
Automated Generation of Graphs from Relational Sources to Optimise Queries for
Collaborative Filtering

Ahmad Shahzad
School of Electrical Engineering and

Computer Science
University of Liverpool, Liverpool, L69 3BX, U.K

Email: ahmads@liverpool.ac.uk

Frans Coenen
School of Electrical Engineering and

Computer Science
University of Liverpool, Liverpool, L69 3BX, U.K

Email: coenen@liverpool.ac.uk

Abstract—Graph abstraction is an intuitive and effective
approach for collaborative filtering as used in, for example,
recommender engines. However, for many collaborative
filtering applications, the transactional data is kept in
a relational database and, through bespoke processes, is
Exported, Transformed and Loaded (ETL) into a graph
database where collaborative filtering algorithms can be
applied. However, the ETL process requires knowledge of
the source relational database, the target graph database
and the application domain. The ETL process, therefore,
tends to be expensive, non-optimised for graph queries
and relies heavily on application domain knowledge and
understanding of the property graph engine for the graph
database. In this paper, a mechanism is presented whereby
data in a relational format, which is normalised to 5th

normal form, can be automatically converted to a graph
database format, through an automated process. The
presented evaluation demonstrates, using the recommen-
dation engine application domain as an example, that the
proposed mechanism is more efficient than comparable
approaches to reduce the execution time required for
collaborative filtering.

Keywords—Graph Construction; Collaborative Filtering;
Query Optimization; Normalization; Cold Start.

I. INTRODUCTION

Graphs are featured in a range of different applica-
tion domains. They play a pivotal role for the solution
of a variety of problems, from simple path finding
problems to much more complex problems, such as
collaborative filtering for Recommendation Engines.
The principal advantage of representing data as
graphs is that, at the physical level, a graph database
satisfies the so called index-free adjacency property
in which each node stores information about its
neighbours only; there is no requirement for a global
index of the connections between nodes. As a result,
the traversal of an edge is independent of the size of

the data. This makes it very efficient to conduct local
analysis of the graph and means it is well suited to
the processing of large data collections, or tasks, like
collaborative filtering, where for any given vertex v
it is required to find the most similar vertices from
a set of vertices V . Although relational databases
can provide a basis for collaborative filtering, they
feature slow runtime, especially when there are many
joins between entities. Graph databases are inherently
faster in modelling and identifying associations be-
tween entities because they do not require expensive
join operations and can be instantiated on distributed
data frameworks. Hence, it is desirable to transform
a relational database into a graph database for the
purpose of performing graph analytical queries, for
example collaborative filtering for recommender
engines. However, the transformation process, which
involves Export, Transform and Loading (ETL), is
usually a bespoke process. Thus, the ETL processes
tend to be expensive and require knowledge of
the relational and graph databases used, and the
mapping functions to associate relation and graph
database entities. In this paper, a mechanism is
proposed to automate the process of migration from
a relational database format to a graph database
format. The generated graph database shows better
performance compared to other approaches in terms
of the efficient execution of collaborative filtering
algorithms.

A good example of a graph analytical query
application is collaborative filtering in the context
of Recommendation Engines. This is the exemplar
graph analytical application domain used throughout
this paper to illustrate the proposed approach. Rec-
ommendation Engines have a significant impact on

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

the success of business and diversity of sales [1]. The
intuition underpinning Recommendation Engines is
to take advantage of past history to make predictions.
However, this means that users with little or no
history cannot be provided with recommendations
to any degree of accuracy. This is known as the cold
start recommendation engine problem. There have
been various techniques which have been effectively
used to make recommendations given the cold start
problem [2][3][4]. However, all these techniques rely
on auxiliary information concerning the target user
for whom recommendations need to be generated.
This extra information is compared with other users
to identify a “user group”. Recommendations are
then made based on the identified user group and
candidate items for recommendation are ranked
according to some criteria.

The problem of migrating from a relational
database to a graph database, to support the faster
execution of collaborative filtering algorithms, can
be stated as follows. Let S(R1, R2,Rn) be a
relational schema which consists of a set of Re-
lations. Each Relation Ri from schema S consists
of a set of attributes, Ai(Ai1, Ai2, . . . , Aim), which
can be uniquely identified by a set of Primary
Keys, PKi(PKi1, PKi2, . . . , PKin). A primary key
attribute Pkij ∈ Pki can be used as a reference
to another relation Rj , also known as a Foreign
Key. The set of foreign keys for a relation Rj is
defined as FKj(FKj1, FKj2, .., FKjn). Note that
FKj ⊂ PKj , and that r is an instance of R and
comprises a tuple of the form 〈r1, r2, .., rk〉.

A graph G is defined as G = (V,E, TV , TE),
where V is a finite set of nodes, E ⊆ V × V is
a finite multi-set of edges, TV is a finite set of node
types, and TE is a finite set of edge types. Each node
is mapped to a node type by a mapping function
φV : V → TV , and each edge is mapped to an edge
type by another mapping function φE : E → TE .
A node vi ∈ V , or an edge ek(vi, vj) ∈ E, has a
set of 〈attribute, value〉 pairs which constitute the
properties of the vertex or edge. The schema of
a property graph G is defined as a directed graph
GS = (TV , TE), where TV is a finite set of node
types, and TE ⊆ TV × TV is a finite set of edge
types. The task is to transform S into GS.

In this paper, a comprehensive approach to the
automated migration of relational to graph database

storage is proposed. The proposed approach converts
a relational database schema S into a graph database
schema GS. As already noted, the advantage offered
is that the execution of queries, which require
filtering over values of low cardinality, will be
more efficient than alternative relational to graph
databases processes. The translation takes advantage
of integrity constraints assuming 5th normal form.
This paper targets property graph databases to model
graph data and the associated graph engine specific
query language. This makes the approach indepen-
dent of the specific graph engine implementation.
In order to test the feasibility of the proposed ap-
proach, a complete software solution was developed
for converting relational to graph databases. The
solution was evaluated in the context of the cold
start recommendation engine collaborative filtering
problem using the Movielens data set. The evaluation
demonstrated that there was no loss of data in
translation and that the execution of queries was
more efficient than in the case of other compatible
approaches to achieve the same result.

The rest of this paper is organized as follows. An
overview of relevant previous work is presented in
Section II. This is followed by a description of the
proposed approach in Section III. The evaluation of
the approach is given in Section V. The paper is
then completed with some conclusions presented in
Section VI.

II. RELATED WORK

There has been some previous work directed at
automating the ETL process. In [5], an approach
was presented to convert a relational database into a
graph database founded on the property graph model.
The significance of the property graph model was
that it was expressive enough to cover many real
world applications and it was applicable to a range
of graph database realisations, such as Neo4J[6],
Titan[7] and OrientDb[8]. The authors focused on
speeding up the processing of queries over the
constructed graph by building a graph structure
based on joinable tuple aggregations. However, the
approach had two main limitations: (i) a simplified
version of a property graph was considered where
only nodes have properties, while edges have labels
that represent relationships between the data at nodes,
and (ii) only relational database style queries were

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

considered. The work presented in [9] improved
on the ideas presented in [5] by considering graph
edge properties and n-way relationships when more
than two foreign keys were involved. However, this
led to a design which added redundant information
to the edges, information that semantically did not
exist. In [10], a scalable “map reduce” approach was
proposed for converting relational databases into
graph databases, however, the design and mapping
of the relational to graph database remained a choice
for the user; in other words, it was a semi-automated
approach. In the context of collaborative filtering,
Filho et al. [11] proposed topological analysis for
the generation of heuristics in terms of betweenness,
closeness and degree centrality, so as to identify
nodes which could be considered to be hubs and/or
authorities, so as to improve collaborative filtering
results. However, the approach did not improve the
run time performance. The approach presented in
this paper addresses the disadvantages associated
with this earlier work.

The cold start problem in context of collaborative
filtering has been well studied. Suggested solutions
can be categorised according to how the missing
information is collected [12]: (i) explicit information
collection and (ii) implicit information collection.
However, in the “real world”, it is not always possible
to explicitly gather information about a user, hence,
implicit information is typically the most feasible
approach. Implicit information collection relies on
using information about the user which is already
available in the system or freely available in public
space, such as social media. An implementation
of Quantitative Association Rules (QAR) [13] for
implicit information collection of Recommendation
Engines was used with respect to the cold start
Recommendation Engine problem presented in this
paper.

III. CONVERTING A RELATIONAL DATA MODEL
TO A GRAPH MODEL

The proposed relational to graph transformation
is founded on the application of a set of rules. Let
K be the total number of foreign keys in a relation
Ri. For any given relation Ri with a set of primary
keys defined by PKi, and any given attribute of
this relation Aij , let |CAij| be the cardinality of that

attribute. Thus, |PKi| is the total number of rows
in a relation. The ratio of values to rows is:

λ = |CAij|/|PKi| (1)

Let T be the selected threshold for a given domain.
Then the following proposed rule set can be applied
to transform a relational schema S to a graph schema
GS:

Rule1: If K == 1 in Ri, which references Rj .
For each ri ∈ Ri referencing rj ∈ Rj

create two vertices for ri and rj linked
by an edge with the property FKi1.

Rule2: If K == 2 in Ri, which references Rj

and Rk. For each ri ∈ Ri, referencing rj ∈
Rj and rk ∈ Rk, create two vertices for rj

and rk linked by an edge with properties
equivalent to all the attributes of ri.

Rule3: If K ≥ 3 in Ri, which references
Rj...Rn. For each ri ∈ Ri, referenc-
ing rj ∈ Rj...rn ∈ Rn, create n + 1
vertices ri, rj...rn with edge properties
FKi1...Fkin, respectively.

Rule4: For any Ai at any node, if λ is less
than threshold T , create a new node with
a relationship to the node Ai where the
property belongs. An automated Id will be
generated for such new node and it will be
connected to the parent node where it was
originally located.

Rule5: If a vertex ri already exists, then it will
not be created again; instead, it will be
used with other vertices created using the
first three rules.

The above can be applied in parallel as only
one of the above rules will be applicable to each
relational table contained in the relational database
to be transformed.

Database normalisation ensures integrity of the
data and prevents the chance of the duplication of
data. A good database design should conform to at
least 3rd normal form. If a schema is in 3rd normal
form, then, in most cases, although not all, it can
qualify to be in 5th normal form. In practice, this
is generally true for all transactional data. However,
some applications do not enforce any constraints
on the database side and, hence, do not have any
foreign keys in the relations. In these special cases,

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. Entity Relationship Diagram of Movilens Database in 5th normal form.

Figure 2. Generated Graph Schema for Movielens Dataset.

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

constraints are handled in the software application
layers instead of the database. Also, in some cases,
for the sake of faster insertion into the database, some
transactional tables do not enforce normalisation
principles. However, if data is not in 5th normal form,
then there are well-understood techniques through
which the database design can be adjusted so that it
is in 5th normal form[14][15]. In this paper, in the
context of the proposed mechanism for translating
a relational database into a graph database, it is
assumed that the input relational database is already
in 5th normal form. The reason that the relational
database schema S is required to be in 5th normal
form is because, for any lower normalisation, there
may exist a relation in which all columns could
form a composite primary key; in other words, there
will be no non-key columns. When migrating such a
relational database to a graph database format, each
relational row will be recorded as a new vertex, thus
unnecessarily increasing the number of vertices and
hence slowing down the resolution of any query that
may be directed at the graph databases.

IV. MOVIELENS EXAMPLE

The Movielens database [16] is a popular choice
for the study of collaborative filtering algorithms.
MovieLens is a Web-based recommender system
that can be used to recommend movies to its
members according to their film preferences. It
operates by applying collaborative filtering to its
members’ movie ratings and reviews. It contains
some 11 million reviews for some 8500 movies.
Ratings are expressed using the numeric range 1 to 5.
For the evaluation presented in the following section,
100,000 ratings, provided by 943 members with
respect to 1682 movies, were used. Figure 1 shows
the entity relationship diagram for the Movielens
database. It shows the relational database in 5th

normal form. From figure1, it can be seen that, for
the User and Occupation tables, Rule 1 will be
applicable, because the Users table has only one
foreign key. As a result, all rows within the User
table become nodes in the graph that have edges
linking to occupations with occupation_id as
the edge property. Rule 2 is applicable to the Ratings
table which features two foreign keys, therefore all
user nodes have edges to movies nodes, and all the
attributes of Ratings are set as properties of the edge

between users and movies nodes. If T = 0.1 is
assumed, then age and gender of users falls within
the threshold T and, thus, are allocated generated
Ids, taken out of the users node and placed in their
own new nodes with a link to the users node. Figure
2 shows the resulting graph scheme, GS, after the
proposed automated translation has been applied.

V. EXPERIMENTAL RESULTS

The performance evaluation of the proposed ap-
proach was conducted by comparing it against an
approach founded on Neo4j (Neo4j ETL) which
adopted the first three steps defined in Section III.
An implementation of Quantitative Association Rules
(QAR) [13] for recommendation engines was used
with respect to cold start users. The QAR-based
implementation only had limited information like
age, gender, zipcode and occupation for cold start
users. Based on this information, the graph database
could be queried. A recommendation engine, written
in Scala, was used to make recommendations ac-
cording to the similarity between users based on the
information provided. Experiments were conducted
using five fold cross validation with 80% of users
as the training data set and the remaining 20% as
the test set. Both approaches produce a success
rate of 67% for the recommended movies. The
proposed approach, referred to as the Optimised
Collaborative Filtering (OCF) approach, was faster
by a substantial margin, as shown in Figure 3. The
same results in terms of recommendation quality
were produced by both approaches. However, the
advantage offered by the proposed OCF approach
was that it was more efficient in that it only selected
a handful of nodes within the graph database to find
similar nodes according to the input information, as
opposed to scanning all user nodes and then filtering
according to the input information. All property
graphs can find a node in a constant time given its
Id, resulting in a significant speed-up advantage for
the proposed method with respect to recommender
query resolution.

To further strengthen the idea, a number of exam-
ple queries were executed to find the execution time
taken to search the graph databases according to the
given information for a simulated new MovieLens
member. The results with respect to five of these
queries are shown in Figure 4. With reference to the

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 3. Five fold cross validation results comparing OCF operation with Neo4j ETL.

Figure 4. Runtime for five example community detection queries comparing OCF operation with Neo4j
ETL.

figure, it should be noted that each “bin” represents
a separate graph query. The aim was to find all users
which matched the criteria for the specified member.
Of course, for comparison purposes, the queries had
to be expressed differently because the underlying
graph schemas were different, however, the end result
was the same. From the figure, it can be seen that
the proposed OCF approach provided significant
efficiency gains over the Neo4j ETL approach. It
should also be noted that the efficiency gains were
more marked when larger datasets were returned as
a consequence of the query resolution.

VI. CONCLUSIONS AND FURTHER SUGGESTIONS

In this paper, an approach to the automated
generation of a graph database from a given re-
lational database has been described. The proposed
approach operates in a more sophisticated manner
than earlier approaches. Compared to an alternative
current approach, the Neo4j ETL approach, the
proposed approach operates much more efficiently

while producing the same outcomes. This approach
can be extended and tried with further splitting up
the properties of edges into separate vertices if the
edge property conforms to a particular threshold set
in the same manner as for the proposed approach to
vertex properties. The results can also be tried on
distributed graph databases to reinforce the results
presented in this paper.

REFERENCES

[1] D. Fleder and K. Hosanagar, “Blockbuster culture’s next rise or
fall: The impact of recommender systems on sales diversity.”
Management Science, vol. 55, no. 5, pp. 697–712, 2009.
[Online]. Available: https://pubsonline.informs.org/doi/10.1287/
mnsc.1080.0974

[2] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong,
“Addressing cold-start problem in recommendation systems,”
in Proceedings of the 2nd International Conference on
Ubiquitous Information Management and Communication,
ser. ICUIMC ’08. New York, NY, USA: Association for
Computing Machinery, 2008, p. 208âĂŞ211. [Online]. Available:
https://doi.org/10.1145/1352793.1352837

[3] N. Mirbakhsh and C. X. Ling, “Improving top-n recommendation
for cold-start users via cross-domain information,” ACM Trans.

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

Knowl. Discov. Data, vol. 9, no. 4, Jun. 2015. [Online].
Available: https://doi.org/10.1145/2724720

[4] J. Zhu, J. Zhang, C. Zhang, Q. Wu, Y. Jia, B. Zhou, and P. S. Yu,
“Chrs: Cold start recommendation across multiple heterogeneous
information networks,” IEEE Access, vol. 5, pp. 15 283–15 299,
2017.

[5] R. D. Virgilio, A. Maccioni, and R. Torlone, “Converting
relational to graph databases.” Graph Data Management
Experiences and Systems, pp. 1–6, 2013. [Online]. Available:
https://dl.acm.org/doi/10.1145/2484425.2484426

[6] J. J. Miller, “Graph database applications and concepts with
neo4j,” in Proceedings of the Southern Association for Informa-
tion Systems Conference, Atlanta, GA, USA, vol. 2324, no. 36,
2013.

[7] R. Angles, “The property graph database model.” in AMW, 2018.
[8] “Orient db, property graph model.” [On-

line]. Available: https://orientdb.org/docs/3.0.x/datamodeling/
Tutorial-Document-and-graph-model.html

[9] D. W. Wardani and J. Kiing, “Semantic mapping relational to
graph model.” in Proceeding - 2014 International Conference
on Computer, Control, Informatics and Its Applications,
"New Challenges and Opportunities in Big Data", IC3INA
2014, Sebelas Maret University, 2014, pp. 160–165. [Online].
Available: https://ieeexplore.ieee.org/document/7042620

[10] S. Lee, B. H. Park, S. Lim, and M. Shankar, “Table2graph: A
scalable graph construction from relational tables using map-
reduce,” in IEEE First International Conference on Big Data
Computing Service and Applications, 2015, pp. 294–301.

[11] S. P. L. Filho, M. C. Cavalcanti, and C. M. Justel, “Graph
modeling for topological data analysis.” Enterprise Information
Systems, pp. 193–214, 2019. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-3-030-26169-6_10

[12] J. Gop and S. Jain, “A survey on solving cold start
problem in recommender systems.” in Proceeding - IEEE
International Conference on Computing, Communication and
Automation, ICCCA 2017, vol. 2017-January, no. Proceeding -
IEEE International Conference on Computing, Communication
and Automation, ICCCA 2017, Department of Computer
Engineering, National Institute of Technology, 2017, pp. 133–
138. [Online]. Available: https://ieeexplore.ieee.org/document/
8229786

[13] S. Tyagi and K. K. Bharadwaj, “Enhanced new user
recommendations based on quantitative association rule mining,”
Procedia Computer Science, vol. 10, pp. 102 – 109, 2012,
aNT 2012 and MobiWIS 2012. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1877050912003742

[14] M. L. Wilson, “A requirements and design aid for relational
data bases,” in Proceedings of the 5th International Conference
on Software Engineering, ser. ICSE ’81. IEEE Press, 1981, p.
283âĂŞ293.

[15] B. Lira, A. Cavalcanti, and A. Sampaio, “Automation of a normal
form reduction strategy for object-oriented programming,” in
Proceedings of the 5th Brazilian workshop on formal methods,
2002, pp. 193–208.

[16] F. M. Harper and J. A. Konstan, “The movielens datasets:
History and context.” ACM Transactions on Interactive
Intelligent Systems, no. 4, 2015. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2827872

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

	Introduction
	Related Work
	Converting a Relational Data Model to a Graph Model
	Movielens Example
	Experimental Results
	Conclusions and further suggestions
	References

