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Abstract—Hypergraphical structures provide a natural mathe-
matical way to represent the richness of diversified data and com-
plex relationships in hierarchical, relational, navigational, and
semi-structured settings, e.g., bibliographic paper submissions,
mHealth, and social media applications. These applications oper-
ate in distributed environments with a requirement of availability
while coping with high network latencies. Replication is the
commonly used approach to achieve a high degree of availability,
facilitating local query processing. However, replication requires
expensive (and often infeasible) concurrency control to ensure
consistency. In this work, we specify the well-formed Hypergraphs
as a Conflict-free Replicated Data Type (HgCRDT), which is a
commutative replication-based approach expressed in terms of
two 2P-Sets, the latter comprising mutable hyperedges.

Index Terms—Hypergraphs; semi-structured data; complex re-
lationships; well-formed structures; higher-ordered relationships;
eventual consistency; data replication; conflict-free replicated data
types.

I. INTRODUCTION

Hypergraphs are generalized graphs denoted as a pair
(N,E) where N is a set of vertices, and E is a set of
hyperedges which are arbitrary nonempty subsets of N [1]. Hy-
pergraphs are interesting mathematical structures with appli-
cation in databases [1]–[4]. Hypergraphs are better-suited than
graphs and relational databases to represent complex relation-
ships between hierarchical, navigational, semi-structured data
and metadata found in various applications [5]–[8]. Complex
relationships connect and represent multiple entities and/or
relations (to formulate higher-order relations) describing a
group of similar entities or a structure. We can find the
natural occurrence of complex relationships represented via
hyperedges in several applications and data sets, including co-
authorship, co-citation, social networks, email networks [6],
biological processes [9] [10], and patients’ medical history
[5]. Higher-order relations can be easily accommodated in hy-
pergraphical structures by employing higher-order hyperedges
to connect other hyperedges. Traditional data models for data
and complex relationships are optimized for particular types
of queries and data; for instance, a tabular representation of
relational databases is optimized for structured data and rela-
tional algebraic queries; and a graph representation of graph
databases is optimized for data stored in nodes and edges, as
well as navigation and neighborhood queries. Hypergraphs can
be used to combine the properties of various data models to
cope with the semi-structured, hierarchical, complex, higher-
order relationships inherent in such data.

Figure 1. Example: a hypergraph structure capturing an article relationship.

Consider a motivating scenario in which prospective authors
submit papers to a journal that are subjected to reviews before
being accepted for publication in a journal. The end result is
a published paper or a journal article viewed as a relationship
between the authors, a collection of reviews, and a journal is-
sue. Journals usually have multiple issues; therefore, a journal
issue has its publishing year and volume and links the journal
(that further relates to a publisher). Note the italicised issue
refers to journal issue. The paper is an implicit and essential
part of the article. Figure 1 depicts various entities (i.e.,
Author, Reviews, and Publisher) and relationships
(i.e., Article, JournalIssue, and Journal) of this
scenario in a structured hypergraph via structured vertices and
structured hyperedges, respectively, each with a set of fields
as their components that are initialized as null.

In this type of real-world scenario, the submission, review,
and publication process of conferences/journals are often car-
ried out at many distant domain sites, with each site notifying
the other sites of the article’s revised status for the next
stage. These sites may span over a large geographical area
bearing diverse network connections. Therefore, information
availability is highly required along with network latencies.
Since replication provides availability at the expense of strong
consistency between the copies, that further necessitate syn-
chronization [11]. Therefore, a weaker notion of consistency
is required to ensure the consistency of replicated copies.

We are familiar with consensus algorithm [12] [13] that
resolves conflicts between updates, however, at the expense
of high reconciliation cost. Here, Conflict-free Replicated
Data Types or CRDTs is a reasonable choice for maintaining
consistency in highly dynamic environments [14] [15]. CRDTs
address the twin requirements of availability of data (for

13Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications



efficient local query processing) and operation under network
partitioning without requiring complicated concurrency control
mechanisms while offering strong eventual consistency [16].

Contributions: The purpose of this paper is to discuss
how to distribute higher-ordered hypergraphs to multiple repli-
cas in a scalable manner where rejoining replicated copies of
hypergraphs from distributed databases is possible without any
loss of information. We believe that our work’s novelty adds
a new dimension to use the rich hypergraphs in distributed
settings. Other data distribution challenges, such as security
and privacy, are beyond the scope of this paper. We omit
specifics about our ongoing implementation to emphasize
the suitability of our proposed hypergraphs to be used with
conventional CRDTs. On the other hand, the implementation
introduces a database paradigm for modeling, storing, retriev-
ing, distributing, and encoding our envisioned hypergraphs.

We aim to leverage the novelty of CRDTs with hypergraph
structures and semantics to provide consistent updating and
propagation of hypergraphical information across multiple
replicas in the previously-stated distributed settings while also
ensuring data availability and network latency. Therefore, we
extend the existing portfolio of CRDTs [14], [15], [17]–[19] to
embrace well-formed higher-order recursively-defined mutable
hypergraph as a new CRDT: Hypergraph CRDT or HgCRDT.
While previous constructions of a CRDT in others have
been graphical, hierarchical, list-oriented, key-value based,
we believe this is the first instance of well-formed higher-
order hypergraphs. In particular, the hyperedges are mutable
(discussed in Section III-A), in that the set of atoms they
connect can be changed. We propose a hypergraph atom, a
logical term to refer to a vertex or a hyperedge. The mutability
of the atoms within a CRDT merits special attention. The
hyperedges allow the nesting of hyperedges and are built on
references, making their members independent.

In the rest of this paper, we overview background and
some related work in Section II. In Section III, we introduce
hypergraphs in HgCRDT, and the HgCRDT approach. Next,
in Section IV, we present the specification of the HgCRDT
that incorporates query, add, remove and modify operations
on hypergraphical atoms. A proof-of-correctness showing how
concurrent processes meet convergence conditions (essential
for eventual consistency) is given in Section V. Finally,
in Section VII, we summarise our contributions as well as
potential research directions.

II. BACKGROUND AND RELATED WORK

This section will begin by briefly introducing hypergraphs
and related work. After that, we will discuss the background
of CRDTs and the research aligned with this paper.

A. Hypergraphs

A hypergraph is a generalized graph where hyperedges
connect more than two vertices. A traditional hypergraph is
specified as a pair (N,E) where N is a set of vertices, and E
is a set of hyperedges, which are arbitrary nonempty subsets
of N as given in [1].

Hypergraphs have been studied since 1980 by various
researchers. A few significant work includes: [1] expresses the
relational database schemes as hyperedges for ensuring certain
degrees of acyclicity (such as α-acyclicity, β-acyclicity, and γ-
acyclicity); [20] introduces Hypernode model based on nested
graphs; [7] proposes GROOVY, an object-oriented database
model formalized using hypergraphs; [21] proposes a frame-
work for mapping a generic hierarchical/network/relational db
model into another using hypergraph; and [22] introduces a
schema-oriented graph model with properties and labels using
hyper-nodes and hyper-edges.

Existing research on hypergraphs in distributed settings in-
cludes, HyperX [23] (a scalable hypergraph framework which
works in distributed graph settings converting hypergraphs into
graphs using a layer built atop Spark), and Trinity [24] (a hy-
pergraph database and computation platform over distributed
memory cloud).

B. CRDTs

The CRDTs manage distributed replicas of mutable data
with minimal synchronization and without using complex con-
currency control protocols [15]. In CRDTs, different replicas
of a data structure can be locally read and written to, repli-
cating the data/operations asynchronously at the distributed
locations. The approach applies to data type representations
in which the operations performed are conflict-free while
ensuring strong eventual consistency [16], allowing local
modification to the data and then immediately returning to
computation.

The CRDTs are designed to work in an underlying reli-
able causally-ordered broadcast communication protocol, in
which a source replica (the replica that sends its update
information to other replicas) delivers its messages to each
downstream replica (the recipient replica) exactly once in
an order consistent with happened-before [15]. Maintaining
causal consistency via a reliable delivery mechanism helps to
further reduce inconsistencies between replicas by restricting
the operations seen in possibly different orders at the replicas
to only concurrent operations. Therefore, the same replica
can simultaneously send and receive different or redundant
messages.

A CRDT specifies an internal data structure representation
(called the payload), and an collection of interface operations,
comprising the query operations which interrogate the state of
the data object and return a value, and the update operations
which change the internal state of the data object. Both query
and update operations may specify preconditions that must
be satisfied for them to be invoked. Query operations can be
performed purely locally, without any need for synchronization
and communication with other replicas. Update operations do
not return any value, and involve two phases- first, the source
site prepares the parameters for the updates to be performed
at the various replicas; then these changes are effected at the
various replicas atomically, immediately at the source site,
and asynchronously propagated to the other sites. Usually,
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the effect-phase parameters sent to all downstream sites are
identical to those at the source phase.

CRDT implementations are classified into Convergent
Replicated Data Type (CvRDT) and Operation-based Com-
mutative Replicated Data Type (CmRDT). CvRDTs is a
passive replication approach where all necessary information
that needs to be replicated is captured by a state which is
further transmitted to all the replicas. On the other hand,
CmRDTs is an active replication approach where an update
operation occurs at the source replica and then is replicated
to all the downstream replicas by transmitting operations and
performed locally. The eventual transmission of the entire state
in CvRDTs may be costly for large data structures. In contrast,
operation-based CRDTs transmit only the update operations,
which are typically small. However, the communication infras-
tructure used for CmRDTs must ensure that all operations on a
replica are delivered to the other replicas, without duplication,
but in any order.

The portfolio of CRDTs [14] [15] includes a variety of
interesting data types such as counters, registers, sets, graphs,
lists [18] [19], and maps [25]. Of particular interest are the
operations-based 2P2P Graph CRDTs [14] [15], since their
payload consists of two 2P-Sets for adding and removing
vertices and edges where the edge sets are dependent on the
vertex sets.

The existing work in the direction of higher-order CRDT
includes Riak [25], a distributed NoSQL key-value data store
that defines maps as a CvRDT; JSON data structure [26] that
composes lists, maps, and registers to embed JSON data types
as a CRDT; Logoot [18] that uses a sparse non-mutable n-
ary tree to nest ordered lists; and higher-order patterns [27].
Causal Graphs [28] illustrates a hierarchical graph-oriented
CRDT that represents ordered trees into Causal Graphs. Fur-
thermore, Delta CRDT [29] [30] discusses CRDTs that encode
CRDTs using delta mutations of state-based CRDTs. Deltas
are temporarily stored in a buffer instead of propagating the
entire state to the remote replicas.

An instance of CRDTs employed in databases is the use of
SU Sets, a CRDT to handle RDF-Graphs and the SPARQL 1.1
Update operations [31] [32]. The underlying CRDT used in
that work is an Operations-based OR-Set of database triples.
While the insert and delete operations involve sets of elements,
these are of a pre-defined atomic element type, in contrast to
our higher-order hypergraphs where the set of a hyperedge
may include hyperedges belonging to the same hypergraph.
More interesting is the insert-delete operation, which uses a
multiset of mappings when preparing sets of triples to delete
and insert into the database.

III. REPRESENTATION OF HGCRDTS

A. Hypergraphs in HgCRDT

We use hypergraphs in HgCRDT, where a (higher-order)
hypergraph is a collection of schematic & typed vertices V
and hyperedges H . We propose a term hypergraph atoms to
abstractly refer to the schematic typed vertices and hyperedges.
Vertices are assumed to be primitive and represent entities,

whereas a directed hyperedge is of the form he(U), which
connects a set of atoms U . We formally define hypergraphs in
HgCRDT as follows:

Definition 1 (Hypergraphs in HgCRDT). A hypergraph G
in HgCRDT is defined as a collection of hypergraph objects
composed of (V,H), where

• V is a finite set of vertex objects defined as: V =
{v1, v2, ..., vn}, n ≥ 0, with each vi ∈ V containing
only scalar data (such as String, Int, Float, Boolean);
and

• H is a finite set of hyperedge objects used to represent a
relationship, and is defined as: H = {he1, he2, ..., hem},
m ≥ 0. Each hyperedge object he ∈ H connects a finite
set of atoms specified as U = {u1, u2, ..., uk}, k ≥ 0,
where each ui ∈ (V ∪H). The hyperedge he is added to
H when the following constraints satisfies avoiding any
cycle and self-loop for every ui ∈ he.U , where ui ∈ H:

1) ui ̸= he,
2) ∀ he′ ∈ H :

a) ui /∈ he′.U
b) ∀ he′′ ∈ he′.U : he′′ /∈ he □

Hyperedges are a non-trivial data type, supporting rela-
tional structure, hierarchical data, and higher-order relations.
A hypergraph is well-founded if for every new hyperedge
he to be added in H , every atom u ∈ he.U must exist
in (V ∪ H). As a consequence, a hyperedge cannot appear
within its own set. Notably, we treat atoms as typed objects
with a unique implicit identity, avoiding the need to store the
entire hyperedge where hyperedge members are themselves
(independent) objects. As shown in Figure 2, a few hypergraph
objects where, e.g., the independent objects for a journal issue,
a set of authors, and a set of reviews are all referentially
tied to an article hyperedge object using the implicit object
it. Additionally, it aids in the formation of well-formed and
acyclic hypergraphical structures. A hyperedge is said to be
well-formed when added to H if on adding atom u ∈ he.U ,
u does not form any cycle and self-loop. Significantly, acyclic
structures facilitate query optimization and minimize query
response time. Hyperedges are mutable, in that we permit
the set of atoms to be modified. Moreover, hypergraphs are
particularly well-suited for replication since a hyperedge’s
projection containing only some of its set’s atoms is still a
hyperedge.

Further, similar to vertices that represent entities, each
hyperedge retains a set of internal attributes (usually of scalar
types) that define the properties of a relationship. The internal
attributes are different than the referential attributes (i.e., he.U )
used to define the parts of a relationships based on which the
relationship exists. In Figure 1, paper_title in Article,
and JName in Journal hyperedges are internal attributes.
Furthermore, two hyperedges with the same referential set U
and carrying the same value are not the same. The implicit
object ids, the hyperedge type, and the internal attributes of
the hyperedges make the hyperedges different. In this paper,
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we skip the internal attributes of vertices and hyperedges,
and emphasize on using only the referential attributes U in
a hyperedge.

Figure 2. A few hypergraph objects generated for the hypergraph structure
of Figure 1.

B. Hypergraph as a CRDT (HgCRDT)

Due to the anticipated size of hypergraphs (for instance,
a conference may include sub-conferences, workshops, and
a few journals; or a journal/conference may receive a large
volume of submissions [33]), we prefer the operations-based
commutative (CmRDT) approach over a state-based (CvRDT)
or a delta state-based approach as in [30], as transferring
the hypergraph state between replicas and merging would be
prohibitively expensive.

The communication model of the HgCRDT is similar to that
of the CRDTs [15], in that operations are sent in an ordered
causal fashion. We employ two 2-phase sets (2P-Sets [15]),
i.e., those where elements can be removed after addition, but
cannot be reintroduced, as the payload for our hypergraph data
type- one each for its vertices V and hyperedges H . Other
variants of CRDT Sets are possible, such as OR-Sets, though
the commutativity properties need to be carefully verified for
each such choice.

We are already familiar with the existing 2P2P graph-based
CRDT described in [14]. To facilitate the adoption of our
technique, we use the template provided by the 2P2P-Graph
specification for hypergraphs. Hypergraphs are generalized
graphs dealing with more complex structures than graphs, hier-
archies, and maps. The richness of our hypergraphs makes our
work different compared to the existing 2P2P-Graph CRDT.
Our proposed hypergraph specification uses two tombstone
sets (or remove sets: V R,HR) to represent the 2P-Sets, which
relaxes in some instances the requirement for a causal order
of delivery, and thus permits some additional asynchrony.

Also, note that in hypergraphs, vertices are the base case for
atoms (which also include hyperedges) and that hyperedges
relate the atoms of a set to each other. The novelty of this
work lies in this treatment of such well-founded recursive
hypergraphical structures. Another novelty is that the set
incident on a hyperedge is itself mutable 2P-Set. Hyperedges
have the following form, in which object references are used

to store the set rather than the complete hyperedge itself (in
the implementation).

he(mutable atom set U)

Consequently, hyperedges are mutable, as we may add and
remove atoms incident on the hyperedge. The use of tombstone
sets allows deletion of an atom from a set; however, since the
atoms are implemented as typed objects having their implicit
identity, the atoms persist across such modifications. The usage
of implicit object identities explains why traditional CRDT
models like Key-Value pairs and maps are not suitable for
encoding hypergraphs, even after some transformation.

IV. SPECIFICATION OF HGCRDTS

The HgCRDT specification comprises a list of local query
operations and global commutative update operations to add,
remove individual or a set of atoms and modify hyperedges.
Vertex modify is a trivial operation, and therefore, we ignore it
in this report. Note that the notion of sources and downstream
sites is not statically fixed.

In continuation to our previous example, Figure 3 illus-
trates a distribution scenario using the HgCRDT framework
involving its update operations to capture the journal article’s
submission, review, and publication processes among three
distinct copies. Each update operation begun at a source replica
is propagated to subsequent downstream replicas. Note that
vertices and hyperedges are introduced to the system in case
of no earlier existence, and the outcome is an article with the
associated entities and other relationships, as seen in Figure
2. The operation delays affect the payload of a replica in
case any other operation needs its prior delivery. As seen in
Figure, replica 1 initiates add operations for two vertices for
authors A and B and an article hyperedge, which is then shared
with replicas 2 and 3. Similarly, replica 2 adds three review
vertices. Meanwhile, replica 3 has a vertex for the publisher
and two hyperedges for the journal and issue. Now, adding the
set of reviews, and journal issue at the respective replica (i.e.,
replicas 2 and 3), necessitates modifying the article hyperedge.
Sharing the change operation by both the replicas leads to a
concurrent arrival at replica 1. However, this issue is resolved
according to the causal order of delivery that reflects both
the changes in the article. To add, we assume that a special
issue of the same journal is introduced to which the article
is best suited. Note that the previous instance of the journal
issue hyperedge cannot be deleted due to its reliance on the
article hyperedge. Thus, the modification of the new issue to
the article hyperedge enables the deletion of the first issue.

Next, we describe the HgCRDT specification that contains
a few keywords- initial specifies initial values of payload sets
at every replica; let marks non-mutating statements; query
and Update indicate a non-mutable, and a mutable operations
respectively; and pre specifies preconditions that must be satis-
fied for an operation to be invoked. Each update operation has
two phases: prepare at source, and effect at downstream. The
initial phase illustrates that an argument is locally prepared
by the source replica to be delivered to downstream replicas.
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Figure 3. Example: A distribution of HgCRDT operations between three replicas capturing the formation of a journal article relationship (from the paper
submission to its publication). Only objects are displayed here, with limited scalar values.

A downstream replica executes the later phase that atomically
and asynchronously uses the received argument prepared by
the source replica.

a) Query operations (Figure 4):: The payload initializes
the local and mutating state of a replica. In HgCRDT, the
payload consists of four sets: V A, V R,HA, and HR for
adding and removing vertices and hyperedges. The query
operations are performed locally at each replica. These oper-
ations provide the extensional observational criteria for iden-
tifying/distinguishing between the state of the mutable object
(hypergraph in this case).

lookupAtom checks for the presence of an atom, whether
a vertex (lookupVertex) or a hyperedge (lookupHyperedge),
as the case may be, in the hypergraph. The lookupAtom
operation is lifted to sets of atoms using conjunction. In
the lookupHyperedge query, the precondition checks for the
existence of all atoms in the set. Since we permit the set to
be mutable, the payload sets HA,HR only contain reference-
based structures for the hyperedges, and the set is accessed
by dereferencing. within operation checks that the given hy-
peredge should be acyclic. Therefore, it recursively checks if
a given atom appears within a given hyperedge.

b) Update operations: are global operations that are
defined using the novelty of the CRDT approach. As in,
the source replica initiates operation and prepares the update
information to send to downstream replicas. The operation is
then effected immediately at the source, and if the parameter
is non-trivial, also sent asynchronously but reliably to the
downstream locations, where it is affected atomically. Causal
delivery reduces the need for commutativity to only the con-
current operations, handling the dependency of the hyperedge

▷ V A : vertex add set, V R : vertex remove set,
HA : hyperedge add set,HR : hyperedge remove set

payload set V A, V R, HA, HR
initial ϕ, ϕ, ϕ, ϕ

query lookupAtom (atom a) : boolean b
if a is a vertex: lookupV ertex (a)
otherwise if a is a hyperedge: lookupHyperedge (a)

query lookupAtomSet (atom set S) : boolean b

let b =
( ∧

∀u∈ S

lookupAtom(u)
)

query lookupV ertex (vertex v) : boolean b
let b = (v ∈ (V A \ V R))

query lookupHyperedge (hyperedge he(U)): boolean b
let b = (lookupAtomSet(U) ∧ he(U) ∈ (HA \HR))

query within (atom a, hyperedge he(U )): boolean b

let b =



true if a = he(U) ∨
a ∈ U ∨ ∃ he(U ′) s.t.
lookupHyperedge(he(U ′))
∧ a ∈ U ′

∧ within(he(U ′), he(U))
false otherwise


Figure 4. Query Operations
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update addAtom (atom a)
if a is a vertex: addV ertex (a)
otherwise: addHyperedge (a)

update addV ertex (vertex v)
prepare at source (v)
effect at downstream (v)

V A := V A ∪ {v}

update addV ertexSet (vertex set X)
prepare at source (X)
effect at downstream (X)

∀v ∈ X : (V A := V A ∪ {v})

▷ he(atom set U)
update addHyperedge (hyperedge he(U))

prepare at source (he(U))
pre lookupAtomSet(U)

effect at downstream (he(U))
pre lookupAtomSet(U)
HA := HA ∪ {he(U)}

Figure 5. Add Operations

update removeAtom (atom a)
if a is a vertex: removeV ertex(a)
otherwise : removeHyperedge(a)

update removeV ertex (vertex v)
prepare at source (v)

pre lookupV ertex(v)
∧ ∀ (he{U} ∈ (HA \HR)) :
¬U.lookupV ertex(v)

effect at downstream (v)
pre addV ertex(v) delivered
V R := V R ∪ {v}

update removeHyperedge (hyperedge he(U))
prepare at source (he(U))

pre lookupHyperedge(he(U)) ∧
∀ (he{U ′} ∈ (HA \HR)) :
¬U ′.lookupHyperedge(he(U))

effect at downstream (he(U))
pre addHyperedge(he(U)) delivered ∧

∀(he{U ′} ∈ (HA \HR)) :
¬U ′.lookupHyperedge(he(U))

HR := HR ∪ {he(U)}
Figure 6. Remove Operations

2P-Set on the vertex 2P-Set.
Add Operations (Figure 5): The addAtom operation adds

a vertex or a hyperedge, depending on the kind of atom
specified. Adding a set of hyperedges can be realized by
iterating the addHyperedge operation. Note that when adding
a hyperedge, all atoms in its set must exist, and thus the

▷ he(mutable atom set U)
update changeHyperedge (hyperedge he(U),

atom set S+, S−)
prepare at source (he(U), atom set S+, S−)

pre lookupAtomSet(S+)
∧ U.lookupAtomSet(S−)
∧ lookupHyperedge(he(U))
∧ ∀(x ∈ S+) : ¬ within( x, he(U))

effect at downstream (he(U), atom set S+, S−

pre addHyperedge(he(U)) delivered
∧ lookupAtomSet(S+)
∧ ∀(x ∈ S+) : ¬ within( x, he(U))

∀(x ∈ S−) : U.removeAtom(x);
∀(x ∈ S+) : U.addAtom(x);

Figure 7. Modify Operation

corresponding add operations for all these atoms must have
been delivered earlier.

Remove Operations (Figure 6): We can only delete an
atom incident on a hyperedge after the hyperedge itself has
been removed. Note that deleting an atom (whether vertex
or hyperedge) requires that it should not be incident on any
hyperedge (should not be in the set of any hyperedge). Thus
the precondition ensures that it cannot possibly appear within
any higher-order hyperedge. We do not present here the remove
operations lifted to a set of atoms.

Modify Operations (Figure 7): It is always possible to
modify a hyperedge in a hypergraph by deleting the existing
edge and replacing it with the modified edge. It requires
ensuring that any atoms present (recursively) within the new
set of the new hyperedge must already exist (and must not be
the hyperedge itself).

However, since hyperedges are complex structures, this im-
plementation is expensive. Instead, we specify the modification
of a hyperedge by the addition or removal of atoms in a set via
changeHyperedge operation. Note that we now require a set to
itself be mutable 2P2P-Set. The vertices and hyperedges in the
sets U.V, U.H are respectively subsets of the two 2P-Sets V,H
of the global hypergraph object. By global hypergraph, we
mean the replica’s state consisting of payload sets, irrespective
of any particular hyperedges. The global hypergraph objects V
and H may be represented by payload V A, V R, and HA,HR
in the tombstone implementation, respectively.

The changeHyperedge operation takes an existing hyper-
edge he(U), and the atom sets S+, S− that are to be added
to and removed from the set U . For simplicity, assume that
S+ ∩ S− = ∅, S+ ∩ U = ∅ and S− ⊆ U . For readability,
we use the set operations of intersection and subset. These
conditions can be expressed in terms of the query operations.
Note that in the precondition of changeHyperedge, we need
to check that the set S+ being added should exist in the
(global) hypergraph, whereas the set being deleted S− should
already be in the mutable set of the given hyperedge. Note,
in the effect phase, the atoms from the various sets are
removed/added to the set of the hypergraph. Observe that the
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atoms are only removed from the set of the hyperedge, but not
from the (global) hypergraph because hyperedges are formed
using references of existing other atoms.

V. PROOF OF CORRECTNESS

Most of the arguments related to 2P-Sets and 2P2P-Graphs
[15] carry over in the proof that this specification implements
a CRDT. It is easy to show that add operations or remove oper-
ations on unrelated atoms naturally commute. If, however, an
atom appears (recursively) within the set of another atom, then
adding the second atom must causally follow the addition of
the first atom. The delivery order ensures it. The reverse holds
for remove operations. Concurrent add(u) and remove(u)
operations on the same atom u, and concurrent remove(u) and
add(w) [or add(u) and remove(w)] operations where there
is a some relationship between u,w, are dealt with using the
2P-Set conditions [15], the conditions on adding or removing
atoms, and transitivity.

Operations other than the remove operations are indepen-
dent of the changeHyperedge. The tombstone set will en-
sure that removal prevails over modifications. Modifications
to different hyperedges commute. Consider two concurrent
modifications to the same hyperedge with changes S+

1 , S−
1

and S+
2 , S−

2 respectively. We claim that the operations can
safely commute (refer to the Lemma 1), resulting in set
(U ∪ S+

1 ∪ S+
2 ) \ (S−

1 ∪ S−
2 ). Atoms appearing in the cor-

responding add set (or removal set) pose no problem. The
assumptions about the sets of atoms being added or removed
from a given set within each operation allow the commutation.

Lemma 1. Concurrent changeHyperedge(he, S+
1 , S−

1 ) and
changeHyperedge(he, S+

2 , S−
2 ) commute.

Proof. According to the changeHyperedge operation, a set
of atoms S+ are added to, and a set of atoms S− are removed
from a hyperedge. Therefore:

changeHyperedge (he, S+
1 , S−

1 ) = U ∪ S+
1 and U \ S−

1

= (U ∪ S+
1 ) \ S−

1

Similarly,

changeHyperedge (he, S+
2 , S−

2 ) = U ∪ S+
2 and U \ S−

2

= (U ∪ S+
2 ) \ S−

2

The concurrent execution of both the change operations on
each replica on the same hyperedge results:

changeHyperedge (he, S+
1 , S−

1 ) ||
changeHyperedge (he, S+

2 , S−
2 ) =

(U ∪ S+
1 ∪ S+

2 ) \ (S−
1 ∪ S−

2 ) || (U ∪ S+
2 ∪ S+

1 ) \ (S−
2 ∪ S−

1 )

Further, the commutative set-union operation makes the
results equivalent:

(U ∪ S+
1 ∪ S+

2 ) \ (S−
1 ∪ S−

2 ) ≡ (U ∪ S+
2 ∪ S+

1 ) \ (S−
2 ∪ S−

1 )

Therefore, modification of concurrent operations to the same
hyperedge commute.

VI. DISCUSSION

Our proposed HgCRDT framework has been implemented
in our hypergraph-oriented database system. The system works
in the realm of an underpinning object-oriented framework,
supporting object re-usability, complex objects, data abstrac-
tion, encapsulation, and typing-like features. We use well-
defined schema and types to build hypergraphs where higher-
order relationships are formulated on top of other existing
relationships and entities without violating schematic acyclic
dependencies.

Our system ensures the consistency of hypergraph objects
among all the replicas of a distributed domain in its Consis-
tency layer, after which each replica immediately stores the
objects in its local database. Currently, the distribution process
works in a multi-threaded environment (#6 threads). The
system stores and retrieves hypergraph objects from its storage
and retrieval layers that are built atop HyperGraphDB [34].
HyperGraphDB is a general-purpose, portable, extensible, and
typed data storage mechanism. We use HyperGraphDB to
exploit object-level sharing in higher-order and n-ary relation-
ships.

VII. CONCLUSIONS

We proposed hypergraphs as a natural candidate structure
for representing semi-structured, hierarchical, navigational,
complex, higher-order relationships in distributed computing
settings. We introduced and specified a new CRDT, a well-
formed higher-order recursively-defined mutable hypergraph
named HgCRDT, where hypergraphs were modeled using
user-defined schema and system-defined object-oriented types.
In HgCRDT, the hyperedges themselves were mutable. The
HgCRDT is an operation-based specification of 2P2P sets,
which works with tombstone sets.

An extension of our approach introduces and implements
partial replication in the HgCRDT in a hypergraph-oriented
database model built atop HyperGraphDB. However, we have
omitted the specification and details pertaining to the partial
replication for clarity of exposition. We are in the process
of formalizing our approach to prove it algebraically, giving
a detailed mathematical proof of our approach; and studying
the performance of the replicated hypergraphs, particularly the
scalability of the approach, and evaluating the time and space
complexity when dealing with a variety of large hypergraphs
on real data. We also intend to compare our approach with
other possible Hypergraph specifications such as state-based,
and other Set CRDTs-based variations, e.g., OR Set.
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