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Abstract—Abduction reasoning, which finds possible hypothe-
ses from existing observations, has been studied in many different
areas. We consider an abduction problem that takes into account
a user’s interest. We propose a new approach to solving such an
abduction problem based on a hypergraph representation of an
ontology and obtain a linear algorithm for a description logic.

Index Terms—Abduction; Hypergraph; Description Logic

I. INTRODUCTION

Abduction reasoning aims to generate a possible hypothesis
for a given observation. Abduction has been applied in many
artificial intelligence (AI) areas, such as machine learning,
logical programming, and statistical relational AI [7].

We focus on logical-based abduction [4] over description
logic ontologies. Here, ontologies consist of axioms that state
the relationship of different concepts and relationships over
a specific domain. Then, our abduction problem consists of
three parts: (i) a given background knowledge (i.e., an existing
ontology O); (ii) a set of hypotheses (i.e., a set of axioms
H) and (iii) a given conclusion (i.e., a single axiom). There
have been many studies of abduction over different ontologies,
such as the complexity of abduction over EL [2] and their
application to repairing ontologies [8], abduction over EL by
translation to first-order logic [5], forgetting-based abductive
reasoning over expressive ontology ALC [3], and signature-
based abduction over more expressive ALCOIµ [6].

We propose a new solution (section IV) of abduction over
a special EL-ontology (free of role restrictions) in Section
III, based on a hypergraph representation of ontologies.

II. PRELIMINARIES

An ontology O is a set of axioms of the form A1⊓· · ·⊓An ⊑
B, where Ai, B are called concepts. An interpretation I =
⟨∆I , ·I⟩ consists of a non-empty domain ∆I and a mapping
·I that maps each concept to a subset AI ⊆ ∆I . A model of O
is an interpretation that for each A1 ⊓ · · · ⊓An ⊑ A ∈ O, we
have AI

1 ∩· · ·∩AI
n ⊆ AI . We say O |= A′

1⊓· · ·⊓A′
n ⊑ B′ iff

for any models I of O, we have (A′
1)

I∩· · ·∩(A′
n)

I ⊆ (B′)I .
A (directed) hypergraph H = {V, E} consists of a

node set V = {v1, v2, · · ·, vn} and a hyperedge set E =
{e1, e2 · · · , em}, where ei = ⟨T (ei), f(ei)⟩ with T (ei) ⊆ V
being a subset and f(ei) ∈ V being a node. Note that a
classical hyperedge can have multiple nodes in its head, which
we require to be a singleton for computing abduction.

Definition 1 ( [1]). Given a hypergraph H = {V, E}, assume
S ⊆ V and v∈V . A hyperpath from S to v is a sequence

h = [e1, e2, · · · , en] of hyperedges such that (i) f(en) = {v};
(ii) for i = 1, · · ·, n, T (ei) ⊆ S ∪ {f(e1); · · · , f(ei−1)}; (iii)
for i = 1, · · ·, n, f(ei)∈

⋃
i<j≤n T (ej).

III. ABDUCTION PROBLEM

We consider an abduction problem that takes into account
a user’s interests represented by a set of concepts Σ.

Definition 2. An abduction problem is a tuple

⟨O, Σ, A1 ⊓ · · · ⊓An ⊑ B⟩,

where Σ = {A′, B′, · · · } is a set of concept names. A solution
of this problem is a (minimal) ontology

H = {A′
1 ⊓ · · · ⊓A′

n ⊑ B′ | A′
i, B

′ ∈ Σ, n ≥ 0}

such that O∪H |= A1⊓· · ·⊓An ⊑ B. A solution H is called
a hypothesis with respect to Σ.

Example 1. Let an ontology O0 be:

peopleWithDiploma ⊑ doctor

peopleHasPaper ⊑ researcher

doctor ⊓ employeeWithUniversityChair ⊑ professor

O0 can not derive the following axiom α0:

α0 : doctor⊓employeeWithUniversityChair ⊑ researcher

although it should be true. Consider Σ0 =
{professor, peopleHasPaper}. If we add a hypothesis
H0 = {professor ⊑ peopleHasPaper}, we have
O0 ∪ H0 |= α0. Therefore, H0 is a solution of the abduction
problem A0 = ⟨O0, Σ0, α0⟩. It is clear that H0 is also a
minimal solution to the abduction problem. But there is no
solution to A0 if Σ0 = {professor, peopleWithDiploma}.

IV. A HYPERGRAPH-BASED ALGORITHM

We now present a method of finding a (minimal) solution
to the abduction problem using hypergraphs.

Definition 3. For each set O of axioms, we define a hyper-
graph HO = (Nh, Eh), where Nh := {NA′ | A′∈NC} and

Eh := {{NA′
1
, · · · , NA′

n
}→NA′ | A′

1 ⊓ · · · ⊓A′
n⊑A′∈O}

Example 2 (Example 1 cont’d). By definition, the hypergraph
HO0

of O0 is shown in Figure. 1. Now, we add an edge
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N1: peopleWithDiploma

N2: doctor

N3: peopleHasPaper

N4: researcher

N5: employeeWithUniversityChair

N6: professor

N1 N2 N6 N3

N4N5

Fig. 1: The hypergraph representation HO0 of O0 in Example 1

{N6}→N3 to the hypergraph HO0
. Then, we can find a

hyperpath h from {N2, N5} to N4:

h = [{N2, N5}→N6, {N6}→N3, {N3}→N4]

Theorem 1. Given an ontology O and its associated hyper-
graph HO, an ontology H is a (minimal) solution to the
abduction problem ⟨O,Σ, A1 ⊓ · · · ⊓ An ⊑ B⟩ iff HH is a
(minimal) hypergraph such that (i) All nodes in HH are of
the form NA, A ∈ Σ, and (ii) There exists a hyperpath from
NA1

, · · · , NAn
to NB in HO ∪HH.

Example 3 (Example 1 cont’d). By Theorem 1, to solve the
abduction problem A0, it is enough to find an HH such that
there exists a hyperpath from {N2, N5} to N4 in HO0

∪HH.
The hypergraph HH consists of a single edge {N6}→N3

satisfying the requirement, leading to the hyperpath given in
Example 2 as the minimal solution of the problem.

Before stating our main Algorithm 2, we define a property
of saturation for a hypergraph H = (V, E) and V ⊂ V . We
define U ⊂ V to be saturated (under V ) if there exists e ∈ E
such that T (e) = U and f(e) /∈ V . For example, in Fig. 1,
if we have V = {N1, N2, N5}, then {N1} and {N2, N5} are
saturated under V , while other subsets of V are not. Algorithm
1 finds all vertices approachable from V in run-time O(|E|).

Proposition 1. For a hypergraph H = (V, E) and V ⊂ V ,
v ∈ Span(V, E , V ) iff. there is a hyperpath from V to v.

Algorithm 1: Span(V, E , V )

input : hypergraph H = (V, E), set V ⊂ V
output: W ⊂ V of all vertices spanned from V

1 W = V .
2 U = {U , U is saturated under V }.
3 while U ̸= ∅ do
4 choose U ∈ U ,
5 while there exists v ∈ V \W such that (W, v) ∈ E

do
6 put v into W ;
7 put all saturated sets containing v into U .
8 end
9 remove U .

10 end
11 return W

In Algorithm 2, we first check if v can be directly reached
by V (Line 1-3). Then, we check if the aiming hypergraph
exists (Line 4-11). These 2 steps have run-time O(|E|). In the
minimizing step, for each e ∈ E ′, we check only once if e can
be deleted. Hence, the total run-time is O(|Σ||E|).

Algorithm 2:
input : hypergraph H = (V, E), Σ ⊂ V , S ⊂ V , v ∈ V
output: hypergraph H on Σ

1 V = Span(V, E , S).
2 if v ∈ V then
3 return empty graph.
4 else
5 if Σ ⊂ V or Σ ∪ V = ∅ return non-existence.
6 Σ \ V = {v1, . . . , vm},
7 choose m hyper-edges E ′ = {e1, . . . , em} where

T (ei) ⊂ Σ ∩ V and f(ei) = vi for 1 ≤ i ≤ m.
8 V = V ∪ Σ.
9 end

10 if v /∈ Span(V, E ∪ E ′, V ) then
11 return non-existence.
12 else
13 minimize E ′ (check if there exists e ∈ E ′ such that

E ′ − e satisfies until we get a minimal size).
14 return H = (Σ, E ′).
15 end

We explain Algorithm 2 via the following example.
Solution of Example 3. (via Algorithm 2)

1) H = HO,Σ = {N3, N6}, S = {N2, N5}, v = N4.
2) Line 1: V = Span(V, E , S) = {N2, N5, N6}.
3) Line 7: E ′ = {{N6} → N3}.
4) Line 10: v ∈ Span(V, E ∪ E ′, V = V).
5) Line 13: we see {{N6} → N3} cannot be deleted. It

returns H = (Σ, E ′).

Theorem 2. For Algorithm 2, the output H is a minimal
hypergraph satisfying the conditions (i) and (ii) in Theorem 1.

V. CONCLUSION

In this work, we introduce a hypergraph-based algorithm for
solving abduction problems over EL-ontologies that do not
have role restrictions, which have a linear time complexity
w.r.t. the size of the input ontology. As for future work,
we plan to implement our algorithm and extend it to handle
general EL-ontologies with role restrictions, as well as more
expressive ontologies such as ALC.
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