 

For many years, the process of database implementation 
has included a conceptual data modeling phase, and this has 
often been supported by declarative structures using 
annotations or attributes [1]. Some recent DBMS have 
included metadata in the relational model to form a bridge 
with the physical database. This approach brings significant 
advantages in that the data model can be enforced across all 
applications for a single database. In previous work [2], we 
provided mapping rules for TGM so that data models can 
play a similar role in graphical databases, using the notations 
of UML [3]. During such early conceptual model building, 
incremental and interactive exploration can be helpful [4] as 
fully automated integration tools may combine things in an 
inappropriate way, and the use of data types [5] can help to 
ensure that semantic information is included not merely in 
the model, but also in the final database. In this short paper 
we report on such an implementation of TGM, using 
metadata in a relational DBMS [6], partly inspired by recent 
developments in the PostgreSQL community [7]. 

As with the original relational model, the Typed Graph 
Model (TGM) has a rigorous mathematical foundation as an 
instance of a Graph Schema. 

The plan of this short paper is to review the TGM in 
Section II, and discuss the implementation details in Section 
III, including an illustrative example. Section IV provides 
some conclusions. 

II. THE TYPED GRAPH MODEL AND INFORMATION 

INTEGRATION 

We will construct a TGM for a database by declaring 
instances of nodes and edges as an alternative to specifying 
tables of nodes and edges. 

A. Typed Graphs formalism 

In this section we review the informal definition of the 
TGM from [2], using small letters for elements (nodes, 
edges, data types, etc.) and capital letters for sets of 
elements. Sets of sets are printed as bold capital letters. A 
typical example would be n ∈ N ∈ N ⊆ ℘(N), where N is any 
set and ℘(N) is the power-set of N. 

Let T denote a set of simple or structured (complex) data 
types. A data type t:=(l,d)∈T has a name l and a definition d. 
Examples of simple (predefined) types are (int,ℤ), 
(char,ASCII), (%,[0..100]) etc. It is also possible to define 
complex data types like an order line 
(OrderLine,(posNo,partNo,partDescription,quantity)). The 
components need to be identified in T, e. g., (posNo,int>0). 
Recursion is allowed as long as the defined structure has a 
finite number of components. 

Definition 1 (Typed Graph Schema, TGS)  A typed graph 

schema is a tuple TGS=(N
S
,E

S
,ϱ,T,τ,C)  where:  

• N
S
 is the set of named (labeled) objects (nodes) n with 

properties of data type t:=(l,d)∈T, where l is the label 

and d the data type definition.  

• E
S
 is the set of named (labeled) edges e with a structured 

property p:=(l,d)∈T, where l is the label and d the data 

type definition.  

• ϱ is a function that associates each edge e to a pair of 

object sets (O,A), i. e., ϱ(e):=(O
e
,A

e
) with O

e
,A

e
∈℘(N

S
). 

O
e
 is called the tail and A

e
 is called the head of an edge 

e.  

• τ is a function that assigns for each node n of an edge e 

a pair of positive integers (i
n
,k

n
), i. e., τ

e
(n):=(i

n
,k

n
) with 

i
n
∈N

0
 and k

n
∈N . The function τ defines the min-max 

multiplicity of an edge connection. If the min-value i
n
 is 

0 then the connection is optional.  

• C is a set of integrity constraints, which the graph 

database must obey.  
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The notation for defining data types T, which are used for 
node types N

S
 and edge types E

S
, can be freely chosen: and 

in this implementation SQL will be used for identifiers and 
expressions, together with a strongly typed relational 
database engine. The integrity constraints C restrict the 
model beyond the structural limitations of the multiplicity τ 
of edge connections. Typical constraints in C are semantic 
restrictions of the content of an instance graph.  

Definition 2 (Typed Graph Model)  A typed graph Model 

is a tuple TGM=(N,E,TGS,φ) where:  

• N is the set of named (labeled) nodes n with data types 

from N
S
 of schema TGS.  

• E is the set of named (labeled) edges e with properties of 

types from E
S
 of schema TGS.  

• TGS is a typed graph schema as defined above..  

• φ is a homomorphism that maps each node n and edge e 

of TGM to the corresponding type element of TGS, 

formally:  

φ:TGM→TGS 

n↦φ(n):=n
S
(∈N

S
) 

e↦φ(e):=e
S

(∈E
S

) 

The fact that φ maps each element (node or edge) to 
exactly one data type implies that each element of the graph 
model has a well-defined data type. The homomorphism is 
structure preserving. This means that the cardinality of the 
edge types is enforced, too. In this implementation, the 
declaration of nodes and edge of the TGM develops the 
associated TGS incrementally including the development of 
the implied type system T. Data type and constraint checking 
is applied for all nodes and edges before any insert, update, 
or delete action can be committed. 

B. The Data Integration Process  

The full benefit of information integration requires the 
integration of source data with their full semantics. We 
believe a key success factor is to model the sources and 
target information as accurately as possible. The expressive 
power and flexibility of the TGM allows to describe the 
meta-data of the sources and target precisely and in the same 
model, which simplifies the matching and mapping of the 
sources to the target. The tasks of the data integration 
process are: 

1) model sources as TGS Si (i = 1, 2, ..., n)  
2) model target schema T as TGS G  
3) match and map sources Si with TGS G  
4) check and improve quality  
5) convert TGS G back to T again  
Steps 3 and 4 can occur together in an interactive process 

once the basic model has been outlined. Such a process is 
crucial for EII and other data integration projects, which 
demand highly accurate information quality, which can be 
further improved with the use of different mappings.  

To start the process, it may be necessary to collect 
structure and type information from a data expert or from 

additional information. Where sources are databases, the 
rigid structures provide a good starting point. Otherwise, the 
relevant data must first be identified together with its meta-
data if available. This includes coding and names for the data 
items. The measure units and other meta-data provided by 
the data owner are used to adjust all measures to the same 
scale. The paper of Laux [5] gives some examples how to 
transform relational, object oriented, and XML-schemata 
into a TGS.  

If the source is unstructured or semi-structured, e.g., 
documents or XML/HTML data, concepts and mechanisms 
from Information Retrieval (IR) and statistical analysis may 
help to identify some implicit structure or identify outliers 
and other susceptible data. If the data are self-describing 
(JSON, key-value pairs, or XML) linguistic matching can be 
applied with additional help from a thesaurus or ontology. 
Nevertheless, it is advisable to validate the matching with 
instance data or an information expert. We present two 
possible TGS for a single enterprise in UML notation in 
Figure 1. This little example demonstrates already the 
flexibility of the model in terms of detail and abstraction. 

 

III. IMPLEMENTATION IN THE RELATIONAL DATABASE 

SCHEMA 

The prerequisite for implementation of a typed graph 
modelling system is to have a strong type system in the 
RDBMS. If this is already available, then a graph modelling 
capability can be added relatively simply, with slight 
extensions to the normal SQL syntax for creating and 
altering structured types, and some metadata for 
distinguishing node and edge types from other kinds of 
structured types. 

Then the main difference between a graph schema as 
described above and a schema in most DBMS is that 
columns and attributes of database tables have a predefined 
order. In addition, for a given node type or edge type, there is 
a single base table containing the instances of that type. One 
way to build a graph is to insert rows in these tables.  

The aim of additional graph support in the DBMS is to 
simplify the tasks of graph definition and searching. We add 
CREATE and MATCH statements, which we describe next. 

A. Graph-oriented syntax added to SQL 

To the normal SQL CREATE syntax, we add an option 
for constructing a graph inline: 

 
Create: CREATE Node { Edge Node } {',' Node { 

Edge Node }}. 
Node: '(' NewG | id ')'. 
NewG: id {':' label } [doc] . 
–Edge: '-[' NewG ']->' | '<-[' NewG ']-' . 
 
In this syntax, the strings enclosed in single quotes are 

tokens, including several new token types for the TGM. In 
corresponding source input, unquoted strings are used for 
case-insensitive identifiers and double quoted strings for 
case-sensitive identifiers, possibly containing other Unicode 
characters. As usual in SQL, string constants in input will be 
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single quoted, and doc is a JSON-like structure providing a 
set of properties and value expressions, possibly including 
metadata definitions for ranges and multiplicity. 

Such declarative statements build a base table in the 
database for each label.  

Nodes and edges and new node types and edge types can 
be introduced with this syntax. The database engine 
constructs a base table for each distinct label, with columns 
sufficient to represent the associated properties. These 
database base tables for node types (or edge types) contain a 
single row for each node (resp. edge) including node 
references. They can be equipped with indexes, constraints, 
and triggers in the normal ways. 

To the normal SQL DML, we add the syntax for the 
MATCH query, which has a similar syntax, except that it 
may contain unbound identifiers for nodes and edges, their 
labels and/or their properties. 

 
Match: MATCH Node {',' Node } [WhereClause] 

Statement . 
 
The first part of the MATCH clause defines a graph 

expression. We say that a graph expression is bound if it 
contains only constant values, and all its nodes and edges are 
in the database. The MATCH algorithm proceeds along the 
node expressions, matching more and more of its nodes and 
edges with those in the database by assigning values to the 
unbound identifiers. If we cannot progress to the next part of 
the MATCH clause, we backtrack by undoing the last 
binding and taking an alternative value. If the processing 
reaches the end of the MATCH statement, the set of bindings 
contributes a row in the default result, subject to the optional 
WHERE condition.  These rows then act as a source of 
values for the following statement. 

B. Outline of the usage of the TGM 

Following the suggestion in [5] we will consider the use 
of the TGM in analysis, where an interactive process is 
envisaged. The nodes and edges contained in the database 
combine to form a set of disjoint graphs that is initially 
empty. Adding a node to the database adds a new entry to 
this set. When an edge is added, either the two endpoints are 
in the same graph, or else the edge will connect two 
previously disjoint graphs. If each graph in the set is 
identified by a representative node (such as the one with the 
lowest uid) and maintains a list of the nodes and edges it 
contains, it is easy to manage the set of graphs as data is 
added to the database.  

If an edge is removed, the graph containing it might now 
be in at most two pieces: the simplest algorithm removes it 
from the set and adds its nodes and edges back in.  

The database with its added graph information can be 
used directly in ordinary database application processing, 
with the advantage of being able to perform graph-oriented 
querying and graph-oriented stored procedures. The normal 
processing of the database engine naturally enforces the type 
requirements of the model, and also enforces any constraints 
specified in graph-oriented metadata. The nodes and edges 
are rows in ordinary tables that can be accessed and refined 

using normal SQL statements. In particular, using the usual 
dotted syntax, properties can be SET and updated, and can 
be removed by being set to NULL. 

As the TGM is developed and merged with other 
graphical data, conflicts will be detected and diagnostics will 
help to identify any obstacles to integrating a new part of the 
model, so that the model as developed to that point can be 
refined. 

C. An example 

To get started with a customer-supplier ordering system 
we could have a number of problematic CREATE statements 
such as: 

 
CREATE 
(Joe:Customer {"Name":'Joe Edwards', 

Address:'10 Station Rd.'}), 
(Joe)-[:Ordered {"Date":date'22/11/2002'} ]-> 

(Ord201:"Order")-[:Item {Qty: 5}]->("16/50x100" : 
WoodScrew), 

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm": 
WallPlug), 

(Ord201)-[:Item {Qty: 1}]->("500ml" : 
RubberGlue) 

 
Primary keys for edges are here being left to the engine 

to supply – they could be specified explicitly if preferred. 
Name, Order and Date are in double quotes because they are 
reserved words in SQL. By default, the entire CREATE 
statement shown is considered a single transaction by the 
database engine: if the syntax checker is happy with it, it will 
be automatically committed. 

It is easy to criticize what the user offers here: and the 
graph would benefit from splitting up composite information 
such as Fibre 12cm and 16/8x100 to clarify the meaning of 
the components and facilitate processing. Such changes can 
be made by the designer later. 

Assuming the database is empty before we start, the first 
line above, if committed, would create a new base table 
CUSTOMER (a NodeType)  

 
CREATE TYPE CUSTOMER as ("Name" char, ADDRESS 

char) NodeType 
 
The NodeType metadata flag adds as the first column a 

primary key column ID of type char so that the new 
CUSTOMER table has an initial row 

 
 ('JOE','Joe Edwards','10 Station Rd.’) 
 
That would work. The next line defines four more base 

tables, two NodeTypes and two EdgeTypes: 
 
CREATE TYPE "Order" NodeType 
CREATE TYPE WOODSCREW NodeType  
CREATE TYPE ORDERED as ("Date" date) 

 EdgeType(CUSTOMER,"Order") 
CREATE TYPE ITEM as (QTY int) 
 EdgeType("Order",WOODSCREW) 
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This also will work, but is probably not what the analyst 
wanted, because the Item edge type connects to nodes of 
type WOODSCREW. If this is committed, we cannot later 
have an Item edge connecting to a WALLPLUG. 

But nothing is committed yet, so when the database 
engine finds this difficulty, it simply replaces the 
specification :WoodScrew in the second line by 
:WoodScrew:&1 , and similar changes to WallPlug and 
RubberGlue.  

This adds a new anonymous base node type for these 
node types, with a system-generated name  

 
CREATE TYPE &1 NodeType 
 
and the node type proposal becomes  
 
CREATE TYPE ITEM as (QTY int) 
 EdgeType("Order",WOODSCREW) 
 
CREATE TYPE WoodScrew UNDER &1 
CREATE TYPE WallPlug UNDER &1 
CREATE TYPE RubberGlue UNDER &1 
  
The analyst can be advised that this has been done, and 

they can later choose a better name for the new NodeType 
&1 (maybe PRODUCT?). This process of generalization can 
be offered as a standard database transformation. 

After the nodes and edges have been generated and the 
transaction commits, the node and edge data would be 
installed in the database as follows: 

 
CUSTOMER ('Joe','Joe Edwards', 
 '10 Station Rd.') 
"Order" ('Ord201') 
WOODSCREW ('16/50x100') 
WALLPLUG ('Fiber 12cm') 
RUBBERGLUE ('500ml') 
ORDERED ('&2','Joe','Ord201', 
 'date'22/11/2002') 
ITEM ('&3','Ord201','16/50x100') 
 ('&4','Ord201','Fiber 12cm') 
 ('&5','Ord201','500ml') 
 
 This is satisfyingly neat. We see that while the metadata 

flag NodeType gave the node type a primary key as the first 
column ID that is a primary key, the metadata flag EdgeType 
has given the edge types three initial columns: ID, a primary 
key, LEAVING, a foreign key to the leaving node type, and 
ARRIVING, a foreign key to the arriving type. Note also 
that ITEM’s arriving type is the new anonymous type &1. 

It is noteworthy that this mechanism allows schemas to 
evolve bottom-up during the database design, as envisaged in 
[2]. The normal Schema-first strategy is still available, and 
the two approaches can be combined for convenience. Either 

way, the database will contain a rigorous and enforceable 
relational schema at all stages, since any declarations that 
would not be enforceable will be rejected before being 
committed to the database. 

During refinement of the model, there are opportunities 
for adding constraints and other metadata. Such details, and 
the enhanced diagnostics mentioned above, are the subject of 
ongoing research. The conference presentation will provide 
an opportunity for a demonstration of the process and more 
details on MATCH. 

IV. CONCLUSIONS 

The purpose of this paper was to report some progress in 
our Typed Graph Modeling workstream. The work is 
available on Github [8] for free download and use and is not 
covered by any patent or other restrictions. 

The current “alpha” state of the software implements all 
of the above ideas apart but lacks the suggested interaction 
with the model designer. The test suite includes a version of 
the running example together with others that demonstrate 
the integration of the relational and typed graph model 
concepts in Pyrrho DBMS. 
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Figure 1. Example TGM of a commercial enterprise showing two levels of detail 
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