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Abstract—One of the major challenges in applications related to
social networks, computational biology, collaboration networks,
etc., is to efficiently search for similar patterns in their underlying
graphs. These graphs are typically noisy and contain thousands
of vertices and millions of edges. In many cases, the graphs are
unlabeled and the notion of similarity is also not well defined.
We study the problem of searching an induced subgraph in a
large target graph that is most similar to the given query graph.
We assume that the query graph and target graph are undirected
and unlabeled. We use graphlet kernels to define graph similarity.
Our algorithm maps topological neighborhood information of
vertices in the query and target graphs to vectors and these local
information are combined to find global similarity. We conduct
experiments on several real world networks and we show that our
algorithm is able to detect highly similar matches when queried
in these networks. Our implementation takes about one second
to find matches on graphs containing thousands of vertices and
million edges, excluding the time for one time pre-processing.
Computationally expensive parts of our algorithm can be further
scaled to standard parallel and distributed frameworks.

Keywords—Similarity Search; Subgraph Similarity Search;
Graph Kernel; Nearest Neighbors Search.

I. INTRODUCTION

Similarity based graph searching has attracted considerable
attention in the context of social networks, road networks, col-
laboration networks, software testing, computational biology,
molecular chemistry, etc. In these domains, underlying graphs
are large with tens of thousands of vertices and millions of
edges. Subgraph searching is fundamental to the applications,
where occurrence of the query graph in the large target graph
has to be identified. Searching for exact occurrence of an
induced subgraph isomorphic to the query graph is known as
the subgraph isomorphism problem, which is known to be NP-
complete for undirected unlabeled graphs.

Presence of noise in the underlying graphs and need
for searching ‘similar’ subgraph patterns are characteristic
to these applications. For instance, in computational biology,
the data is noisy due to possible errors in data collection
and different thresholds for experiments. In object-oriented
programming, querying typical object usage patterns against
the target object dependency graph of a program run can
identify deviating locations indicating potential bugs [1]. In
molecular chemistry, identifying similar molecular structures
is a fundamental problem. Searching for similar subgraphs
plays a crucial role in mining and analysis of social networks.
Subgraph similarity searching is therefore more natural in these
settings in contrast to exact search. In subgraph similarity
search problem, induced subgraph of the target graph that is
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‘most similar’ to the query graph has to be identified, where
similarity is defined using some distance function. Quality
of the solution and computational efficiency are two major
challenges in these search problems. In this work, we assume
that both the underlying graph and query graph are unlabeled
and undirected.

Most applications work with a distance metric to define
similarity between two entities (graphs in our case). Popular
distance metrics include Euclidean distance, Hamming dis-
tance, Edit distance, Kernel functions [2]-[5], etc. We use
graph kernel functions to define graph similarity.

Kernels are symmetric functions that map pairs of entities
from a domain to real values which indicate their similarity.
Kernels that are positive definite not only define similarity
between pairs of entities but also allow implicit mapping of ob-
jects to a high-dimensional feature space and operating on this
space without requiring to compute explicit mapping of objects
in the feature space. Kernels implicitly yield inner products
between the feature vectors without explicit computation of
the same in feature space. This is usually computationally
cheaper than explicit computation. This approach is usually
referred to as the kernel trick or kernel method. Kernel
methods have been widely applied to sequence data, graphs,
text, images, videos, etc., as many of the standard machine
learning algorithms including support vector machine (SVM)
and principle component analysis (PCA) can directly work
with kernels.

Kernels have been successfully applied in the past in the
context of graphs [6]-[8]. There are several existing graph
kernels based on various graph properties, such as random
walks in the graphs [9][10], cyclic patterns [11], graph edit
distance [12], shortest paths [13][14], frequency of occurrences
of special subgraphs [15]-[17] and so on.

Graphlet kernels are defined based on occurrence frequen-
cies of small induced subgraphs called graphlets in the given
graphs [18]. Graphlet kernels have been shown to provide good
SVM classification accuracy in comparison to random walk
kernel and shortest path kernel on different datasets including
protein and enzyme data [18]. Graphlet kernels are also of
theoretical interest. It is known that under certain restricted
settings, if two graphs have distance zero with respect to their
graphlet kernel value then they are isomorphic [18]. Improving
the efficiency of computing graphlet kernel is also studied in
[18]. Graphlet kernel computation can also be scaled to parallel
and distributed setting in a fairly straight forward manner. In
our work, we use graphlet kernels to define graph similarity.
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A. Related Work

Similarity based graph searching has been studied in the
past under various settings. In many of the previous works, it is
assumed that the graphs are labeled. In one class of problems,
a large database of graphs is given and the goal is to find the
most similar match in the database with respect to the given
query graph [19]-[24]. In the second class, given a target graph
and a query graph, subgraph of the target graph that is most
similar to the query graph needs to be identified [25]-[28].
Different notions of similarity were also explored in the past
for these classes of problems.

In [29], approximate matching of query graph in a database
of graphs is studied. The graphs are assumed to be labeled.
Structural information of the graph is stored in a hybrid index
structure based on B-tree index. Important vertices of a query
graph are matched first and then the match is extended pro-
gressively. In [30], graph similarity search on labeled graphs
from a large database of graphs under minimum edit distance
is studied. In [25], algorithm for computing top-k approximate
subgraph matches for a given query graph in a large labeled
target graph is given. In this work, the target graph is converted
into a set of multi-dimensional vectors based on the labels in
the vertex neighborhoods. Only matches above a user defined
threshold are computed. With higher threshold values, the
match is a trivial vertex to vertex label matching. In [26],
algorithm NeMa was proposed which uses a combination
of label similarity and local structural similarity to search
for subgraph similar to query graph in large labeled graphs.
Their query time is proportional to the product of number of
vertices of the query and target graph. Subgraph matching
in a large target graph for graphs deployed on a distributed
memory store was studied in [27]. In [28], efficient distributed
subgraph similarity search to retrieve matches whose number
of missing edges is below a given threshold is studied. It
looks for exact matching and not similarity matching. Though
different techniques were studied in the past for the problem
of similarity searching in various settings, to the best of our
knowledge, little work has been done on subgraph similarity
search on large unlabeled graphs. In many of the previous
works, either the vertices are assumed to be labeled or the
graphs they work with are small with hundreds of vertices.

B. Our Contribution

We consider undirected graphs with no vertex or edge
labels. We use graphlet kernel to define similarity between
graphs. We give a subgraph similarity matching algorithm that
takes as input a large target graph and a query graph and
identifies an induced subgraph of the target graph that is most
similar to the query graph with respect to the graphlet kernel
value.

In our algorithm, we first compute vertex labels for vertices
in both query and target graph. These labels are vectors
in some fixed dimension and are computed based on local
neighborhood structure of vertices in the graph. Since our
vertex labels are vectors, unlike many of the other labeling
techniques, our labeling allows us to define the notion of
similarity between vertex labels of two vertices to capture the
topological similarity of their corresponding neighborhoods
in the graph. We build a nearest neighbor data structure for
vertices of the target graph based on their vertex labels. Com-
puting vertex label for target graph vertices and building the
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nearest neighbor data structure are done in the pre-processing
phase. Using nearest neighbor queries on this data structure,
vertices of the target graph that are most similar to the vertices
of the query graph are identified. Using this smaller set of
candidate vertices of target graph, a seed match is computed
for the query graph. Using this seed match as the basis, our
algorithm computes the final match for the full query graph. By
using vertex level vector labels based on graphlet distribution
in the local neighborhood of vertices, we are able to extend
the power of graphlet kernels, which was shown to perform
well for graph similarity search on smaller graphs, to subgraph
similarity search on much larger graphs.

We study the performance of our algorithm on several real
life datasets including facebook network, google plus network,
youtube network, road network, amazon network provided by
the Stanford Large Network Dataset Collection (SNAP) [31]
and Digital Bibliography & Library Project (DBLP) network
[32]. We conduct number of experimental studies to measure
the search quality and run time efficiency. For instance, while
searching these networks with their communities as query
graphs, the computed match and the query graph has similarity
score close to 1, where 1 is the maximum possible similarity
score. In about 30% of the cases, our algorithm is able to
identify the exact match and in about 80% of the cases,
vertices of exact match are present in the pruned set computed
by the algorithm. We validate our results by showing that
similarity scores between random subgraphs and similarity
scores between random communities in these networks are
significantly lower. In other words, similarity score obtained
by chance is significantly lower. We also query communities
across networks and in noisy networks and obtain matches with
significantly high similarity scores. We use our algorithm to
search for dense subgraphs and identify subgraphs with signif-
icantly high density. We also conduct experiments to compare
performance of our algorithm with NeMa [26], which is a
subgraph similarity search algorithm that uses both structural
and label similarity. We use graphs with uniform label for this
purpose.

Computationally expensive parts of our algorithm can be
easily scaled to standard parallel and distributed computing
frameworks such as map-reduce. Most of the networks in
our experiments have millions of edges and thousands of
vertices. We use multi-threaded implementation for the one
time pre-processing phase. Single threaded implementation of
our search algorithm takes close to one second. This excludes
time taken by the pre-processing phase.

C. Paper Organization

In Section II, we present the preliminaries including
graphlet kernels and the problem statement. In Section III, we
present the details of the vertex labeling technique. In Section
IV, we present the details of our algorithm including the pre-
processing phase and the matching phase. In Section V, we
present the experimental results. In Section VI, we present
our conclusions and directions for future research.

II. PRELIMINARIES

Graph is an ordered pair G = (V, FE) comprising a set V
of vertices and a set F of edges. To avoid ambiguity, we also
use V(G) and E(G) to denote the vertex and edge set. We
consider only undirected graphs with no vertex or edge labels.
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A subgraph H of G is a graph whose vertices are a subset
of V, and whose edges are a subset of F and is denoted as
H C G. An induced subgraph G’ is a graph whose vertex set
V' is a subset of V' and whose edge set is the set of all edges
present in G between vertices in V.

DEFINITION 1 (Graph Isomorphism). Graphs GG1 and G»
are isomorphic if there exists a bijection b : V(G1) — V(Gs)
such that any two vertices u and v of GGy are adjacent in Gy
if and only if b(u) and b(v) are adjacent in Ga.

DEFINITION 2 (Subgraph Isomorphism). Graph G; is
isomorphic to a subgraph of graph Ga, if there is an induced
subgraph of G5 that is isomorphic to G.

DEFINITION 3 (Graph Similarity Searching). Given a
collection of graphs and a query graph, find graphs in the
collection that are closest to the query graph with respect to a
given distance/similarity function between graphs.

DEFINITION 4 (Subgraph Similarity Searching). Given
graphs G; and G5, determine a subgraph G* C (G, that
is closest to G2 with respect to a given distance/similarity
function between graphs.

A. Graphlet Kernel

Graphlets are fixed size non isomorphic induced subgraphs
of a large graph. Typical graphlet sizes considered in applica-
tions are 3,4 and 5. For example, Figure 1 shows all possible
non isomorphic size 4 graphlets. There are 11 of them of which
6 are connected. We denote by D;, the set of all size [ graphlets
that are connected. The set D, is shown in Figure 2.

833N e et dpfeteck

Figure 1. Set of all non isomorphic graphlets of size 4
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Figure 2. Non isomorphic connected graphlets of size 4

DEFINITION 5 (Graphlet Vector). For a given [, the
graphlet vector fq for a given graph G is a frequency vector
of dimension |D;| where its ith component corresponds to the
number of occurrences of the ith graphlet of D; in G. We
assume the graphlet vector fs to be normalized by the Lo
norm || g |2-

If graphs G and G’ are isomorphic then clearly their
corresponding graphlet vectors fg and fgs are identical. But
the reverse need not be true in general. But, it is conjectured
that given two graphs G and G’ of n vertices and their
corresponding graphlet vectors fo and fgr with respect to
n—1 sized graphlets D,,_1, graph G is isomorphic to G’ if fg
is identical to fg [18]. The conjecture has been verified for
n < 11 [18]. Kernels based on similarity of graphlet vectors
provide a natural way to express similarity of underlying
graphs.
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DEFINITION 6 (Graphlet Kernel). Given two graphs G
and G’, let fg and fg be their corresponding graphlet
frequency vectors with respect to size [ graphlets for some
fixed I. The graphlet kernel value K (G, G") is defined as the
dot product of fg and fgr. That is, K(G,G") = f& for

Graphlet vectors are in fact an explicit embedding of graphs
into a vector space whose dimension is | D;| if size [ graphlets
are used. Graphlet kernels have been shown to give better
classification accuracies in comparison to other graph kernels
like random walk kernel and shortest path kernel for certain
applications [18]. Values of K(G,G’) € [0,1] and larger
values of K (G, G’) indicate higher similarity between G and
G’. In this work, we use kernel function K (G, G’) to represent
similarity between graphs G and G’. Exact problem statement
is given below.

PROBLEM STATEMENT. Let K(-,-) be graphlet kernel
based on size [ graphlets for some fixed [. Given a large
connected graph G of size n and a connected query graph
Q of size ngy with n > n,, find a subset V* of vertices in G
such that its induced subgraph G* in G maximizes K (Q, G*).

III. GRAPHLET VECTOR BASED VERTEX LABELING

Computing vertex labels that capture topological neighbor-
hood information of corresponding vertices in the graph and
comparing vertex neighborhoods using their labels is crucial in
our matching algorithm. Our vertex labels are graphlet vectors
of their corresponding neighborhood subgraphs.

Given a fixed positive integer ¢ and graph G, let N(v)
denote the depth ¢ neighbors of vertex v in G. That is, N (v)
is the subset of all vertices in G (including v) that are reachable
from v in ¢t or less edges. Let H, denote the subgraph induced
by vertices N(v) in G. We denote by f,, the graphlet vector
corresponding to the graph H,,, with respect to size [ graphlets
for some fixed I. We note that for defining the graphlet vector
fuv for a vertex, there are two implicit parameters [ and t. To
avoid overloading the notation, we assume them to be some
fixed constants and specify them explicitly when required.
Values of [ and t are parameters to our final algorithm.

For each vertex v of the graph, its vertex label is given by
the vector f,. Given vertex labels f,, and f, for vertices u and
v, we denote by s(u,v) the similarity between labels of f,
and f,, given by their dot product as

S(ua U) = szfv (1)

Values of s(u,v) € [0,1] and larger values of s(u,v)
indicate higher topological similarity between neighborhoods
of vertices u and v. Computing the vertex labels of the target
graph is done in the pre-processing phase. Implementation
details of the vertex labeling algorithm are discussed in the
next section.

IV. OUR ALGORITHM

Our subgraph similarity search algorithm has two major
phases: one time pre-processing phase and the query graph
matching phase. Each of these phases comprise sub-phases as
given below. Details of each of these subphases is discussed
in the subsequent sections.

A. Pre-processing Phase: This phase has two subphases:
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1) In this phase, vertex labels f, of all the vertices of the
target graph G are computed.

2) k-d tree based nearest neighbor data structure on the
vertices of G using their label vectors f, is built.

B. Matching Phase: This phase is further divided into four
subphases:

1) Selection Phase: In this phase, vertex labels f, for
vertices of the query graph @) are computed first. Each
vertex u of the query graph then selects a subset of
vertices from the target graph G closest to u based on
their Euclidean distance.

2) Seed Match Generation Phase: In this phase, a one to
one mapping of a subset of query graph vertices to
target graph vertices is obtained with highest overall
similarity score. Subgraph induced by the mapped
vertices in the target graph is called the seed match.
The seed match is obtained by solving a maximum
weighted bipartite matching problem.

3) Match Growing Phase: The above seed match is used
as a basis to compute the final match for Q).

4) Match Completion Phase: This phase tries to match
those vertices in (Q that are still left unmatched in the
previous phase.

A. Pre-processing Phase

1) Computation of vertex labels f,: In this phase, vertex
label f, for each vertex v of the target graph G is computed
first. To compute f,, we require parameter values ¢ and .
These two values are assumed to be provided as parameters to
the search algorithm. For each vertex v, a breadth first traversal
of depth ¢ is performed starting from v to obtain the depth ¢
neighborhood N (v) of v. The graph H,, induced by the vertex
set N (v) is then used to compute the graphlet vector f, as
given in [33]. The algorithm is given in Figure 3.

Major time taken by the pre-processing phase is for com-
puting the graphlet vector for H,. In [18], methods to improve
its efficiency including sampling techniques are discussed. We
do not make use of sampling technique in our implementation.
We remark that finding the graphlet frequencies can easily
be scaled to parallel computing frameworks or distributed
computing frameworks such as map-reduce.

Algorithm 1

Input: Graph G, vertex v, BFS depth ¢, graphlet size [
Output: Label vector f,

1: Run BFS on G starting from v till depth ¢. Let N(v) be
the set of vertices visited including v.
Identify the induced subgraph H, of G induced by N (v).
Compute graphlet vector f, for graph H,,.
Normalize f, by ||fs]]2-
return f,

Figure 3. Algorithm for computing label f,, for vertex v

2) Nearest neighbor data structure on f,: After computing
vertex labels for GG, a nearest neighbor data structure on the
vertices of GG based on their label vectors f, is built. We use
k-d trees for nearest neighbor data structure [34]. k-d trees are
known to be efficient when dimension of vectors is less than
20 [34]. Since the typical graphlet size [ that we work with
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are 3,4 and 5, the dimension of f, (which is |D;|) does not
exceed 10.

B. Matching Phase

In the following we describe the three subphases of match-
ing phase.

1) Selection Phase: The vertex labels f, for all vertices
of the query graph @) are computed first using Algorithm 1.
Let R, denote the set of k vertices in G that are closest to
v with respect to the Euclidean distance between their label
vectors. In our experiments, we usually fix k£ as 10. For each
vertex v of ), we compute R, by querying the k-d tree built
in the pre-processing phase. Let R denote the union of R,
for each vertex v of the n, vertices of (). For the subsequent
seed match generation phase, we will only consider the vertex
subset R of G. Clearly size of R is at most k.n, which is
typically much smaller than the number of vertices in G.

2) Seed Match Generation Phase: In this phase, we obtain
a one to one mapping of a subset of vertices of the query
graph () to the target graph G with highest overall similarity
score. We call the subgraph induced by the mapped vertices
in G as the seed match. To do this, we define a bipartite graph
(V(Q), R) with weighted edges, where one part is the vertex
set V(Q) of the query graph () and the other part is the pruned
vertex set R of G obtained in the previous step. The edges of
the bipartite graph and their weights are defined as follows.
Each vertex v in the part V(Q) is connected to every vertex
w in R, C R, where R, is the set of k nearest neighbors of
v in G as computed in the previous step.

The weight A(v,w) for the edge (v,w) is defined in the
following manner. Let 0 < a < 1 be a fixed scale factor
which is provided as a parameter to the search algorithm. We
recall that vertex v belongs to query graph () and vertex w
belongs to target graph G and s(v,w) given by equation (1)
denote the similarity between their label vectors f, and f,.
Let V,, denote the neighbors of vertex w in graph G including
w. Let Q' denote the subset of V(Q) excluding v such that
each vertex in Q' is connected to at least one vertex in Vj,
in the bipartite graph (V(Q), R). In particular, for each vertex
u € @', let s(u) denote the maximum s(u, z) value among all
its neighbors z in V,, in the bipartite graph. Now the weight
A(v, w) for the edge (v, w) of the bipartite graph is given by

(5(1}, w)® + ZueQ/ s(u)a)l/a
(Q1+1)

We now solve maximum weighted bipartite matching on
this graph to obtain a one to one mapping between a subset of
vertices of () and the vertices of G. Defining edge weights
A(v,w) to edge (v,w) in the bipartite graph in the above
fashion not only takes into account the similarity value s(v, w),
but also the strength of similarity of neighbors of w in G to
remaining vertices in the query graph (). By assigning edge
weights as above, we try to ensure that among two vertices
in G with equal similarity values to a vertex in (), the vertex
whose neighbors in G also have high similarity to vertices in
@ is preferred over the other in the final maximum weighted
bipartite matching solution.

Let M denote the solution obtained for the bipartite
matching. Let Qas and G, respectively denote the subgraphs

Mo, w) =

@
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induced by the subset of matched vertices from graphs @ and
G under the matching M. The connectivity of Qy; and Gy,
may differ. For instance, the number of connected components
in Gj; and Qs could differ. Therefore, we do not include all
the vertices of GGjs in the seed match. Instead, we use the
largest connected component of GGj; as a seed solution. That
is, let S¢ C V(G) denote the subset of vertices in Gy cor-
responding to a maximum cardinality connected component.
Let Sg denote their corresponding mapped vertices in Q.
We call S as a seed match. The pseudo code for seed match
computation is given in Algorithm 2.

Algorithm 2

Input: Vertex sets V(Q), R and R, for each v € V(Q) and
their labels f,, parameter «
Output: S and Sg

1: Construct bipartite graph (V(Q), R) with edge weights
given by A(v, w).

2: Compute maximum weighted bipartite matching M on
(V(Q), R)

3: Let Qas and Gy respectively denote the subgraphs in-
duced by vertices from ) and G in the matching M.

4: Compute largest connected component in G,;. Let S
denote the vertices in that component. Let Sg denote its
mapped vertices in (Qy; under the bipartite matching M.

5: return Sg and Sg

Figure 4. Computing seed match S in G and its mapped vertices Sg in Q

3) Match Growing Phase: After computing the seed match
S¢ in G and its mapped vertices Sg in (), we use this seed
match as the basis to compute the final match. The final
solution is computed in an incremental fashion starting with
empty match. In each iteration, we include a new pair of
vertices (v, w) to the solution, where v and w belongs to G
and @) respectively. In order to do this, we maintain a list of
candidate pairs and in each iteration, we include a pair with
maximum similarity value s(v,w) to the final solution. We
use a max heap to maintain the candidate list. The candidate
list is initialized with the mapped pairs between S and S¢ as
obtained in the previous phase. Thus, the heap is initialized by
inserting each of these mapped pairs (v, w) with corresponding
weight s(v, w).

We recall that the mapped pairs obtained from previous
phase have stronger similarity with respect to the modified
weight function A(v, w). Higher value of A(v, w) indicates that
not only s(v,w) is high but also their neighbors share high
s() value. Hence, they are more preferred in the solution over
other pairs with similar s() value. By initializing the candidate
list with these preferred pairs, the matching algorithm tries to
ensure that the incremental solution starts with these pairs first
and other potential pairs are considered later. Also, because of
the heap data structure, remaining pairs are considered in the
decreasing order of their similarity value. Moreover, as will be
discussed later, the incremental matching tries to ensure that
the partial match in G constructed so far is connected. For this,
new pairs that are added to the candidate list are chosen from
the neighborhood of the partial match between G and Q.

The incremental matching might still match vertex pairs
with low s() value if they are available in the candidate
list. Candidate pairs with low s() values should be treated
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separately as there could be genuine pairs with low s()
value. For instance, consider boundary vertices of an optimal
subgraph match in GG. Boundary vertices are also connected
to vertices outside the matched subgraph. Hence, their local
neighborhood structure is different from their counterpart in
the query graph. In other words, their corresponding graphlet
vectors can be very dissimilar and their similarity value s()
can be very low even though they are expected to be matched
in the final solution. In order to find such genuine pairs, we
omit pairs with similarity value below some fixed threshold h;
in this phase and such pairs are handled in the next phase.

In each iteration of the incremental matching, a pair (v, w)
with maximum s(v,w) value is removed from the candidate
heap and added to the final match. After this, the candidate
list is modified as follows. We recall that v and w belong
to G and @ respectively. We call a vertex unmatched if it is
not yet present in the final match. The algorithm maintains
two invariants: (a) the pairs present in the candidate list are
one to one mappings and (b) a query vertex that enters the
candidate list will stay in the candidate list (possibly with
multiple changes to paired partner vertex) until it is included
in the final match. Let U, denote the unmatched neighbors of
v in G that are also not present in the candidate list. Let U,
denote the unmatched neighbors w in Q). For each query vertex
y in Uy, let « be a vertex in U, with maximum similarity
value s(x,y). We add (x,y) to the candidate list if y is absent
in the list and s(xz,y) > h;. If y is already present in the
candidate list, then replace the current pair for y with (z,y) if
s(z,y) has a higher value. The incremental algorithm is given
in Algorithm 3. The candidate list modification is described in
Algorithm 4.

Algorithm 3
Input: Seed match S¢ and its mapped vertices Sq, threshold
hy
Output: Partial match F
1: Initialize F' to empty set.
2: Initialize the candidate list max heap with mapped pairs
(v, w) of the seed match where s(v,w) > hy.
while candidate list is not empty do
Extract maximum weight candidate match (v, w)
Add (v,w) to F
updateCandidateList(candidate list, (v,
end while
return F

w), hi,F)

AN AN

Figure 5. Incremental Matching Algorithm.

4) Match Completion Phase: In this phase, vertices of
the query graph () that are left unmatched in the previous
phase due to similarity values below the threshold h; are
handled. Typically, boundary vertices of the final matched
subgraph in G remain unmatched in the previous phase.
As discussed earlier, this is because, such boundary vertices
in G and their matched partners in @ have low s() value
as their local neighborhood topologies vastly differ. Hence,
using neighborhood similarity for such pairs is ineffective. To
handle them, we try to match unmatched query vertices with
unmatched neighbors of the current match F' in G. Since the
similarity function s() is ineffective here, we use a different
similarity function to compare potential pairs. Let X denote
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Algorithm 4
Input: candidate list, (v,w), hy and F
1: Compute U, which is the set of unmatched neighbors of
v in G that are also not present in candidate list.

2: Compute U,, which is the set of unmatched neighbors of
w in Q.

3: for all vertex y € U,, do

4:  Find z € U, with maximum s(z,y) value.

5. if y does not exist in candidate list then

6: Include (z,y) in the candidate list if s(z,y) > h;.

7:  else

8: Replace existing pair for y in the candidate list with

(z,y) if s(x,y) has higher value.
9:  end if
10: end for

Figure 6. Algorithm for updateCandidateList

the set of unmatched neighbors of the current match F' in G.
Let Y denote the set of unmatched query vertices. Let v € X
and let w € Y. We define the similarity c(v,w) as follows.
Let Z, denote the matched neighbors of v in target graph G
and let Z,, denote the matched neighbors of w in query graph
Q. Let Z/ denote the matched partners of Z, in Q. We now
define ¢(v, w) using the standard Jaccard similarity coefficient
as

12, 7,

c(v,w) = 1200 70

3)

We use a fixed threshold hy that is provided as parameter
to the algorithm. We now define a bipartite graph (X,Y") with
edge weights as follows. For each (v,w) € X x Y, insert
an edge (v,w) with weight ¢(v,w) in the bipartite graph if
c(v,w) > hg. Compute maximum weighted bipartite graph
matching on this bipartite graph and include the matched pairs
in the final solution F'. In our experiments, size of Y (number
of unmatched query graph vertices) is very small. The pseudo
code is given in Algorithm 5.

Algorithm 5

Input: Partial match F' and threshold ho
Qutput: Final match F'
1: Let X denote the set of unmatched neighbors of the match
Fin G.
2: Let Y denote the set of unmatched vertices in Q).
3: Construct bipartite graph (X, Y") by introducing all edges
(v, w) with edge weight c(v, w) if e(v,w) > ha.
4: Compute maximum weighted bipartite matching.
Add each of these matches to F’
6: return F

()

Figure 7. Match completion algorithm

We remark that our searching algorithm finds the matched
subset of vertices in G and also their corresponding mapped
vertices in the query graph Q.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments on various real life
graph datasets [31] including social networks, collaboration
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networks, road networks, youtube network, amazon network
and on synthetic graph datasets. We also conduct experiments
to compare performance of our algorithm with NeMa [26],
which is a subgraph similarity search algorithm that uses
both label similarity and structural similarity to find subgraph
similar to query graph in large labeled graphs.

A. Experimental Datasets

Social Networks: We conduct experiments on facebook
and google plus undirected graphs provided by Stanford
Large Network Dataset Collection (SNAP) [31].
Facebook graph contains around 4K vertices and 88K
edges. In this graph, vertices represent anonymized users
and an undirected edge connects two friends. google plus
graph contains 107K vertices and 13M edges. google
plus graph also represents users as vertices and an edge
exists between two friends. The dataset also contains
list of user circles (user communities), where user circle
is specified by its corresponding set of vertices. We
use these user circles as query graphs and they are
queried against the entire facebook network. We also
query facebook circles against google plus network to
find similar circles across networks. We also experiment
querying facebook circles against facebook network after
introducing random noise to the facebook network.

DBLP Collaboration Network: We use the DBLP
collaboration network downloadable from [32]. This
network has around 317K vertices and 1M edges. The
vertices of this graph are authors who publish in any
conference or journal and an edge exists between any two
co-authors. All the authors who contribute to a common
conference or a journal form a community. The dataset
provides a list of such communities by specifying its
corresponding set of vertices. We use such communities
as query graphs.

Youtube Network: Youtube network is downloaded
from [31]. Network has about 1M vertices and 2M edges.
Vertices in this network represent users and an edge
exists between two users who are friends. In youtube,
users can create groups in which other users can join.
The dataset provides a list of user groups by specifying
its corresponding set of vertices. We consider these
user-defined groups as our query graphs.

Road Network: We use the road network of California
obtained from [31] in our experiments. This network
has around 2M vertices and 3M edges. Vertices of this
network are road endpoints or road intersections and the
edges are the roads connecting these intersections. We
use randomly chosen subgraphs from this network as
query graphs.

Amazon Network: Amazon network is a product co-
purchasing network downloaded from [31]. This network
has around 334K vertices and 925K edges. Each vertex
represents a product and an edge exists between the
products that are frequently co-purchased [31]. All the
products under a certain category form a product commu-
nity. The dataset provides a list of product communities
by specifying its corresponding set of vertices. We use
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product communities as query graphs and we query them
against the amazon network.

The statistics of the datasets used are listed in Table I.

TABLE II. EXPERIMENT 1 : SIMILARITY SCORE VS. t

Dataset t=2 t=3 t=4
Amazon | 0.9999823 | 0.9999851 0.9999858
DBLP 0.9999942 | 0.9999896 | 0.9999917

TABLE I. DATASET STATISTICS

DataSet #vertices #edges

Facebook 4039 88234
Google Plus 107614 13673453
DBLP 317080 1049866

Amazon 334863 925872
Youtube 1134890 2987624
Road Network 1965206 2766607

B. Experimental Setup

All the experiments are carried out on a 32 core 2.60GHz
Intel(R) Xeon(R) server with 32GB RAM. The server has
Ubuntu 14.04 LTS. Our implementation uses Java 7.

The computationally most expensive part of our algorithm
is the computation of vector labels for all vertices of a graph.
The pre-processing phase that computes label vectors for each
vertex of the graph is multi-threaded and thus executes on all
32 cores. Similarly, in the matching phase, computing label
vectors for all vertices of the query graph is also multi-threaded
and uses all 32 cores. Remaining phases use only a single core.

C. Results

To evaluate the accuracy of the result obtained by our
similarity search algorithm, we compute the graphlet kernel
value K (Q, G*) between the query graph @) and the subgraph
G* of GG induced by the vertices V* of the final match F' in
G. We use this value to show the similarity between the query
graph and our obtained match and we refer to this value as
similarity score in our experiments. We recall that similarity
score lies in the range [0,1] where 1 indicates maximum
similarity.

There are six parameters in our algorithm: (1) graphlet size
I, (2) BFS depth ¢ for vertex label computation, (3) value of
k for the k nearest neighbors from k-d tree, (4) value of «
in the edge weight function A and (5) similarity thresholds
hy for match growing phase and hy for match completion
phase. In all our experiments we fix graphlet size [ as 4. We
performed experiments with different values of k, «, hy and ho
on different datasets. Based on the results, we chose ranges for
these parameters. The value of k£ is chosen from the range 5
to 10. Even for million vertex graphs, & = 10 showed good
results. We fix scaling factor o to be 0.3 and the thresholds
hy and ho to be 0.4 and 0.95 respectively.

Experiment 1: This experiment shows the effect of bfs
depth ¢ on the final match quality. We performed experiments
with different values of ¢. We observed that after the depth of
2, there is very little change in the similarity scores of the final
match. But as the depth increases the time to compute graphlet
vectors also increases. Thus, the bfs depth ¢ was taken to be
2 for most of our experiments. Table II shows the similarity
scores of querying amazon communities on amazon network
and and DBLP communities on DBLP collaboration network
for different values of ¢. These results are averaged over 150
queries.

Experiment 2: For each of the datasets discussed earlier,
we perform subgraph querying against the same network. For
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each network, we use the given communities as query graphs
and measure the quality of the search result. That is, we
query facebook communities against facebook network, DBLP
communities against DBLP network, youtube groups against
youtube network and amazon product communities against
amazon network. For road network, we use randomly chosen
induced subgraphs from the network as query graph. Second
column of Table III shows the similarity score of the match.
All the results are averages over 150 queries. The average
community (query graph) size is around 100 for facebook,
around 40 for DBLP, around 50 for youtube and around 300
for amazon. Query graphs for road network have about 500
vertices.

To validate the quality of our solution, we do the following
for each of the network. We compute the similarity score
between random induced subgraphs from the same network.
These random subgraphs contain 100 vertices. We also com-
pute the similarity score between different communities from
the same network. All results are averaged over 150 scores.
Table III shows these results. Second column in the table shows
the average similarity score between query graph and the
computed match. The query graphs are the given communities.
Third column in the table shows the average similarity score
between random subgraphs. Fourth column shows the average
similarity score between communities. The results show that
the similarity score of our match close to 1 and is significantly
better than scores between random subgraphs and scores
between communities in the same network. For road network,
the third column shows the average similarity between its
query subgraphs.

TABLE III. EXPERIMENT 2 : SIMILARITY SCORES.

DataSet Query graph & Between Between
Final Match Random Communities
Subgraphs

Facebook 0.944231 0.702286 0.787296
DBLP 0.975137 0.443763 0.6144779
Amazon 0.999982 0.663301 0.624756
Youtube 0.998054 0.311256 0.524779
Road Network 0.899956 0.770492 0.599620

Table IV shows the #exactMatches which is the number
of queries that yielded the exact match out of the 150 queries
(query graph is a subgraph of the network), and #inPruned
- the percentage of queries where the vertices of the exact
target match are present in the pruned subset of vertices R
of target graph GG obtained after the selection phase. Table IV
shows that, for about 30% of the query graphs, our algorithm
identifies the exact match. Also, for about 75% of the queries,
vertices of the ideal match are present in our pruned set of
vertices R in the target graph after selection phase.

Table V shows the timing results corresponding to Experi-
ment 2. The timing information is only for the matching phase
and it excludes the one time pre-processing phase. Here ¢
denotes time taken (in secs) to compute the label vectors for
all vertices of the query graph and 7 the time taken (in secs)
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TABLE IV. EXPERIMENT 2 : EXACT MATCH STATISTICS

Dataset #exactMatches #inPruned
out of 150 (percentage) (percentage)
Facebook 53 (35.3) 83
DBLP 47 (31.3) 82
Amazon 60 (40.0) T2

for the entire matching phase (including §). We recall that
the label vector computation is implemented as multi-threaded
on 32 cores and the remaining part is executed as a single
thread. It can be seen that the label vector computation is the
computationally expensive part and the remaining phases take
much lesser time.

TABLE V. EXPERIMENT 2 : TIMING RESULTS

DataSet d(in sec) 7(in sec)
Facebook 0.213596 | 0.253706
DBLP 0.159492 | 0.777687
Amazon 0.199767 | 0.781500
Youtube 0.225131 0.989452
Road Network 0.216644 1.437619

Experiment 3: In all previous experiments, query graphs
were induced subgraphs of the target network. In this ex-
periment, we evaluate the quality of our solution when the
query graph is not necessarily an induced subgraph of the
target graph. For this, we conduct two experiments. In the first
experiment, we use facebook communities as query graphs and
query them against google plus network. To validate the quality
of our solution, we measure the similarity score of the query
graph with a random induced subgraph in the target graph
with same number of vertices. In the second experiment, we
create a modified facebook network by randomly removing
5% its original edges. We use this modified network as the
target graph and query original facebook communities in this
target graph. Here also, we validate the quality of our solution
by measuring the similarity score for the query graph with a
random induced subgraph of same number of vertices in the
target graph. Table VI shows these results. Second column in
the table shows the similarity score between query graph and
match. Third column shows the score between query graph
and a random subgraph. Values shown for both experiments
are averaged over 150 scores. The results show that similarity
score of our match is close to 1 and is significantly better than
a match by chance.

TABLE VI. EXPERIMENT 3 : SIMILARITY SCORES

DataSet Final Match | Random Subgraph
Google Plus 0.912241 0.600442
Facebook with random noise 0.933662 0.701198

Experiment 4: We use our matching algorithm to identify
dense subgraphs in large networks. In particular, we search
for dense subgraphs in DBLP and google plus networks. For
this, we first generate dense random graphs using the standard
G(n,p) model with n = 500 and p = 0.9. We now use
these random graphs as query graphs and query them against
the DBLP and google plus networks. We use the standard
definition of density p of a graph H = (V, E) as
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2|E|

The average density of our random query graphs is 0.9. We
queried these dense random graphs against DBLP and google
plus networks. Table VII shows the results. Column 2 shows
the similarity score between query graph and obtained match.
Column 3 shows the density p for the obtained match. The
results are averaged over 150 queries. Results show that the
similarity score with matched result is close to 1 for google
plus. For DBLP the score is close to 0.8 primarily because
DBLP does not have dense subgraphs with about 500 vertices.
Also, the density of the obtained match is close to that of the
query graph, which is 0.9.

TABLE VII. EXPERIMENT 4 : DENSE SUBGRAPH MATCH RESULTS

DataSet Similarity Score p for the match
Google Plus 0.926670 0.812
DBLP 0.799753 0.730

Experiment 5 - Comparison with NeMa: We conducted
experiments to compare performance of our algorithm with
NeMa [26]. NeMa uses combination of label similarity and
structural similarity to search similar subgraphs in large labeled
graphs. NeMa was shown to find high quality matches effi-
ciently compared to state-of-the-art graph querying algorithms.
Similarity search using structural similarity alone is harder as
label similarity helps in pruning the search space considerably.
For comparing performance of NeMa with our algorithm, we
considered query and target graphs with same label for all
vertices, which is similar to unlabeled setting. In particular,
we used YAGO and IMDB datasets for our experiments which
were used also for experimental evaluation of NeMa in [26].
Both datasets were modified to make all vertices to have the
same label and all edges unlabeled. IMDB (Internet Movie
Database) dataset consists of relationships between movies,
directors, producers and so on. YAGO entity relationship graph
is a knowledge base containing information from Wikipedia,
WordNet and GeoNames. IMDB dataset consists of about
3 million vertices and 11 million edges and YAGO dataset
consists of about 13 million vertices and 18 million edges.
Induced subgraphs from target graphs were used as query
graphs. Query graph size was restricted to 7 vertices as in
[26].

We considered only search time for comparison and ex-
cluded time taken for one time pre-processing/indexing from
our comparison. For a single query, NeMa ran for more than
13 hours and aborted on these datasets. This is in contrast
to fraction of a second that NeMa takes for similar queries
in the labeled setting. For our algorithm, we considered 50
queries separately on IMDB and YAGO. For IMDB, average
similarity score achieved by our algorithm was 0.91 and 41
out of 50 results were exact matches. For YAGO, average
similarity score achieved was 0.89 and 37 out of 50 results
were exact matches. Average search time in both cases was
less than 0.5 seconds. Upon restricting target graphs to 1000
node induced subgraphs of IMDB and YAGO graphs, NeMa
took 2.5 hours for searching. We finally used 100 node induced
subgraph of IMDB graph as target graph for NeMa. For 50
queries, average search time for NeMa was 8 minutes and 23
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out of 50 results were exact matches. For same experiment,
our algorithm achieved average similarity score of 0.93 and
40 out of 50 results were exact matches. Average search time
for our algorithm was 0.03 seconds.

D. Scalability

Computationally most expensive parts of our algorithm
are the vertex label computation for vertices of query and
target graphs. Since this is a one time pre-processing for
the target graph, it can be easily scaled to a distributed
framework using the standard map-reduce paradigm. Vertex
label computation for each vertex can be a separate map/reduce
job. Vertex label computation for query graph is performed for
every search. This can also be parallelized using the standard
OpenMP/MPI framework as each vertex label computation can
be done in parallel. As shown in the experimental results,
remaining phases take much lesser time even with serial
implementation. Parts of them can also be parallelized to
further improve the search efficiency. Our algorithm can also
support dynamic setting since computation of vertex level label
vectors uses only local structural information. Edge and vertex
modifications can therefore affect only label vectors of vertices
in their local neighborhood and these label vectors can be
recomputed efficiently and the pre-computed index can be
modified accordingly.

VI. CONCLUSIONS

In this paper, we propose an algorithm that performs
subgraph similarity search on large undirected graphs solely
based on structural similarity. In the pre-processing step, our
algorithm computes multi-dimensional vector representation
for vertices in the target graph based on graphlet distribution in
their local neighborhood. These local topological information
are then combined to find a target subgraph having highly
similar global topology with the given query graph. We tested
our algorithm on several large real world graphs and was
shown to obtain high quality matches efficiently. Size of these
graphs ranged from thousand vertices to million vertices. By
using vertex level vector labels based on graphlet distribution
in the local topological neighborhood of vertices, we are able
to extend the power of graphlet kernels, which was shown to
perform well for graph similarity search on smaller graphs,
to subgraph similarity search on much larger graphs. Local
nature of vector label pre-computation of vertices makes our
algorithm amenable to parallelization and to handle dynamic
setting. Efficient parallel/distributed implementations of label
vector pre-computation and matching to handle massive graphs
on billions of vertices, large query graphs and massive graph
streams would be future work.
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