
Comparative Analysis of RDBMS and NoSQL Databases

Jam Jahanzeb Khan Behan
Free University of Brussels

Bruxelles, Belgium
Email: jbehan@ulb.ac.be

Meesum Ali
Institute of Business Administration

Karachi, Pakistan
Email: meesumdex@gmail.com

Ali Inam
Institute of Business Administration

Karachi, Pakistan
Email: ali.inam03@gmail.com

Muhammad Talha Khan
Institute of Business Administration

Karachi, Pakistan
Email: talhakhan298@gmail.com

Abstract—Big Data has been the subject of increased research
since data has been termed the new oil for the 21st century.
Recently, smart grids have been used by energy providers to
store the massive amount of data that is generated at regular
time intervals. K-Electric is one such company in Pakistan that
provides the residents of Karachi City with electrical energy.
The company stores their data in a Not only Structured Query
Language (NoSQL) database, since the smart grid data has
a high volume, accelerated velocity, and tremendous variety.
Hence, we feel that we can provide an important comparison
of NoSQL tools using this data. NoSQL tools have been actively
used for storage purposes in the industry. Companies like eBay,
GitHub, and Amazon have been using these tools for storage and
analytical purposes alike. In this paper, we compare and analyze
four different technologies: MySQL, MongoDB, MonetDB, and
InfluxDB using the data generated by the smart grids of K-
Electric.

Keywords–NoSQL; Big Data; RDBMS; Performance Compari-
son; Smart Grid.

I. INTRODUCTION

A smart grid is an electrical grid that provides a variety of
operations and energy measures. These measures can include
smart meters, smart appliances, renewable energy resources,
and energy-efficient resources. The most important aspects of
the smart grid are electronic power conditioning, control of the
production, and distribution of electricity.

The Big Data phenomenon is defined using 3 Vs, where
we have too much data (volume) that is being collected at
an extremely high rate (velocity) and contains mostly un-
structured data (variety) [1] [2]. Traditionally, data has been
managed and stored in Relational Database Management Sys-
tems (RDBMSs) with the focus to optimize the storage space.
However, querying is a time consuming task in these traditional
RDBMS technologies. In RDBMS, the data is distributed in
different tables, and then these tables are virtually joined
for performing advanced querying, hence the slow response
time. However, with the sudden explosion of data, due to
the Web and data accessibility, the old technologies could not
handle the increasing demand for data storage and querying.
Unfortunately, since this amount of data is not manageable
by traditional RDBMS technologies, we witnessed the rise of
NoSQL databases. These new technologies have been used
to analyze Big Data to reveal new insights and optimize the
decision making strategy for executives. As of present, there
are more than 225 NoSQL databases [3]–[7].

A database system that is distributed does not require a
fixed table schema. The schema is mostly built at runtime

based on the query. As there is no schema, (i) the join op-
erations are usually avoided, (ii) the technology can be scaled
horizontally, (iii) the system does not expose a Structured
Query Language (SQL) interface and (iv) the tool can be open
source [8]. However, even though the NoSQL databases are the
by-products of the Web 2.0 era, these tools were solely used
when the Web service providers had a large number of users.
These providers discovered that the RDBMS can be used either
when the database is small but requires frequent read & write
transactions, or when the database is large but requires batch
transactions while rarely needing write transactions. They
concluded that RDBMS cannot be used for large databases
with heavy read & write workloads [5].

In this paper, we aim to use the data that is stored in the
RDBMS and see how well it can be analyzed using a NoSQL
system. The data is collected from K-Electric, a vertically
integrated investor-owned utility company managing the gen-
eration, transmission, and distribution of energy to consumers.
The purpose of this paper is to analyze the performance of
K-Electric’s relational data in a non-relational environment.

The rest of the paper is structured as follows: Section
II highlights some of the related work done on comparing
RDBMS technologies with NoSQL technologies. In Section
III, we provide a detailed account of the technologies we have
selected for our experiments. Section IV briefly outlines the
structure of the data obtained from K-Electric. Section V ex-
plains the technical setup for the technologies, the experiments
that we have performed, and the results of these experiments.
Finally, we give our concluding remarks in Section VI.

II. RELATED WORK

In this section, we highlight other works that have aimed
at comparing NoSQL databases.

Hadjigeorgiou et al. [9] have compared the performance
of MongoDB and MySQL when they are scaled and sharded.
The metrics they have used are (i) total queries per second
and (ii) total queries per second per thread. The authors tested
the systems on a dataset related to the music industry. Firstly,
they make different schemas for the RDBMS and for the
NoSQL systems. Metrics are recorded for three experiments
that are done using (i) a single node, (ii) multiple nodes, and
(iii) sharding. The authors conclude that the most important
factor was the query type used since MongoDB was able to
handle more complex queries faster, due mainly to its simpler
schema while having to duplicate the data. MongoDB also
performed better during insertions. They also state that MySQL

31Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

performs better when deleting data since it performs better in
simple search queries. This might be the case because deletion
requires finding the record to be deleted first, which is easier in
MySQL since there is only one instance. Finally, the authors
highlight that both databases have had a linear trend in the
benchmarks.

Ansari et al. [10] have selected Hbase, MongoDB, Cas-
sandra, and Elasticsearch NoSQL technologies and compared
them using data from smart grids. The smart grid meter data
that they were using was structural column-based data. For
experimentation purposes, they used the default configuration
of the respective NoSQL technology. They compared the
databases on effectiveness (using the WRITE and READ
parameters) and scalability (by measuring the execution per-
formance of the full mechanism). The results showed that
Cassandra had the smallest average latency in both read and
write processes. This is possible because Cassandra is one of
the best column-based databases and the data to be evaluated
was column-based data.

Venkatraman et al. [11] discussed the four main data
models of non-relational databases and compared them to
SQL databases. They first presented the context of Big Data
analytics and NoSQL databases and then compared them based
on high availability, partition tolerance, high scalability, con-
sistency, auto-sharding, write frequently & read less (priority is
given to write operations as compared to read operations), fault
tolerance (no single point of failure), multiversion concurrency
control (MVCC), and, finally, concurrency control (locks). The
authors performed benchmark tests, however, they did not pro-
vide the results. The authors only discussed and explained the
results. They state that Couchbase processes more operations
per second with lower average latency in reading and writing
data than both MongoDB and Cassandra. Also, Cassandra is
faster in writing than MongoDB, however, both have almost
equal reading speed. The authors conclude that the flexible
data modeling of NoSQL is well suited to support dynamic
scalability and improved performance for Big Data analytics.

Santos et al. [12] have used Geographic Information Sys-
tems (GIS) data to compare PostGIS (a spatial database ex-
tender for PostgreSQL object-relational database), MongoDB,
and Neo4j with Neo4j-Spatial. For comparison purposes, the
authors have performed different types of operations (read,
write, etc.), where each operation contains a group of queries.
Even though all groups include 20 parameterized queries,
the parameter values vary within predefined ranges for each
group. The data comparison metrics used are (i) Nearby Points
of Interest Radius and K-Nearest Neighbors (KNNs), (ii)
Urban Routing, (iii) Map View, and (iv) Position Tracking.
In the conclusion, the authors have highlighted that, since
the spatial attributes are much more complex to handle as
compared to strings, numbers, and other relational data types,
evaluating and benchmarking spatial DBMS performances is
not as simple as doing so in RDBMS. The authors also state
that there was a need for data heterogeneity within the same
RDBMS, as each type of query runs faster in a different data
structure.

III. SELECTED TECHNOLOGIES

In this paper, we have selected three NoSQL technologies
to compare against MySQL [13], the RDBMS technology

in place at K-Electric. We have selected MongoDB [14],
MonetDB [15], and InfluxDB [16] as the NoSQL datastores.

A. MongoDB
In MongoDB, the data is stored in flexible, JavaScript

Object Notation (JSON) like documents, where fields can vary
from document to document and data structure can be changed
over time. The document model maps to the objects in the ap-
plication code, making data easy to work with. Ad hoc queries,
indexing, and real-time aggregation provide powerful ways to
access and analyze the data. It is a distributed database, so high
availability, horizontal scaling, and geographic distribution are
built-in and easy to use while providing querying and index-
ing functionalities. Furthermore, MongoDB is an open-source
project, hence, aiding in its popularity of use. We have selected
MongoDB because it contains the best mixture obtained from
RDBMS and NoSQL technologies, which in turn enables users
to build new applications. It provides the data model flexibility,
elastic scalability, and high performance of NoSQL databases,
hence aiding in a continuous enhancement of applications,
while scaling on commodity hardware [17].

B. InfluxDB
We have selected InfluxDB because it is an open-source

time-series database that is optimized for fast, high-availability
storage, and retrieval of time series data. It has no external
dependencies and provides an SQL-like language with built-
in time-centric functions for querying. Each point consists
of several key-value pairs called the fieldset and a times-
tamp. A series is defined when a set of key-value pairs are
grouped together. Finally, series are grouped together by a
string identifier to form a measurement. Points are indexed
by their time and tagset. Retention policies are defined on
measurement and control of how data is downsampled and
deleted. Continuous queries run periodically, storing results in
a target measurement.

C. MonetDB
MonetDB is an open-source column-oriented database

management system designed to provide high performance on
complex queries against large databases, such as combining
tables with hundreds of columns and millions of rows. Its
architecture is represented in three layers, each with its own
set of optimizers. The front-end provides a query interface
for SQL, where queries are parsed into domain-specific rep-
resentations, like relational algebra for SQL, and optimized.
The generated logical execution plans are then translated into
instructions, which are passed to the next layer. The middle or
back-end layer provides a number of cost-based optimizers.
The bottom layer is the database kernel, which provides
access to the data stored in Binary Association Tables, where
each table consists of an Object-identifier and value columns,
representing a single column in the database. Internal data
representation also relies on the memory addressing ranges
of contemporary CPUs using demand paging of memory-
mapped files and, thus, departing from traditional DBMS
designs involving complex management of large data stores
in limited memory. We have selected MonetDB because it has
been designed to provide high performance on complex queries
against large databases and also because it has been applied
in high-performance applications for better analytics.

32Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

IV. DATA

The data comprises of meter readings from over 9000
smart meters spread throughout Karachi, Pakistan. Based on
the type of the meter installed, the data is generated at different
intervals. These smart meters are installed at consumer sites,
on Pole Mounted Transformers (PMTs), and on distribution
feeders. The data is initially stored in an internal buffer, of
each respective meter. The device then communicates with the
server, based on configurable intervals (using the push/pull
protocol). In case of any communication lapse, the infras-
tructure is designed to record the lost data over a period of
seven days. The data is recorded in Head End, the objective of
which is to acquire meter data and monitor device parameters
automatically, thus avoiding any human intervention.

The data being utilized for this project is collected over
a period of three months, with an uncompressed size of
approximately 45 GB. The devices installed at the consumers
end generate data over a 30 minutes interval, while the devices
placed on distribution assets generate data after every 15
minutes. As a first step, we aimed to understand the data on
hand by (i) manually looking at a smaller chunk of manageable
data and by (ii) asking the domain experts. We also had regular
meetings with the employees of K-Electric, who provided
an extensive explanation regarding the data: what each field
corresponded to, how a particular field is important for further
processing, the type of values that each field contains, and
which fields were of high importance.

Once the data was analyzed, we gained the understanding
of the fields provided in the data. The details of the fields are
stated in Table I.

TABLE I. DATA FIELD DESCRIPTIONS

Field name Field definition
DeviceID The unique meter identification ID

Time The time at which the reading was recorded at
Date The date on which the reading was recorded at in MM/DD/YYYY

format
Value The profile value we obtain against the corresponding Result-

TypeID
MeasuredUnit The unit of measurement we obtain after multiplying Value with

the number (10Ŝcaler)
Scaler Represents the number (10Ŝcaler) to be multiplied with the Value

to get the Value measured according to the units in MeasuredUnit
ResultTypeID The profile for which the value has been generated.

Status This is a 32 bit number to represent the status of the meter itself
Description The description of the DeviceID. Not properly maintained

We imported the original data from the databases to use
the data for querying purposes and then evaluate the query
execution times. Some fields have been highlighted as an
essential part of the analysis. However, we omitted the fields:
Description, Status, MeasuredUnit, and Scalar since these
columns did not provide any information relevant to our
analysis. Moreover, a new field by the name of Timestamp
was created by concatenation of the Time and Date fields.

V. EXPERIMENTATION

In this section, we provide the technical details for each
of the selected technology and how they were set up. Also, in
this section, we provide the queries that have been devised for
comparison purposes, the benchmark we obtained while using
MySQL (since it is the main technology at K-Electric), and

how the other tools performed as compared to the results of
MySQL.

A. Technical Details
Since we wanted to work independently, that is without

the restriction of having to carry the data, or the setup, we
decided to use Amazon Web Services (AWS). To setup the
environment, we created instances (not a VM environment) of
each of the four technologies. We also had to make customized
adjustments to some of the databases instances, and the details
are as follows:

MySQL: As stated in the previous section, the database
deployed at K-Electric is MySQL and, for our purpose, we
created an AWS instance for MySQL and accessed that
instance by means of MySQL Workbench on our personal
computers. To enable working on the data in RDBMS, we
intially required a schema of the data and store data in form
of tables. Fortunately, K-Electric stored the data into one huge
table–and we, therefore, kept our own schema in accordance
to that. For our instance, we stored the data in a table named
“dataset”.

MongoDB: In MongoDB every dataset is a collection,
and we can query each collection using their keys. For the
experimentation, we created a collection called “SM RECS”.
Furthermore, we created custom indexes on two attributes:
DateTime and ID. We would like to mention, due to its nature
of complexity, we decided to opt out of the UNION queries
in MongoDB.

MonetDB: We followed the same procedure as that of
MySQL and created a single table called “dataset”.

InfluxDB: For InfluxDB, we stored our data in a table
named “dataset” and, after much searching, we found out that
InfluxDB does not, in fact, have native support for UNION.
Hence, we were unable to perform the UNION queries [18].

B. Queries
We have written queries of different categories for each

database (see Table III) and ran them on the AWS instances.
The queries belong to one of the following categories:

1) Simple Query
2) Range Query
3) Aggregated Query
4) Nested Query
5) UNION Query

As stated previously, we were unable to perform UNION
queries for MongoDB and InfluxDB.

C. Results
To provide an unbiased experimental runtime, the repeated

the experiments 10 times. The average time required for
experimentation to complete and the results are outlined in
Table II. As it can be seen from the results, all the technologies
were able to obtain the same results (in terms of the number of
records) for identical queries. Hence, we compare the results
based on the Runtime(s) columns in Table II that correspond
to the total time taken to obtain the results while computing on
the given technology instance. As stated previously, the results
obtained from MySQL serve as a baseline for the NoSQL tech-
nologies, and it is safe to say that all the NoSQL technologies
were able to obtain better results than the baseline.

33Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

It can be observed that MonetDB was able to outperform
MySQL, and was still able to provide results for all categories
of queries stated in Section V-B. It is also worth mentioning
that InfluxDB outperformed all the systems in terms of com-
putational time. However, since it does not provide UNION
query facilities, we cannot rely on this system for being a
replacement of the traditional RDBMS.

TABLE II. QUERY RUNTIME AND RESULTS

Query Number Result Runtime (s)
MongoDB 1 84965 row(s) returned 0.65
MongoDB 2 781 row(s) returned 57.26
MongoDB 3 1 row(s) returned 0.04
MongoDB 4 697409 row(s) returned 0.88
MongoDB 5 33856 row(s) returned 854.75
MongoDB 6 33856 row(s) returned 874.18
MongoDB 7 0 row(s) returned 1054.73
InfluxDB 1 84965 row(s) returned 1.38
InfluxDB 2 781 row(s) returned 13.55
InfluxDB 3 1 row(s) returned 10.85
InfluxDB 4 697409 row(s) returned 0.08
InfluxDB 5 33856 row(s) returned 15.37
InfluxDB 6 33856 row(s) returned 10.37
InfluxDB 7 0 row(s) returned 58.88
MonetDB 1 84965 row(s) returned 8.54
MonetDB 2 781 row(s) returned 60.46
MonetDB 3 1 row(s) returned 57.19
MonetDB 4 697409 row(s) returned 1.88
MonetDB 5 33856 row(s) returned 78.64
MonetDB 6 33856 row(s) returned 76.63
MonetDB 7 0 row(s) returned 256.15
MonetDB 8 101444 row(s) returned 265.65
MonetDB 9 3 row(s) returned 9054.64
MySQL 1 84965 row(s) returned 134.70
MySQL 2 781 row(s) returned 121.69
MySQL 3 1 row(s) returned 117.76
MySQL 4 697409 row(s) returned 121.81
MySQL 5 33856 row(s) returned 148.98
MySQL 6 33856 row(s) returned 158.33
MySQL 7 0 row(s) returned 451.45
MySQL 8 101444 row(s) returned 473.36
MySQL 9 3 row(s) returned 18184.06

VI. CONCLUSION

In this paper, we have analyzed the data stored in an
RDBMS, using NoSQL technologies. However, due to their
respective limitations, we were unable to use InfluxDB and
MongoDB to their full potential. We have provided a baseline
for analyzing smart grid data on NoSQL technologies. In the
future, we aim to perform eperimentations on NewSQL [19]
technologies to compare the results of RDBMS, NoSQL, and
NewSQL on smart grid data.

REFERENCES

[1] Gartner, “Gartner Glossary,” https://www.gartner.com/en/information-
technology/glossary/big-data, [Online; accessed April 23rd, 2020].

[2] P. Zikopoulos and C. Eaton, Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne
Media, 2011.

[3] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland, “The End of an Architectural Era: It’s Time for a
Complete Rewrite,” in Proceedings of the 33rd International Conference
on Very Large Data Bases. VLDB Endowment, 2007, pp. 1150–1160.

[4] A. Reeve, “Big Data and NoSQL: The Problem with Relational
Databases,” http://infocus. emc. com/april reeve/big-data-and-nosql-
the-problem-with-relationaldatabases/, [Online; accessed April 23rd,
2020].

[5] S. Edlich, “Your Ultimate Guide to the Non-Relational Universe!”
http://nosql-database.org/, [Online; accessed April 23rd, 2020].

[6] S. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013 International
Conference on Collaboration Technologies and Systems (CTS). IEEE,
2013, pp. 42–47.

[7] G. Stevens, “List of Nosql Database Management Systems,”
http://nosql-database.org/, [Online; accessed April 23rd, 2020].

[8] R. Agrawal et al., “The Claremont Report on Database Research,” ACM
Sigmod Record, vol. 37, no. 3, 2008, pp. 9–19.

[9] C. Hadjigeorgiou et al., “RDBMS vs NoSQL: Performance and Scaling
Comparison,” MSc in High, 2013.

[10] M. H. Ansari, V. T. Vakili, and B. Bahrak, “Evaluation of big data
frameworks for analysis of smart grids,” J. Big Data, vol. 6, 2019, p.
109.

[11] S. Venkatraman, K. Fahd, S. Kaspi, and R. Venkatraman, “SQL versus
NoSQL movement with Big Data Analytics,” International Journal of
Information Technology and Computer Science, vol. 8, no. 12, 2016,
pp. 59–66.

[12] P. O. Santos, M. M. Moro, and C. A. D. Jr., “Comparative Performance
Evaluation of Relational and NoSQL Databases for Spatial and Mobile
Applications,” in Database and Expert Systems Applications - 26th
International Conference, DEXA 2015, Valencia, Spain, September 1-
4, 2015, Proceedings, Part I, ser. Lecture Notes in Computer Science,
Q. Chen, A. Hameurlain, F. Toumani, R. R. Wagner, and H. Decker,
Eds., vol. 9261. Springer, 2015, pp. 186–200.

[13] Oracle Corporation, “MySQL,” https://www.mysql.com/, [Online; ac-
cessed April 23rd, 2020].

[14] MongoDB, Inc., “MongoDB,” https://www.mongodb.com/, [Online; ac-
cessed April 23rd, 2020].

[15] MonetDB B.V., “MonetDB,” https://www.monetdb.org/Home, [Online;
accessed April 23rd, 2020].

[16] InfluxData Inc, “InfluxDB,” https://www.influxdata.com/, [Online; ac-
cessed April 23rd, 2020].

[17] C. Kristina and D. Michael, “MongoDB: The Definitive Guide,” 2010.
[18] Joson Morn, “Issues with InfluxDB,”

https://groups.google.com/forum/msg/ in-
fluxdb/jGVE3uDStNg/9KYxjY46AQAJ, [Online; accessed 23-
April-2020].

[19] A. Pavlo and M. Aslett, “What’s Really New with NewSQL?” ACM
Sigmod Record, vol. 45, no. 2, 2016, pp. 45–55.

34Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE III. QUERIES WRITTEN FOR EACH DATABASE

Name Query
MySQL 1 SELECT * FROM dataset WHERE ID = ‘644’
MySQL 2 SELECT DISTINCT(ID) FROM dataset
MySQL 3 SELECT COUNT(*) FROM dataset
MySQL 4 SELECT * FROM dataset WHERE Date >= ‘09/01/2016’ AND Date < ‘09/02/2016’
MySQL 5 SELECT ID,Date,SUM(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date
MySQL 6 SELECT ID,Date,avg(Value) AS average FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date
MySQL 7 SELECT ID,ResultTypeID,avg(Value) AS average FROM dataset WHERE ResultTypeID = ‘Current L1 015min’ or ResultTypeID = ‘Current L2 015min’ or

ResultTypeID = ‘Current L3 015min’ GROUP BY ID,ResultTypeID Having avg(Value) > 0 AND avg(Value) < 5
MySQL 8 SELECT ID,Date,avg(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date UNION SELECT

ID,Date,avg(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L2 015min’ GROUP BY ID,Date UNION SELECT ID,Date,avg(Value) AS
SUM FROM dataset WHERE ResultTypeID = ‘Voltage L3 015min’ GROUP BY ID,Date

MySQL 9 SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L1 015min’) UNION
SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L2 015min’) UNION
SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L3 015min’)

InfluxDB 1 SELECT * FROM dataset WHERE ID = ’644’
InfluxDB 2 SELECT DISTINCT(ID) FROM dataset
InfluxDB 3 SELECT COUNT(Value) FROM dataset
InfluxDB 4 SELECT * FROM dataset WHERE TimeStamp >= ‘2016-09-01T00:00:00Z’ AND TimeStamp <= ‘2016-09-02T23:59:59Z’
InfluxDB 5 SELECT SUM(Value) FROM dataset WHERE ResultTypeId = ‘Voltage L1 015min’ GROUP BY time(1d)
InfluxDB 6 SELECT avg(Value) FROM dataset WHERE ResultTypeId = ‘Voltage L1 015min’ GROUP BY time(1d)
InfluxDB 7 CREATE CONTINUOUS QUERY “meter cq” ON “KE SM 1” BEGIN SELECT avg(Value) AS “mean meters” INTO “aggregate meter” FROM dataset

WHERE ResultTypeID = ‘Current L1 015min’ AND ResultTypeID = ‘Current L2 015min’ AND ResultTypeID = ‘Current L1 015min’ GROUP BY time(1d);
SELECT “mean meters” FROM “aggregate meter” WHERE “mean meter” < 5

MongoDB 1 db.SM RECS.find(‘ID’:644)
MongoDB 2 db.SM RECS.DISTINCT(‘ID’)
MongoDB 3 db.SM RECS.find().COUNT()
MongoDB 4 db.SM RECS.find(’Date’ :$gt:‘09/01/2016’, ‘Date’:$lt:‘09/02/2016’)
MongoDB 5 db.SM RECS.aggregate([$match: “ResultTypeID”: “ Voltage L1 015min” , $group: id: “ID”, date:“Date”,SUM: $SUM: “Value”])
MongoDB 6 db.SM RECS.aggregate([$match: “ResultTypeID”: “ Voltage L1 015min” , $group: id: “ID”, date:“Date”,average: $avg: “Value”])
MongoDB 7 db.SM RECS.aggregate([$or: [$match: “ResultTypeID”: “Current L1 015min”,“ResultTypeID”: “Current L2 015min”,“ResultTypeID”: “Cur-

rent L2 015min”], $AND: [$avg:“Value” > 0,$avg:“Value” < 5], $group: id: “$ID”, typeID:“ResultTypeID”,average: $avg: “$Value”], allowDiskUse:
true)

MonetDB 1 SELECT * FROM dataset WHERE ID = ‘644’
MonetDB 2 SELECT DISTINCT(ID) FROM dataset
MonetDB 3 SELECT COUNT(*) FROM dataset
MonetDB 4 SELECT * FROM dataset WHERE Date >= ‘09/01/2016’ AND Date < ‘09/02/2016’
MonetDB 5 SELECT ID, Date,SUM(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date
MonetDB 6 SELECT ID,Date,avg(Value) AS average FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date
MonetDB 7 SELECT ID,ResultTypeID,avg(Value) AS average FROM dataset WHERE ResultTypeID = ‘Current L1 015min’ or ResultTypeID = ‘Current L2 015min’ or

ResultTypeID = ‘Current L3 015min’ GROUP BY ID,ResultTypeID Having avg(Value) > 0 AND avg(Value) < 5
MonetDB 8 SELECT ID,Date,avg(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date UNION SELECT

ID,Date,avg(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L2 015min’ GROUP BY ID,Date UNION SELECT ID,Date,avg(Value) AS
SUM FROM dataset WHERE ResultTypeID = ‘Voltage L3 015min’ GROUP BY ID,Date

MonetDB 9 SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L1 015min’) UNION
SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L2 015min’) UNION
SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L3 015min’)

35Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

