A Hypergraph Approach for Logic-based Abduction

Qiancheng Ouyang LISN, CNRS Université Paris-Saclay email: oyqc@lisn.fr Tianjiao Dai LISN, CNRS Université Paris-Saclay email: dai@lisn.fr Yue Ma LISN, CNRS Université Paris-Saclay email: yue.ma@lisn.fr

Abstract—Abduction reasoning, which finds possible hypotheses from existing observations, has been studied in many different areas. We consider an abduction problem that takes into account a user's interest. We propose a new approach to solving such an abduction problem based on a hypergraph representation of an ontology and obtain a linear algorithm for a description logic. *Index Terms*—Abduction; Hypergraph; Description Logic

I. INTRODUCTION

Abduction reasoning aims to generate a possible hypothesis for a given observation. Abduction has been applied in many artificial intelligence (AI) areas, such as machine learning, logical programming, and statistical relational AI [7].

We focus on *logical-based abduction* [4] over *description logic ontologies*. Here, ontologies consist of *axioms* that state the relationship of different *concepts* and *relationships* over a specific domain. Then, our abduction problem consists of three parts: (i) a given background knowledge (i.e., an existing ontology \mathcal{O}); (ii) a set of hypotheses (i.e., a set of axioms \mathcal{H}) and (iii) a given conclusion (i.e., a single axiom). There have been many studies of abduction over different ontologies, such as the complexity of abduction over \mathcal{EL} [2] and their application to repairing ontologies [8], abduction over \mathcal{EL} by translation to first-order logic [5], forgetting-based abductive reasoning over expressive ontology \mathcal{ALC} [3], and signaturebased abduction over more expressive $\mathcal{ALCOT}\mu$ [6].

We propose a new solution (section IV) of abduction over a special \mathcal{EL} -ontology (free of role restrictions) in Section III, based on a hypergraph representation of ontologies.

II. PRELIMINARIES

An ontology \mathcal{O} is a set of axioms of the form $A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B$, where A_i, B are called *concepts*. An interpretation $\mathcal{I} = \langle \Delta^I, \cdot^I \rangle$ consists of a non-empty domain Δ^I and a mapping \cdot^I that maps each concept to a subset $A^I \subseteq \Delta^I$. A model of \mathcal{O} is an interpretation that for each $A_1 \sqcap \cdots \sqcap A_n \sqsubseteq A \in \mathcal{O}$, we have $A_1^{\mathcal{I}} \cap \cdots \cap A_n^{\mathcal{I}} \subseteq A^{\mathcal{I}}$. We say $\mathcal{O} \models A_1' \sqcap \cdots \sqcap A_n' \sqsubseteq B'$ iff for any models \mathcal{I} of \mathcal{O} , we have $(A_1')^{\mathcal{I}} \cap \cdots \cap (A_n')^{\mathcal{I}} \subseteq (B')^{\mathcal{I}}$.

A (directed) hypergraph $\mathcal{H} = \{\mathcal{V}, \mathcal{E}\}$ consists of a node set $\mathcal{V} = \{v_1, v_2, \dots, v_n\}$ and a hyperedge set $\mathcal{E} = \{e_1, e_2, \dots, e_m\}$, where $e_i = \langle T(e_i), f(e_i) \rangle$ with $T(e_i) \subseteq \mathcal{V}$ being a subset and $f(e_i) \in \mathcal{V}$ being a node. Note that a classical hyperedge can have multiple nodes in its head, which we require to be a singleton for computing abduction.

Definition 1 ([1]). Given a hypergraph $\mathcal{H} = \{\mathcal{V}, \mathcal{E}\}$, assume $S \subseteq \mathcal{V}$ and $v \in \mathcal{V}$. A hyperpath from S to v is a sequence

 $\begin{aligned} h &= [e_1, e_2, \cdots, e_n] \text{ of hyperedges such that (i) } f(e_n) = \{v\}; \\ \text{(ii) for } i &= 1, \cdots, n, \ T(e_i) \subseteq S \cup \{f(e_1); \cdots, f(e_{i-1})\}; \text{(iii)} \\ \text{for } i &= 1, \cdots, n, \ f(e_i) \in \bigcup_{i < j \le n} T(e_j). \end{aligned}$

III. ABDUCTION PROBLEM

We consider an abduction problem that takes into account a user's interests represented by a set of concepts Σ .

Definition 2. An abduction problem is a tuple

$$\langle \mathcal{O}, \Sigma, A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B \rangle,$$

where $\Sigma = \{A', B', \dots\}$ is a set of concept names. A *solution* of this problem is a (minimal) ontology

$$\mathcal{H} = \{A'_1 \sqcap \cdots \sqcap A'_n \sqsubseteq B' \mid A'_i, B' \in \Sigma, n \ge 0\}$$

such that $\mathcal{O} \cup \mathcal{H} \models A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B$. A solution \mathcal{H} is called a *hypothesis* with respect to Σ .

Example 1. Let an ontology \mathcal{O}_0 be:

 $peopleWithDiploma \sqsubseteq doctor$

 $peopleHasPaper\sqsubseteq researcher$

 $doctor \sqcap employeeWithUniversityChair \sqsubseteq professor$

 \mathcal{O}_0 can not derive the following axiom α_0 :

 α_0 : doctor \sqcap employee With University Chair \sqsubseteq researcher

although it should be true. Consider $\Sigma_0 = \{professor, peopleHasPaper\}$. If we add a hypothesis $\mathcal{H}_0 = \{professor \sqsubseteq peopleHasPaper\}$, we have $\mathcal{O}_0 \cup \mathcal{H}_0 \models \alpha_0$. Therefore, \mathcal{H}_0 is a solution of the abduction problem $\mathcal{A}_0 = \langle \mathcal{O}_0, \Sigma_0, \alpha_0 \rangle$. It is clear that \mathcal{H}_0 is also a minimal solution to the abduction problem. But there is no solution to \mathcal{A}_0 if $\Sigma_0 = \{professor, peopleWithDiploma\}$.

IV. A HYPERGRAPH-BASED ALGORITHM

We now present a method of finding a (minimal) solution to the abduction problem using hypergraphs.

Definition 3. For each set \mathcal{O} of axioms, we define a hypergraph $H_{\mathcal{O}} = (\mathcal{N}_h, \mathcal{E}_h)$, where $\mathcal{N}_h := \{N_{A'} \mid A' \in \mathsf{N}_\mathsf{C}\}$ and

$$\mathcal{E}_h := \{\{N_{A'_1}, \cdots, N_{A'_n}\} \rightarrow N_{A'} \mid A'_1 \sqcap \cdots \sqcap A'_n \sqsubseteq A' \in \mathcal{O}\}$$

Example 2 (Example 1 cont'd). By definition, the hypergraph $H_{\mathcal{O}_0}$ of \mathcal{O}_0 is shown in Figure. 1. Now, we add an edge

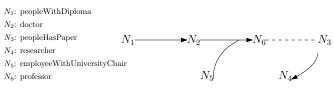


Fig. 1: The hypergraph representation $H_{\mathcal{O}_0}$ of \mathcal{O}_0 in Example 1

 $\{N_6\} \rightarrow N_3$ to the hypergraph $H_{\mathcal{O}_0}$. Then, we can find a hyperpath h from $\{N_2, N_5\}$ to N_4 :

$$h = [\{N_2, N_5\} \rightarrow N_6, \{N_6\} \rightarrow N_3, \{N_3\} \rightarrow N_4]$$

Theorem 1. Given an ontology \mathcal{O} and its associated hypergraph $H_{\mathcal{O}}$, an ontology \mathcal{H} is a (minimal) solution to the abduction problem $\langle \mathcal{O}, \Sigma, A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B \rangle$ iff $H_{\mathcal{H}}$ is a (minimal) hypergraph such that (i) All nodes in $H_{\mathcal{H}}$ are of the form N_A , $A \in \Sigma$, and (ii) There exists a hyperpath from N_{A_1}, \cdots, N_{A_n} to N_B in $H_{\mathcal{O}} \cup H_{\mathcal{H}}$.

Example 3 (Example 1 cont'd). By Theorem 1, to solve the abduction problem \mathcal{A}_0 , it is enough to find an $H_{\mathcal{H}}$ such that there exists a hyperpath from $\{N_2, N_5\}$ to N_4 in $H_{\mathcal{O}_0} \cup H_{\mathcal{H}}$. The hypergraph $H_{\mathcal{H}}$ consists of a single edge $\{N_6\} \rightarrow N_3$ satisfying the requirement, leading to the hyperpath given in Example 2 as the minimal solution of the problem.

Before stating our main Algorithm 2, we define a property of saturation for a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ and $V \subset \mathcal{V}$. We define $U \subset V$ to be *saturated* (under V) if there exists $e \in \mathcal{E}$ such that T(e) = U and $f(e) \notin V$. For example, in Fig. 1, if we have $V = \{N_1, N_2, N_5\}$, then $\{N_1\}$ and $\{N_2, N_5\}$ are saturated under V, while other subsets of V are not. Algorithm 1 finds all vertices approachable from V in run-time $O(|\mathcal{E}|)$.

Proposition 1. For a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ and $V \subset \mathcal{V}$, $v \in Span(\mathcal{V}, \mathcal{E}, V)$ iff. there is a hyperpath from V to v.

Algorithm 1: $Span(\mathcal{V}, \mathcal{E}, V)$ **input** : hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, set $V \subset \mathcal{V}$ **output:** $W \subset \mathcal{V}$ of all vertices spanned from V 1 W = V. 2 $\mathcal{U} = \{U, U \text{ is saturated under } V\}.$ 3 while $\mathcal{U} \neq \emptyset$ do choose $U \in \mathcal{U}$, 4 while there exists $v \in \mathcal{V} \setminus W$ such that $(W, v) \in \mathcal{E}$ 5 do put v into W; 6 put all saturated sets containing v into \mathcal{U} . 7 8 end 9 remove U. 10 end 11 return W

In Algorithm 2, we first check if v can be directly reached by V (Line 1-3). Then, we check if the aiming hypergraph exists (Line 4-11). These 2 steps have run-time $O(|\mathcal{E}|)$. In the minimizing step, for each $e \in \mathcal{E}'$, we check only once if e can be deleted. Hence, the total run-time is $O(|\Sigma||\mathcal{E}|)$.

Algorithm 2:

input : hypergraph $H = (\mathcal{V}, \mathcal{E}), \Sigma \subset \mathcal{V}, S \subset \mathcal{V}, v \in \mathcal{V}$ **output:** hypergraph \mathcal{H} on Σ 1 $V = Span(\mathcal{V}, \mathcal{E}, S).$ 2 if $v \in V$ then 3 return empty graph. 4 else if $\Sigma \subset V$ or $\Sigma \cup V = \emptyset$ return non-existence. 5 $\Sigma \setminus V = \{v_1, \dots, v_m\},\$ 6 choose m hyper-edges $\mathcal{E}' = \{e_1, \ldots, e_m\}$ where 7 $T(e_i) \subset \Sigma \cap V$ and $f(e_i) = v_i$ for $1 \leq i \leq m$. $V = V \cup \Sigma.$ 8 9 end 10 if $v \notin Span(\mathcal{V}, \mathcal{E} \cup \mathcal{E}', V)$ then return non-existence. 11 12 else minimize \mathcal{E}' (check if there exists $e \in \mathcal{E}'$ such that 13 $\mathcal{E}' - e$ satisfies until we get a minimal size). return $\mathcal{H} = (\Sigma, \mathcal{E}').$ 14

15 end

We explain Algorithm 2 via the following example. Solution of Example 3. (via Algorithm 2)

- 1) $H = H_{\mathcal{O}}, \Sigma = \{N_3, N_6\}, S = \{N_2, N_5\}, v = N_4.$
- 2) Line 1: $V = Span(\mathcal{V}, \mathcal{E}, S) = \{N_2, N_5, N_6\}.$
- 3) Line 7: $\mathcal{E}' = \{\{N_6\} \to N_3\}.$
- 4) Line 10: $v \in Span(\mathcal{V}, \mathcal{E} \cup \mathcal{E}', V = \mathcal{V}).$
- 5) Line 13: we see $\{\{N_6\} \rightarrow N_3\}$ cannot be deleted. It returns $\mathcal{H} = (\Sigma, \mathcal{E}')$.

Theorem 2. For Algorithm 2, the output \mathcal{H} is a minimal hypergraph satisfying the conditions (i) and (ii) in Theorem 1.

V. CONCLUSION

In this work, we introduce a hypergraph-based algorithm for solving abduction problems over \mathcal{EL} -ontologies that do not have role restrictions, which have a linear time complexity w.r.t. the size of the input ontology. As for future work, we plan to implement our algorithm and extend it to handle general \mathcal{EL} -ontologies with role restrictions, as well as more expressive ontologies such as ALC.

Acknowledgment. We thank Hui Yang for bringing our attention to the topic and the discussion with us.

REFERENCES

- [1] A. Giorgio and L. Luigi, "Directed hypergraphs: Introduction and fundamental algorithms-a survey", Theoretical Computer Science, vol. 658, pp. 293-306, 2017.
- [2] M. Bienvenu, "Complexity of abduction in the EL family of lightweight description logics", Proc. of KR'08, 2008, pp. 220-230.
- [3] W. Del-Pinto and R. A. Schmidt, "Abox abduction via forgetting in ALC", Proc. of AAAI'19, 2019, pp. 2768-2775.
- [4] T. Eiter and G. Gottlob, "The complexity of logic-based abduction", J. ACM, vol. 42 (1), 1995, pp. 3-42.
- [5] F. Haifani, P. Koopmann, S. Tourret, and C. Weidenbach, "Connectionminimal abduction in EL via translation to FOL", Proc. of IJCAR'22, 2022, pp. 188-207.

- [6] P. Koopmann, W. Del-Pinto, S. Tourret, and R. A. Schmidt "Signature-based abduction for expressive description logics", Proc. of KR'20, 2020, pp. 592–602.
 [7] Sindhu V. Raghavan, "Bayesian Abductive Logic Programs: A Proba-
- [7] Sindhu V. Raghavan, "Bayesian Abductive Logic Programs: A Probabilistic Logic for Abductive Reasoning", Statistical Relational Artificial Intelligence, Proc. of IJCAI'11, 2011, pp. 2840–2841.
 [8] F. Wei-Kleiner, Z. Dragisic, and P. Lambrix, "Abduction framework for
- [8] F. Wei-Kleiner, Z. Dragisic, and P. Lambrix, "Abduction framework for repairing incomplete EL ontologies: Complexity results and algorithms", Proc. of AAAI'14, 2014, pp. 1120–1127.