
StrongDBMS: Built from Immutable Components

Malcolm Crowe, Santiago Matalonga
University of the West of Scotland

Paisley, UK
email:{malcolm.crowe; santiago.matalonga}@uws.ac.uk

Martti Laiho
DBTechNet

Helsinki, Finland
emal:martti.laiho@gmail.com

Abstract—StrongDBMS is a new relational Database
Management System (DBMS). Atomicity, Consistency,
Isolation and Durability (ACID) properties are guaranteed
through the use of an explicit transaction log and immutable
software components. The shareable data structures used allow
instant snapshots and provide thread-safety even for iterators,
and minimize the need for locking mechanisms without
compromising consistency. StrongDBMS has been
implemented in C# and Java, and both versions are inter-
operable on Windows and Linux. Benchmarking measures are
included in this paper. StrongDBMS is open-source and free to
use. This paper presents the design rationale for StrongDBMS
and benchmarks its current version. Benchmarking results
using the Transaction Processing Council’s TPC/C benchmark
show performance comparable with standard commercial
products.

Keywords– optimistic; relational; thread-safety; transactions.

I. INTRODUCTION

StrongDBMS has as its design goal to build a simple
fully-ACID relational DBMS, based on an append-only
transaction log file, and shareable data structures. The
transaction log file gives guarantees of transaction isolation
and durability, and shareable data structures, as described
below, provide guarantees of atomicity and consistency.

The rest of Section 1 gives some background to the
work, Section 2 introduces shareable data structures,
Section 3 describes the resulting database architecture, and
Section 4 discusses some benchmarking data on the
resulting DBMS.

A. Background

Most modern DBMSs, including StrongDBMS and
Pyrrho [1], employ Multi-Version Concurrency Control
(MVCC), in which each transaction effectively works with a
private copy of the DB. For higher levels of isolation, such
as Snapshot Isolation (SI) and Serializable SI (SSI), a
transaction which reads a data item x sees a private copy of x
with value that it had when the transaction began, and a
transaction which writes x does so on a private copy of x
which is only made available globally (i.e., to other
transactions) upon a successful commit operator of the
writer.

However, in most systems, this ideal strategy is made
more complex by the sharing of index structures between
concurrent transactions, so that many DBMS use the First
Updater Wins strategy (FUW) so that the first transaction to
announce an update locks the index until it commits [2].
With StrongDBMS and Pyrrho, each transaction uses its own

indexes and access data structures, and so these DBMS are
able to implement First Committer Wins (FCW), in which
transactions proceed without interfering with each other until
commit time. Upon commit, if there have not been other
commits on objects which T has written or read, it is allowed
to commit. Otherwise, T must be aborted. With this
approach, integrity constraints against commits made since
the start of T cannot be made until T begins to commit.

Both StrongDBMS and Pyrrho use immutable objects
with maximal sharing for indexes and access structures. The
objects are immutable in the sense that any modification of
the value of a data object results in a new object; pointers
cannot be updated, and values are never overwritten. The
objects admit maximal sharing in that when an object is
modified (or a new object is created), that part which is the
same as the previous object is re-used; only the part which is
different uses new storage.

StrongDBMS extends the use of immutable objects to all
serializable objects and all objects used in query processing
including row sets, and so these desirable properties can be
guaranteed throughout the transaction implementation. The
main goal of this paper is to show how such immutable
objects with sharing may be used in the implementation of a
DBMS.

B. Relationship to previous work

In Pyrrho and StrongDBMS, each database is stored on
disk as a single append-only transaction log file. The data
format is independent of machine architecture, word size,
byte order, or locale. Entries in the log from each transaction
are appended as a group for atomicity and serialization, as
explained below. Database objects have a unique identity
given by their definition point in the log. They retain this
identity when updated or modified even though the
modification details are recorded later in the log.

In this way, both are optimistic-execution DBMS with
persistent row-versioning, as discussed in [3]. Unlike Pyrrho,
StrongDBMS is implemented in Java as well as C#, taking
advantage of its novel aspects of the features of each
programming language, and both implementations can run
on Windows and Linux.

StrongDBMS’ internal data structures (in the Shareable
namespace) are serializable and used both in the server and
the client, with a binary API. SQL parser in the client library.
There are some system tables that provide relational access
to the internal mechanisms of the DBMS.

The DBMS is still under development and many standard
Structured Query Language (SQL) features will be added
later. It currently supports integrity constraints, aggregation,

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

grouping, and joins. Roles, views and support for “big live
data” [4] will be added during 2019, followed by executable
modules and triggers.

The data types supported are arbitrary-precision integers
and numeric, unicode string, date and timespan, and row.
Identifiers are case-sensitive. The set of system tables is
currently limited to the log and the list of base tables.

StrongDBMS uses a client-server architecture with a
client Application Programming Interface (API) based on
serializable objects rather than SQL. Parsing of SQL is
performed in the client library (StrongLink). The server,
StrongDB, opens a Transmission Control Protocol (TCP)
port on 50433. There is a command-line utility StrongCmd.
The implementation uses .NET framework 4.7.2, C# version
8.0 (2019), and Java 11. It is open-source and free to use.
The source code is on github.com [5], together with an
introduction to the serializable classes of StrongDBMS.

StrongDBMS is available for use by anyone and in any
product without fee, provided only that its origin and original
authorship is suitably acknowledged.

II. SHAREABLE DATA STRUCTURES

The unique interest of StrongDBMS is the use of
shareable (or immutable) data structures. Such structures are
particularly appropriate for DBMS, since they are inherently
thread-safe, provide instant snapshots, and do not require
locking. This section briefly introduces this concept.

A. On value semantics and thread-safety

The study of data structures is an essential early stage in
any Computing program [6] and needs to be revisited later
on when the student has mastered threading [7]. Students
quickly learn that the standard string data type in modern
languages, such as Java and C#, is immutable, but are often
not told why.

As an unsafe example, consider arrays of characters in
Java. Suppose A, declared as char[] A, contains the
characters NOW. If we assign this array to a similar array B,
then both A and B share the same data. After an update to A,
say A[2] = 'T', they both contain NOT. This may be what the
programmer intended, but from the viewpoint of this study,
this behaviour is seen as unsafe. There is nothing wrong with
the original assignment of A to B or with sharing the array
elements. But A[2] = 'T' represents a problem (and Java
wisely disallows such an operation for Strings). So, for a
shareable list structure we support A=A.InsertAt('T',2) and
A=A.RemoveAt(1), and both these operations create new
lists without changing the contents of B. The
implementation, of course, will be as a linked list.

This is not to criticize Java, which has built on its String
structure and championed interfaces such as Cloneable.
Linked lists are not the best structures for databases either,
but shareable data structures with logarithmic behaviour can
transform the performance of databases.

When a shareable structure such as a linked list or tree is
updated, new nodes are required from the start of the
structure to the updated position. The rest of the structure is
unchanged and does not need to be copied.

Before leaving the notion of thread-safety, consider the
behaviour of data structures passed as parameters. Java (as a
requirement) and C# (by default) pass parameters “by
value”, a comfortable phrase that obscures a major source of
difficulty. There is nothing to stop the called procedure from
modifying a structure passed in. Such modifications are often
useful but can be a difficult source of error.

The solution to both problem areas is to use, as far as
possible, data structures that contain no mutable fields. In C#
and Java, immutable fields can be declared public readonly
or public final; they receive their values in constructors and
these cannot be changed. It is a huge advantage that whole
indexes and even whole databases in memory can then be
copied by a single machine instruction, and database rollback
or Prolog Unbind consists simply of forgetting the new
pointer. With such data structures, there is no need for
locking, because the values inside can never change.
Managing locking in complex software has been a problem
for many decades (9) and it is a great relief to reduce this
burden.

The most commonly used shareable data structure in
StrongDBMS is a key-value dictionary called SDict<K,V> ,
which is used to build shareable searchable arrays (e.g.,
SDict<int,bool>) and multi-level indexes that use such
dictionaries at each level. In C#, it is possible to define
operators so that we can use d += (k,v) for adding an entry to
dictionary d, which is safer than having to remember to write
d= d.Add(k,v) . (Java’s dictionaries are not safe, and many
programmers used to them will accidentally write d.Add(k,v)
and lose the updated dictionary.)

Instead of using linear linked lists or arrays, for
scalability it is strongly recommended to use structures with
logarithmic behaviour such as B-Trees. Figure 1 shows the
picture of an update for a B-tree, reproduced from [8], and
shows that only a few nodes need to be created on an update.

Figure 1. Updating a B-Tree (from[8])

Figure 2 shows how this approach affects the scenario of
databases and transactions described in the Introduction.

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

Let us start with a database D initially synchronized with
the data abase file. There will be data structures including
a list of objects and a list of names, but we show just one
in the illustration.

A transaction T starts by using the same data structures as
the database.

When the transaction makes a change, it creates new root
nodes as required, but continues to share the rest of the
data structures (indexes, lists of objects etc.).

If another transaction commits in the meantime, the
database will be replaced by a new one sharing the same
data structures apart from the new root node.

These changes do not affect the transaction’s data
structures.
When our transaction commits, (it can only do so after
checking for no conflicts), its new information is added
into the database’s data structures, creating new root
nodes as required.

Figure 2. Shareable data structures and transaction behaviour

Care is needed when shareable data structures are used
inside mutable structures. If such an unsafe object A contains
an immutable dictionary d, then we need to remember to
write
lock(A) d += (k,v); in Java we use a synchronized block
synchronized(A) { d = d.add(k,v); }. The only place
StrongDBMS finds it necessary to use such locking is for the
global list of databases. File and stream objects are also
locked when required to facilitate operating system
interactions

The memory allocator must work harder with shareable
data structures, but in complex software, this happens
anyway, and if arrays are used, a lot of time is spent in
copying.

B. Bookmarks instead of Enumerators

Both C# and Java always use Enumerators or Iterators in
the standard libraries [9][10]. For an enumerator E, one
moves to the next item in a collection using E.MoveNext().
This is obviously unsafe even for an immutable collection, as
E might have been passed in as a parameter or copied
somewhere else. In this work, we exclusively use
Bookmarks for our shareable collections.

For any shareable collection as defined here, there is a
method called First() that returns a bookmark to the first
entry of the collection (First() returns null if the collection is
empty). And given any Bookmark B, we get a bookmark to
the next entry if any by B = B.Next().

Neither language provides us with a useful syntax for
iteration using bookmarks, but it is easy to get used to
writing

for (var b=C.First(); b!=null; b=b.Next())
Bookmarks iterate through the list as it stood when the

First() bookmark was created. It is very convenient to be
allowed to modify the list as it is being traversed. (The
standard libraries do not allow mutable List structures to be
modified during iteration.)

III. ARCHITECTURE OF THE DBMS

The design goals mentioned at the start of Section I
almost dictate some important features of the DBMS
architecture. Each element of the binary API should be
serializable, for transport from the client to the server and for
serialization to the transaction log as persistent database
objects. Some of the serializable objects represent SQL
constructs, translated from SQL into this form in the client
library. Each database object has a readonly uid field
consisting of its immutable file position on disk.

A. Permanent uids for database objects

A file position will not be known until it is committed
(serialized) to disk, and so because of the readonly nature of
the uid, the commit will be done inside a constructor. In this
section we will use C# for the code illustrations (the Java
code is similar and can be reviewed in [4]):
protected SDbObject(SDbObject s, AStream f)
:base(s.type)
{

uid = f.Length;
f.uids = f.uids + (s.uid, uid);
f.WriteByte((byte)s.type);

}

D0

D0
T0

D0 T1

D1D2

D1 T1

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

In this fragment, we can see the uid being set as the
current file length before we write the first byte (the type) of
the SDbObject subclass. We also see a dictionary called uids
maintained by the file stream structure f, which associates
the previous unique identifier with the new permanent uid.

The next step in the design is to decide what the previous
uid was. This is assigned at the time the SDbObject is
created for addition to the transaction. The transaction
maintains a private sequence of uids for its SDbObjects.
When the SdbObject is created for the transaction we have:
protected SDbObject(Types t,STransaction tr) :base(t)
{

uid = tr.uid+1;
}

Objects such as table or column references arriving from
the client may have uids assigned by the client-side parser if
the names alone would be ambiguous. Because of separation
of concerns between client and server, the client does not
interpret these (for example, it will not know what columns
are defined for a table). This is an important point since any
schema information held in the client will, in general, be out
of date.

B. Database

The database knows what its schema objects are, indexed
by their permanent uids, and has a name catalogue for top-
level objects such as base tables.

The first constructor for a database (cold start) gives the
name and initializes the other information:
SDatabase(string fname)
{

name = fname;
objects = SDict<long, SDbObject>.Empty;
names = SDict<string, SDbObject>.Empty;
curpos = 0;

}

If there is a database file on disk, it is loaded into
memory, deserializing its contents from the file and
installing them in the database structure. We see some
examples of this process below.

Creating a copy of the database is just:
protected SDatabase(SDatabase db)
{

name = db.name;
objects = db.objects;
names = db.names;
curpos = db.curpos;

}

We see that copying (taking a snapshot of) a database
costs almost nothing (just four pointers).

The database structure is immutable so that any update
requires the construction of a new instance. The database
structure has a constructor that updates its dictionaries of
schema objects in a new instance:
protected virtual SDatabase New(SDict<long,SDbObject>

o, SDict<string,SDbObject> ns, long c)
{

return new SDatabase(this, o, ns, c);
}

The current database (this) is made available to the
constructor so that other data pointers (in this case, just the
database name) that have not been changed can be copied
into the new object. Here is the constructor:

protected SDatabase(SDatabase db, SDict<long,
SDbObject> obs, SDict<string,SDbObject> nms, long c)
{

name = db.name;
objects = obs;
names = nms;
curpos = c;

}

C. Installing database objects

The method in the database class for installing a table,
e.g., when loading the database on startup, is very simple –
of course it returns a new database object using the New
method given above:
public SDatabase Install(STable t, long c)
{

return New(objects+(t.uid, t),names+(t.name, t), c);
}

Tables maintain their own readonly lists of columns,
rows and indexes, so installing a column creates a new
version of the table object as well as a new database:
public SDatabase Install(SColumn c, long p)
{

var obs = objects;
if (c.uid >= STransaction._uid)

obs += (c.uid, c);
var tb = ((STable)obs[c.table])+c;
return New(obs+(c.table,tb), names+(tb.name,tb), p);

}

It is important that very little data copying is required to
make a new table object: it contains merely a small set of
references to the roots of tree structures, some of which will
have been updated.

The database does not directly include columns in its list
of objects (but transactions do, as described below). There is
a global static mutable collection of file streams with
exclusive access to the databases currently open on the
server, and a database looks up the appropriate file and locks
it when it needs to access the disk.

Records, updates and deletes do not need to be in these
memory structures as they can be retrieved from the disk file
when required (However, if a lot of clients use the same
database, the saving in memory is at the cost of increased
contention on the file stream. An object cache would also be
worth considering).

D. Transaction

We make STransaction a subclass of SDatabase so that it
inherits the immutable information from the database on
creation, including the current file position of the database (c
in the above New method) at the start of the transaction. The
code for starting a transaction is just a constructor:
public STransaction(SDatabase d,bool auto) :base(d)
{

autoCommit = auto;
rollback = d._Rollback;
uid = _uid;
readConstraints = SDict<long, bool>.Empty;

}

The code called for the base constructor is just the code
for copying a Database, shown earlier.

Objects proposed for addition in the transaction
(including records, updates and deletes) are added to the
transaction’s objects using its private sequence of uids, and

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

this sequence is traversed on commit. (Recall that
transactions cannot see other transactions so their sequences
of uids are separate.)

In order to support long transactions, we recall that
schema objects and records defined in a transaction should
be usable in the transaction, so the transaction needs to
install them in the dictionaries and indexes it has inherited
from the database. It uses the same install code as the
database, but with its own version of the New method that
creates a transaction object instead of a database object.

When the transaction commits, the transaction’s objects
are installed in the database, and the transaction object can
be forgotten.

E. Detection of transaction conflicts

The Commit method for the transaction object needs to
consider whether conflicting changes may have occurred in
the database before a commit can be agreed. As mentioned
above, the transaction already has the file position at the start
of the transaction. The transaction now looks at the current
state of the file: if objects have been added by other
transactions, it compares with the changes to be committed.
If there are conflicts or anything read by the transaction has
been modified, the commit cannot proceed, and a transaction
conflict exception will be raised. If all is well, the database
file is locked, and the process is repeated for any commits
that may have happened before the lock. If there are still no
conflicts, as the file is already locked the transaction’s
objects can be committed to the database using the
mechanism described at the start of subsection A above.
These installation steps result in a new database object,
which is then installed in the server’s static mutable list of
databases:
public static void Install(SDatabase db)
{

lock(files) databases = databases+(db.name, db);
}

The database file is then unlocked.

F. Query processing and RowSets

StrongDBMS follows the SQL standard closely except
that it allows case-sensitive identifiers and a small set of
primitive data types. Full details are in [5], but some example
SQL statements may help:
create table Voc (Id integer, Word string, Notes
string)
insert Voc values (1,'a','Indefinite article')
select from Voc where Word>'Z'

As mentioned above, parsing of SQL queries is done on
the client, so that the client sends the server a Serialisable
object such as an SQuery or an SInsertStatement. As the
server receives these, there is a Lookup method to identify
the columns and tables referred to by name, and construct
versions of the received object where the object references
are to the correct schema objects.

The next step is that a RowSet is constructed for the
results of the query or the data for the insert or other
command. In the presence of subqueries or grouping, etc.,
this process may be recursive, so that the query’s RowSet
method supplies a stack called Context in which the current

values of selectors can be found. The RowSet contains a
copy of the transaction that has the readConstraints list
populated during this recursion.

RowSets are traversed using a special subclass of
Bookmark (RowBookmark), which holds a row object for
the current row of the traversal, and a base table record if this
is a row of a base table. In general, the selectors in the query
can be expression objects, so that for returning results to the
client, the selector expressions use the same Lookup method
to compute the results, using new Context extended by the
current RowBookmark.

The RowSet method recursively constructs row sets for
traversing tables in joins and subqueries, for applying an
ordering or a search condition and for evaluating
aggregations. For join processing the row sets participating
in the join are first ordered using the columns specified in the
join-condition or implied by a natural join.

The final traversal for the client serializes the results
using Json format. Non-query client requests that use
RowSets include insert, update and delete statements for
base tables, and these use the records referred to in the
RowBookmark.

G. Transaction Programming Paradigm

As described above, a transaction in StrongDBMS
operates on the database as if it were private since the start of
the transaction. This isolation provides true conflict
serializability [11], which is strictly stronger than that
required by the ISO SQL standard [12]. The private
transaction context allows a straight-forward programming
for the transaction logic without concern on lock timeouts or
concurrency conflicts before the COMMIT. Further details
on the isolation model are given in Chapter 1 section
“Concurrency Control” in [3].

IV. BENCHMARKING STRONGDBMS

A. Parameter tuning

As suggested above, StrongDBMS adopts a standard data
format for the database file that is independent of locale or
machine architecture. Within the server it is obvious that
standard int and long data types will be used for integers
where possible and a multibyte alternative for big integers.

It is less obvious how to fine-tune the size of B-Tree
“buckets”. B-Trees have a fixed bucket size N, and then
allow nodes other than the root to have between N and 2N
(or 2N+1) child nodes. Experimentally it can be established
that performance is independent of the value of N over the
range 6 to 32. Currently StrongDBMS uses N=8. With
smaller values of N there are more nodes and deeper trees,
while if N is larger the cost of copying bucket contents
becomes more significant.

B. Performance Benchmarks

Relational DBMS traditionally use the Transaction
Processing Council’s TPC/C benchmark [13] which models
a 1980s-style Online Transaction Processing application. An
interesting measure is provided by the New Order
transaction, which models a clerk filling in a warehouse

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

order for a customer. Each warehouse serves ten districts,
each with 3000 customers, and 100000 products. An order
may have up to 20 lines, each a given quantity of a specific
product identified by its code. As the clerk enters the fields
on the form the database supplies details: the customer’s
name and address, the customer’s discount, orders to date,
etc., and for each line of the order supplies the product
description and price, updates the current stock level, and
computes the total cost per line and per order. On completion
of the order the transaction is committed. Each order takes
dozens of server round-trips.

On a personal computer, an implementation following
the details prescribed by TPC typically will execute about 20
New Order transactions per second. The initial state of the
database on Strong occupies 100MB. In Table 1, this initial
database file has already been constructed (it was excessively
slow to recreate in the Java on Linux configuration), and
timings were taken for the initialization of the system (cold
start) and for 2000 New Order transactions. The client and
hardware were the same for all four tests (Intel i5 processor,
16 GB of memory).

TABLE I. TPC/C 2000 NEW ORDER TRANSACTIONS

Server
Implementation

Operating System Cold start
2000 New

Orders

C# 8.0 Windows 10 16 sec 48 sec

C# Debian 9 (mono) 10 sec 79 sec

Java 11 (32 bit) Windows 10 7 sec 51 sec

Java 11 (32 bit) Debian 9 (mono) 6 sec 242 sec

V. CONCLUSIONS

This paper has introduced StrongDBMS, a new database
management system based on the ideas of append-only
transactions log-file and shareable data structures. Together
they provide the capabilities of transaction isolation,
durability, atomicity and consistency. This paper presented
the design rationale and trade-off for the StrongDBMS
approach. StrongDBMS has been co-developed in Java and
C#, and will continue to be supported in both programming
languages. As mentioned above, StrongDBMS is still under
development. The current state has enabled us to envision
and discuss the benefits and limitations of the approach. The
design of StrongDBMS is intended to support
multithreading, so that the server handles each transaction in
a different thread, and threads sharing a database use the
database file for synchronization when a commit is
requested. Our next steps will include tests for verifying
performance with multithreading.

We have presented how the current implementation of
StrongDBMS performs in the Transaction Processing
Council’s TPC/C benchmark.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the inspiration,
encouragement and contributions of members of the DBTech
community and from Stephen Hegner.

REFERENCES

[1] M. K. Crowe, “Transactions in the Pyrrho Database Engine.
in Databases and Applications” [ed.] M H Hamza. Innsbruck,
Austria : ACTA Press, 2005. pp. 71-76.

[2] A. Fekete, D. Liarokapis, E. J. O'Neil, P. E. O'Neil, and D. E.
Shasha, “Making snapshot isolation serializable”, ACM
Transactions on Database Systems, 30:2. 2005 pp. 429-528.

[3] M. Laiho, M. Kurki, M. Crowe, F. Laux, D. Dervos, and K.
Hirvonen, Introduction to Transaction Programming:
DBTechNet.org, [Online] 2019.
dbtechnet.org/papers/IntroToTransactionProgramming.pdf.

[4] M. Crowe, C. Begg, F. Laux, and M. Laiho, “Data Validation
for Big Live Data. Barcelona” : DBKDA 2017, The Ninth
International Conference on Advances in Databases,
Knowledge and Data Applications, 2017, pp.30-36.

[5] M. Crowe, “Shareable Data Structures”. GitHub. [retrieved:
March, 2019]
https://github.com/MalcolmCrowe/ShareableDataStructures.

[6] M. Ardis, D. Budgen, G. W. Hislop, J. Offutt, M. Sebern, and
W. Visser, SE 2014: “Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering”,
Long Beach, CA : 2015, Computer, Vol. 48 (11), pp. 106-
109.

[7] B. P. Shults, “Teaching Data Structures: thread safety and
components”. Boston, MA : IEEE, 2002. 32nd Annual
Frontiers in Education.

[8] T. Krijnen, and G. L. T. Meertens, “Making B-Trees work for
B”. Amsterdam: Stichting Mathematisch Centrum, 1982,
Technical Report IW 219/83.

[9] Microsoft. System. Collections. Immutable. 2015
www.nuget.org [retrieved: March, 2019].

[10] Oracle. Java Collections Framework.

[11] H. Berenson, J. Gray, J. Melton, E. J. O'Neill, and P. E.
O'Neill, “A Critique of ANSI SQL Isolation Levels”. San
Jose, CA: ACM. Proceedings of the 1995 ACM SIGMOD
International Conference. 1995. pp. 1-10.

[12] J. Melton, Information Technology - Database Languages -
SQL : ISO/IEC, 2016. 9075.

[13] Transaction Processing Council. [retrieved: March, 2019].
http://www.tpc.org.

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

