
Principle Structure and Architecture of a Code Generator

Andreas Schmidt∗†
∗ Faculty of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: andreas.schmidt@hs-karlsruhe.de
† Institute for Automation and Applied Informatics

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: andreas.schmidt@kit.edu

Abstract—Code generators often have something mystical about
them. Especially undergraduate students, who can still remember
their first steps in programming, become in awe when they hear
the term ”Software Generator”. The paper is an attempt to take
this awe away from the students and to show them, by means of
a very simple example implementation with well-known tools and
technologies, that software generators are not witches’ work, but
a powerful, but easily understandable tool to support the software
development process.

Keywords–Code generation; template system; (meta) model;
model transformation.

I. INTRODUCTION

In this paper, the general structure of a code generator is
presented. It is intended as additional material to the tutorial
with the title ”Code generation for Database Developers”
which is also given by the author at the DBKDA-2020 confer-
ence in Lisbon [1]. The principle structure and architecture of
a general purpose code generator will be explained with the
help of a simple example implementation, using well known
tools and techniques. The procedure is from the backend of
the generator, over the kernel to the frontend. The advantage
of this approach is that one can see the final result (the
generated code) right at the beginning and then deal with
the details to achieve this result. The Template Engine of
the generator, the internal metamodel, the import module, the
external metamodel and the transformation of XMI (XML
Metadata Interchange) - the standard exchange format for
models - into the previously developed metamodel are then
presented.

A. Principle Function of a Generator
The principle mode of operation of a generator is shown

in Figure 1. The generator obtains as input an abstract model
description and a set of transformation rules, which describe
the transformation of the abstract model into the source code.
It is crucial that the model is formal and the model description
is available in a form that abstracts from implementation
specific details. Through one or more model transformations,
the implementation details are added to the target platform.
This achieves a separation between the business logic and the
technical aspects of the target platform.

B. Advantages of Generative Software Development
Herrington [2] names four main advantages of generative

software development, which are to be presented in the fol-
lowing briefly.

1) Quality: The quality of the software is determined by
the transformation rules. Over time, these rules gain more
and more quality, so that the quality of the generated source
code increases. The automatic transformations avoid careless
mistakes. If individual transformation rules are faulty, these
errors occur at all places that use the faulty transformation rules
and are therefore easy to find and correct. Furthermore, when
developing the transformation rules, more thought is given
to the architecture of the application in advance than when
starting directly with the coding. The previously considered
architecture is then consistently implemented in the complete
source code by the transformation rules.

2) Consistency: Source code generated by transformation
rules is very consistent regarding naming, calling conventions
and parameter passing, so that it is quite easy to understand
and use. This offers a starting point for further possible
automations. Cross-sectional functionalities such as logging or
error handling can be defined centrally and thus be adapted
to changing requirements at any time (analogous to aspect-
oriented programming).

3) Productivity: Productivity in application development
increases. Even if only so-called infrastructure code is gen-
erated, which is often considered to be the boring part of
programming, more time remains to take care of the actual
(exciting) application logic. Furthermore, it is possible to react
faster to design changes or change requirements, because only
the corresponding transformation rules have to be adapted and
the application has to be regenerated.

4) Abstraction: The model represents an abstract descrip-
tion of the application to be realized. The strict separation of
domain-oriented logic (model) and technical aspects (transfor-
mation rules) reduces complexity. This, in turn, allows for a

Figure 1. General Architecture

40Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

better integration of domain experts within the development
project, as they can be involved in the development of the
model. Another advantage is the easier transition to a new
technology, since only the transformation rules have to be
adapted, since the domain-oriented logic of the model remains
valid. On the other hand, transformation rules once developed
can be reused in other applications.

The remaining paper is structured as follows. In Section
2, we will discuss which artifacts can typically be generated.
In Section 3, the development of the generator is presented in
detail, divided into backend, kernel and frontend functionality.
In Section 4, the automation of the single steps using the Unix
tool make is discussed. Section 5 concludes with a discussion
of possible extensions for the generator prototype.

II. WHAT CAN BE GENERATED?
The goal is the partial or complete generation of the source

code for an application to be realized. The degree of automa-
tion usually ranges from 20% to 80% of a application. Higher
levels of automation are possible but often not useful, because
this would make the generator much more complex than
implementing the missing 20% of the software by hand [3].
For web-based applications, a degree of automation of about
60-70% can often be achieved. Typical parts of an application
that can be generated include the following areas:

• Database schemas
• Access layers for databases
• User interfaces
• Parts of the application logic
• Documentation
• Configurations (e.g., in combination with frameworks

like Struts, Spring, Hibernate, etc.)
• Tests (unit tests, constraint tests, generation of mock

objects, load tests, etc.)
• wrapper
• Import/Export Modules
• etc.

III. DEVELOPMENT OF THE GENERATOR

In the following, a multipurpose generator is to be built
up by the simplest means. This is done exemplarily with
the programming language PHP [4]. The reasons for using
PHP are the following: PHP is a macro language and can
therefore also be used as a template system, which can be
used for the definition of the mapping rules. In addition,
there are also special template languages for PHP, which
can be used for this purpose. Due to its primary field of
application as a language for creating dynamic websites, PHP
is characterized by its powerful string handling. This is also
useful for generating source code. Furthermore, there are many
free libraries available for PHP (PHP Extension & Application
Repository - PEAR). Other languages suitable for this task are
Perl, Python and Ruby.

Besides PHP the following tools/technologies are used:

• An XSLT [5] or XQuery [6] processor to transform
XMI into a simpler meta-format

• The Unix tool make [7] for automation of the entire
workflow

Figure 2. Generator Backend

• The Smarty template engine [8].
• An UML modeling tool for graphical modeling

(i.e., [9]).

A. Scope of Functions and Expansion Options
The functionality of the generator to be developed is limited

to the generation of artifacts based on the information of a
simple class model. This does not represent a limitation for the
basic architecture. In Section V it is shown how the generator
can be extended to process further model elements (e.g. state
transition diagrams).

B. Generator Backend
The basic design of the generator jaw is shown in Figure 2.

The backend is responsible for the actual generation of the
source code (1). For this purpose, a template system (2) is
used, whose task it is to create clear mapping rules from
the model to the target language by separating the dynamic
and static parts. For this purpose, the template system uses as
input on the one hand the so-called templates (3), in which the
transformation rules for the generation of the source code in
the form of static text and simple control flow elements, such
as loops and conditional statements as well as placeholders for
the information originating from the model are stored, and on
the other hand the model (4) on which the application to be
generated is based, which contains the dynamic parts of the
source code to be generated.

In the concrete case, the model is available in the form
of an arbitrarily complex object network, which describes the
artifacts to be modeled such as classes, attributes with types, as
well as relationships. The model is also based on the so-called
meta model (5), which defines the modeling possibilities in the
form of classes and the associated methods. This metamodel
is realized by means of PHP classes. Figure 3 shows a code
snippet for defining a model using the Metamodel API. In
the code section, the two classes ”person” and ”film” are
defined with their attributes and furthermore the relationship
”film director”, which models a 1:n relationship between film
and person.

An example of a Smarty template is shown in Figure 4. The
example shows a template for generating the database schema.
Language elements of the template language are indicated by
[@ ... @] brackets. Available language elements include
loops, conditional statements, variable assignments, calling

41Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 3. Programmatic Model Definition

Figure 4. Template for generating the Database Schema

other templates and calling properties and methods of the meta
model.

In order to make the creation of the templates as simple
and clear as possible, it is often helpful to extend the meta
model (6) or the generator (7) for certain specific language
constructs of the target language instead of formulating these
language constructs within the templates (3).

C. Generator Kernel
The actual heart of the generator is represented by the gen-

erator kernel. Figure 5 shows the transformation and validation
components of the generator. The methods of the metamodel
already monitor a number of constraints in the model, for
example that the classes have different names and that the
attributes must be of certain predefined types. However, there
are also constraints that cannot be enforced in this way, for
example the constraint that each class must have a primary key
or that certain attributes/relationships must exist for each class.
For this purpose, the generator provides an interface for the
formulation of validation rules (11). These are implemented in
the form of PHP methods (12). An example of such a method is
shown in Figure 6. This method monitors that each class must
have a primary key. The methods also work like the templates
on the properties and methods of the Metamodel API.

Furthermore, model transformations (13, 14) can be formu-
lated. In the simple case these are transformations within the
same metamodel (13). For example, additional administrative
information (created at, created from, etc.) can be added to
a model for each class (see Figure 6. For the formulation of

Figure 5. Generator kernel

Figure 6. Example Model Transformation

transformation rules, the generator also provides an interface,
which allows the formulation of transformations in the form
of methods (15). Furthermore, transformations (14) to another
metamodel (16) are also possible (e.g., to a metamodel with
the concepts table, attribute, foreign key, constraints, etc.).

D. Generator Frontend

1) Model Import: Up to now, models can only be built
using the methods available in the metamodel, i.e., program-
matically through a series of API calls. However, this is not
desirable and so an XML format (Figure 7, point 21) is defined
in an extension of the generator, which allows the formulation
of the model as an XML file (22). In this case, the meta
model is represented by the DTD (21) and thus defines what
can be formulated in the model file. In an import process
(24) the DOM tree of the XML file is then created and a
transformation (24) to the internal model (4) is carried out by
the methods available in PHP for processing XML, i.e., the
corresponding methods of the internal meta model are called
during navigation through the DOM tree and thus the internal
model representation (4) is built up. Optionally, the XML file
(22) can be modified by means of an XSLT transformation
(25) before import. Meaningful transformations on this level
are, for example, the addition of further attributes or primary
keys, if these have not already been specified in the UML
model.

42Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 7. Generator Frontend

2) Connecting the Frontend: The connection of a UML
modeling tool (26) is realized by the XMI export interface
provided by most tools. XMI is an XML-based, standardized
exchange format for UML models. To connect to the generator,
all that is required is the development of an XSLT stylesheet
(27), which extracts the relevant information from the XMI
file and transforms it into the previously developed XML
format (22). It is also possible to do without the own XML
format and import the XMI file directly from the generator.
The disadvantage of this variant, however, is that XMI is an
extremely ”chatty” format and the import and transformation
into the internal meta model is much more complicated than
via the detour of the intermediate format.

IV. AUTOMATION

From the creation of the UML model to the export as XMI
file, the XSLT transformation into the generator’s own XML
format, the model validation/transformation, the actual code
generation based on the created templates, and any subsequent
source code formatting (Figure 2, point 8), a complete gener-
ator run represents a complex workflow consisting of many
individual steps and dependencies. To automate this, the de-
velopment tool ”make” is used here. It allows the formulation
of sequences of work steps as well as dependencies, which
then cause a conditional execution of parts of the workflow.

V. EXTENSION OF THE GENERATOR

The generator introduced so far supports the generation of
artifacts, which can be derived from a simple class model.
In the context of the lectures carried out at the University
of Applied Sciences Karlsruhe - Technology and Economics
as a compulsory elective subject in the field of Business
Informatics as well as further tutorials [10], [11] it was shown
that a very high learning effect can be achieved by letting
the participants extend the generator by additional diagram
types. In contrast to the initial introduction of the generator,
a forward-looking approach is suitable for the extension, i.e.,
starting from an XMI file generated by a modeling tool, the
own XML format is extended and the corresponding XSLT
transformation is adapted. Subsequently, the internal meta
model must also be extended by the corresponding concepts
and the import filter must be adapted accordingly. The last
step is to create additional templates or to extend the existing

templates. As extension for example the addition of state
transition diagrams or the addition of the inheritance concept
for class diagrams is suitable. A further instructive extension is
the mapping of the present meta model to another meta model,
which represents the concepts of relational databases and the
subsequent adaptation of the templates.

VI. CONCLUSION

The presented framework shows in a simple way how
a software generator works. Due to its easy extensibility, it
can be adapted to own needs very easily. However, it is
not intended to compete with existing tools but is mainly
used in teaching. Nevertheless, it can be used to create own
generators for applications where it is not worthwhile to learn
a commercial or freely available tool.

REFERENCES
[1] A. Schmidt, “Code Generation for Database Developers. Twelfth

International Conference on Advances in Databases, Knowledge,
and Data Applications - DBKDA ,” Lisbon, Portugal, 2020,
URL: https://www.iaria.org/conferences2020/ProgramDBKDA20.html,
last accessed: September 2020.

[2] J. Herrington, Code Generation in Action. USA: Manning Publications
Co., 2003.

[3] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Devel-
opment: Technology, Engineering, Management. Hoboken, NJ, USA:
John Wiley & Sons, Inc., 2006.

[4] K. Tatroe and P. Macintyre, Programming PHP, O’Reilly. Sebastopol:
O’Reilly, 2006.

[5] T. Doug, XSLT. Sebastopol: O’Reilly, 2008.
[6] P. Walmsley, XQuery: Search Across a Variety of XML Data. Se-

bastopol: O’Reilly, 2007.
[7] R. Mecklenburg, Managing Projects with GNU Make. Sebastopol:

O’Reilly, 2004.
[8] L. Gheorghe, H. Hayder, and J. P. Maia, Smarty PHP Template

Programming and Applications. Packt Publishing, 2006.
[9] “argo UML,” URL: https://github.com/argouml-tigris-org/argouml, last

accessed: September 2020.
[10] A. Schmidt, “Supporting the development of web-based applications

with lightweight software generators. Third International Conference
on Internet technologies and Applications - ITA09,” Wrexham, Wales,
2009, Tutorial session.

[11] A. Schmidt, “The power of regular expressions in the software develop-
ment process. International Conferences on Informatics 2010 Software
Engineering and Applications SEA 2010,” Marina del Rey, USA, 2007,
Tutorial session.

43Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

