

Some Heuristic Approaches for Reducing Energy Consumption on Database

Systems

Miguel Guimarães João Saraiva Orlando Belo
ALGORITMI R&D Center

University of Minho
Portugal

pg22800@alunos.uminho.pt

HasLab R&D Center
INESC/University of Minho

Portugal
jas@di.uminho.pt

ALGORITMI R&D Center
University of Minho

Portugal
obelo@di.uminho.pt

Abstract—Today, one of the major concerns of administrators
and managers of data centers is related with the cost of the
energy that each database component consumes when involved
in activities and processes they manage. In fact, it is not
necessary to conduct a detailed assessment to realize that the
cost of energy consumed in this type of systems is really great.
So, it is not surprising the significant growing interest that
researchers have in this domain. Various techniques have been
developed to assess the energy consumption on database
systems, demonstrating their utility in managing the power
they use to consume. Basically, they come to confirm the
paradigm shift on the issue of energy concern in database
systems towards the reduction of its consumption. In this
paper, we present and discuss a set of heuristics that we
suggest to reduce, in particular, the energy consumption on the
execution of a given query inside a relational database system.
With this work, we intend to contribute to design and
implement more efficient queries in terms of energy, i.e., green
queries, based on the analysis of the various components that
are used in their physical implementation, reducing as much as
possible their energy consumption, taking into consideration
the characteristics of the database operators used and the
querying execution plans established for them.

Keywords-data centers; database management systems;
querying execution plans, database queries consumption, green
queries; consumption heuristics.

I. INTRODUCTION
The assessment of energy consumption of any component

is not an easy task. To carry out appropriately this kind of
evaluation, it is necessary to study in detail how the
component behaves and how it is used in practice. The same
may be applied to the study of power consumption of a
DataBase Management System (DBMS) or, in particular, of
any query that can be performed in its environment [1]. Any
process for the establishment of energy-efficient queries,
usually recognized as green queries, and not its optimization
in terms of processing time or usage of computing
resources, requires a fairly deep knowledge of how queries
are processed and optimized in the environment of a DBMS.

Database querying processing [2][3] is one of the most
important activities of a DBMS, which involves a well-
defined set of processes for supporting the way the system
responds to users’ queries. Optimizing querying processing
is something that has been worked over the years by
researchers in the databases field. See, for example, the
work of Ceri and Gottlob [4] that presented a way to
transform a SQL statement into relational algebra
expressions representing equivalent SQL sub statements, a
method revealed by Taniar [5] especially oriented to add
additional instructions (e.g., optimizer hints, access method
hints, or table joins hints) into SQL statements to instruct
the SQL optimizer for executing the statement in an
alternative better way, or how Li et al. [6] suggested a
manner to improve querying performance with
configuration options – e.g., table partitioning, materialized
views, or storing plan outlines – increasing as well the
efficiency of the code application.

However, as the number and capacity of data centers
increases, beside the so usual issues of performance and
querying processing abilities – always critical aspects for
any DBMS –, the issue of power consumption is appearing
very clear in their cost operational reports, year after year
[7]. This caught the attention of data centers’ managers all
over the world up sharply their concerns related to energy
consumption, not only because of the cost of electricity
itself but also because of relevant environmental issues. In
general, database servers are the biggest customers of
computational resources of a conventional data center,
which makes them also one of its biggest energy consumers
[8]. Although these systems are very well equipped today,
with powerful tools for querying optimization, quality of
service, or overall performance, usually in terms of energy
consumption DBMS do not have any means especially
oriented to the management and control of consumption
power. With the current trends and needs of the markets and
DBMS users, this lack is considered quite serious. The non-
availability of data about the energy consumption of a
DBMS has been motivating a large diversity of research
initiatives aiming to create means so that we can in addition

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

to defining query optimization plans in DBMS
environments also create energy consumption plans for
executing queries.

In a previous work [9], we developed a study that
allowed us to develop an energy consumption plan for a
query that is usually executed in a conventional data center
environment. At that time, the goal was reducing, as much
as possible, the energy consumption of data centers queries
without affecting their usual performance. We believed that
such small reduction in the consumption of a simple query
could be a great help in reducing the overall consumption of
a data center – that was proved easily by multiplying these
tiny savings by the huge number of queries (and
transactions) that are executed per minute in a data center.
Continuing this work, we studied a set of specific heuristics
that we suggest to reduce, in particular, the energy
consumption on the execution of a given query inside a
relational DBMS, which we expect that contribute to design
and implement more efficient queries in terms of energy –
green queries.

In this paper, we present and discuss the referred energy
consumption heuristics, giving particular attention to other
related works (Section II), showing how we categorized the
energy consumption of a SQL query, what kind of
transformation rules were applied, and how the energy was
consumed by each one of the transformation rules studied
(Section III). Finally, we finish this paper with some brief
conclusions and pointing out some future research lines
(Section V).

II. RELATED WORK
Today, energy efficiency is a trend topic in terms of

researching and development. Researchers of different fields
of expertise work and discuss possible solutions to solve the
energy crisis that we are facing today. On the one hand,
saving energy allow us to reduce the energy billing costs;
and on the other hand, by doing that, we are also preserving
environment resources. Thus, saving energy and creating
policies to develop green software is beneficial for
everybody. Steps towards that direction have been already
made. At software level, for instance, the works presented in
[10] and [11] are some good examples of techniques and
methods used to detect energy consumption. In [10], the
authors adapted a technique known as Spectrum-based Fault
Localization to identify parts of code responsible for a
higher energetic consumption. The work done in [11]
focused more on finding and detecting anomalous energy
consumption in Android systems. Both works show us that
reducing energy consumption has been tackled in a variety
of systems by several researches, and its popularity in
computer science domains has increased.

Database systems have also taken small steps towards
green guidelines. The Claremont report was one of the first
approaches concerning energy consumption in database
systems [12]. The main goal of this report was to take into
consideration, during the devise and implementation stages

of a database system, the energy consumed by different
tasks. Reinforcing such concerns, the work presented in [13]
provided us a clear survey of how to control efficiently
energy in data management operations. Later, other studies
emerged approaching the same topic [14][15][16].
However, most of them have focus essentially on hardware
questions. In terms of software, in [9] it was redesigned the
execution plan of a DBMS in order to include, not only the
default estimative values for query execution, but also an
estimative of energy that will be consumed to run a specific
query. Later, it was proposed a solution to redesign a DMBS
kernel, in order to reduce energy consumption [15].
Afterward, in [17] other alternatives were suggested to
reduce the high levels of energy consumption in DBMS, in
general terms, while other works, were concerned about the
prediction of the consumption of large join queries [18], or
how to optimize queries to reduce global consumption of
energy within a DBMS [19]. However, as far as we know,
there are no works approaching the effect of regular
querying optimization heuristics on the consumption of
energy of a DBMS. Thus, we selected some of the most
used heuristics on relational querying processing and
studied their effect in terms of energy consumption.

III. ENERGY CONSUMPTION CATEGORIZATION
The energy consumption paradigm has been increasing

its importance over the last few years, slowly replacing the
performance paradigm, in terms of main concerns, to take
into account when developing any kind of database querying
task. Query processing is one of the most important activities
performed by a DBMS. Today, it is possible to analyze and
optimize the cost of a database query in terms of
performance, establishing better execution plans and
reducing querying processing time. Having access to these
plans, we can also measure the energy that database
operations consume in a similar way as we can measure their
processing time. We only need appropriate tools.

A. Data and Test Configuration

In this work, we developed a tool with the ability to
measure the energy consumption of SQL queries,
categorizing which ones are green and which ones are not.
We used the tool gSQL, shorten for greenSQL, to categorize
the energy consumption of SQL queries. This tool uses as
support the jRAPL framework, which allows for monitoring
the energy consumption of different hardware levels for a
certain code block [20]. In order to use jRAPL, there are
certain conditions that must be fulfilled. The processor has to
be from Intel architectures and support Machine-Specific
Registers (MSR). The later are the registers used for storing
the energy consumption information for code block that was
monitored. Therefore, the role played by the jRAPL
framework is exclusively dedicated to categorize and analyze
the energy consumption of SQL queries. Regarding the
gSQL tool, even though its use is simple, it gives us the
required information to devise hypothesis and thus create

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

heuristics to reduce the queries energy consumption. To run
the tests it is necessary to specify three different parameters:

1) an input file, with all the queries that going to be
tested;

2) the number of times each query will be repeated;
3) the number of times each test will be repeated.

In Figure 1, it is possible to see a brief description of the
overall behavior of the gSQL tool, written in pseudo code.
After all the tests have been executed, we obtain as result the
energy and the time consumption for each query tested. The
calculated aggregated values were maximum, minimum,
average, and standard deviation. This set of aggregated
values allows for us to find out if a certain test need to be
executed again, by analyzing the standard deviation as well
as the amplitude between maximum and minimum values.
For the test environment, we choose the PostgreSQL DBMS,
populated with data based on the TPC-H benchmark.
Depending on the scaling factor, the database can assume
different dimensions. In this case study, we used a scale
factor of two, which means that we multiplied by two the
cardinality of the tables that depends from the scale factor.

begin
resultsList ← initializeResults()
 for each query in queriesList do
 begin
 for each execution in executionsList do
 being
 for each repetition in repetitionList do
 begin
 initialEnergy ← getEnergy()
 initialTime ← getTime ()
 executeQuery(query)
 finalEnergy ← getEnergy()
 finalTime ← getTime()
 energy ← initialEnergy - finalEnergy
 time ← finalTime - initialTime
 storeValues(resultsList, energy, time)
 end
 end
 end
 aggregate ← aggregateResults(results)
 writeFile(aggregate)
 end

Figure 1. A pseudo code excerpt describing the behavior of the gSQL tool

B. Transformation Rules
Often, we start a querying optimization process by

analyzing the structure of the query, trying to see if it is well
designed and use the most appropriated resources. In this
kind of processes, it is common to see if some practical
querying heuristics can be applied at a certain stage of the
process, in order to improve the way the query is processed,
having the goal to reduce its execution time. There are a set
of heuristics well establish in the literature to improve
querying processes [21]. In some particular application
cases, such heuristics give us clear processing advantages,
reducing the resources involved with and the response time
of the query. The question now is: do those querying
heuristics also help in reducing querying energy
consumption?

The transformation rules used for the relational algebra
operations suit well the requirements presented in [22] and

posteriorly in [21]. The first six rules were tested using the
gSQL tool. The results we got were analyzed in order to
create the heuristics to optimize querying energy
consumption. Each transformation rule (1-6) that was used
will be explained and illustrated with a specific SQL query
example. The SQL queries were devised specifically for
each transformation rule. Due to the variety of tables in the
TPC-H benchmark, there are plenty of options that could be
used to design queries for each different transformation rule.
However, TPC-H benchmark has a set of queries which, in
this case study, were adapted to better represent
transformation rules. Results can be consulted later in Table
1.

Transformation Rule 1 – this rule states that conjunctive
selection operations can be separated into individual
selection operations. To demonstrate this transformation
rule, we create two SQL queries that are presented in Figure
2.

a) select * from lineitem where l_quantity>40
 and l_discount>0.03;
b) select * from (select * from lineitem

 where l_discount>0.03) as sub

 where sub.l_quantity>40;

Figure 2. The SQL queries for testing rule 1.

The first query (Figure 2a) represents the conjunctive
selection operations whereas the second one (Figure 2b)
represents individual selections with the application of some
filtering conditions.

Transformation Rule 2 – this second rule shows us how
the selection operations have commutative proprieties. This
means that doing the selection of a given predicate p
followed by a predicate q have the same result as doing first
the selection of the predicate q followed by the predicate p
(Figure 3).
a) select * from (select * from lineitem
 where l_discount>0.03) as sub
 where sub.l_quantity>40;

b) select * from (select * from lineitem
 where l_quantity>40) as sub
 where sub.l_discount>0.03;

Figure 3. The SQL queries for testing rule 2.

Transformation Rule 3 – this rule denotes that in any
sequence of projection operations, only the last one in the
sequence is necessary. For instance, doing in first place the
projection of the attributes a and b followed by b is
equivalent of doing only the projection of the attribute b
(Figure 4).

a) select sub.l_shipmode
 from (select l_quantity, l_discount,
 l_shipmode from lineitem) as sub;

b) select l_shipmode
 from lineitem;

Figure 4. The SQL queries for testing rule 3.

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 Transformation Rule 4 – this rule states that between
selection and projection operations there is a commutative
propriety associated as long as the predicate belongs to the
attributes in the projection list (Figure 5).

a) select sub.l_shipmode, sub.l_quantity
 from (select * from lineitem
 where l_quantity>40) as sub;

b) select sub.*
 from (select l_shipmode, l_quantity
 from lineitem) as sub
 where sub.l_quantity>40;

Figure 5. The SQL queries for testing rule 4.

Transformation Rule 5 – according to this rule, a
cartesian product and theta join operations can be commuted.
Therefore, doing a theta join between two relations, R and S,
it is equivalent to do the theta join between the relation S and
the relation R. The same principle can be applied to the
cartesian product as well as to a natural join or an equijoin
(Figure 6). For this example, we set a limit of five hundred
thousand records to be selected, in order to have a faster
query. Without the limit constraint, the difference between
energy consumptions of both queries will be the same, but
limiting the number of records to be selected, instead of the
full length of the relation, allows us to save time when
running tests.

a) select * from orders
 inner join customer
 on o_custkey = c_custkey limit 500000;

b) select * from customer
 inner join orders
 on o_custkey = c_custkey limit 500000;

Figure 6. The SQL queries for testing rule 5.

Transformation Rule 6 – Rule number six states that
between selection and theta join operations there is a
commutative propriety associated, if the selection predicate
involves only attributes of one of the relations being joined
(Figure 7).

a) select sub.* from (select * from orders
 inner join customer
 on o_custkey = c_custkey) as sub
 where sub.c_mktsegment='BUILDING'
 and sub.o_orderpriority='2-HIGH';

b) select * from
 (select * from customer
 where c_mktsegment='BUILDING') as t1
 inner join (select * from orders
 where o_orderpriority='2-HIGH') as t2
 on t1.c_custkey = t2.o_custkey;

Figure 7. The SQL queries for testing rule 5.

C. Result Analyzes
Through the data presented in Table 1 it is possible to

analyze the average energy consumed for each
transformation rule and take some conclusions regarding the
heuristics for optimizing the energy consumption on SQL

queries. If we observe rule 2, we can see that the second
query (Figure 3b) consumes less energy than the first query
(Figure 3a), because the second SQL query reduces the
number of tuples that are processed by the DBMS. Thus, we
can infer that doing first the selection operation that discards
more tuples translates into an energy saving measure.
Another conclusion that can be deduced based on the gSQL
results, is that doing only the projection of necessary
attributes consumes less energy than the projection of
necessary and unnecessary attributes (transformation rule 3).
An obvious conclusion, since there is less computational
load required, a less execution time leads to a decrease in
the energy consumption. Regarding the transformation rule
4, it is possible to conclude that reducing the cardinality of
the relations it is a good green practice. Hence, eliminating
unnecessary tuples before doing others relational algebra
operations can be seen as a heuristic to optimize the energy
consumption. With the data collected from gSQL tool, for
cartesian products and theta joins operations, we can
inferred the following: if the relation on the left side of the
join operation have higher cardinality than the relation on
the right side, then it consumes less energy (transformation
rule 5).

TABLE I. AVERAGE ENERGY COMSUMPTION FOR EACH QUERY IN A
TRANSFORMATION RULE

Query Average Energy (Joules) Average Time (seconds)
1 a) 251.3028 12.34
1 b) 256.1062 12.5102
2 a) 256.1062 12.5102
2 b) 249.4447 12.16
3 a) 196.2550 9.86
3 b) 195.3628 9.72
4 a) 78.74333 3.98
4 b) 80.18314 4.02
5 a) 77.5720 3.8
5 b) 78.17531 3.72
6 c) 21.04923 1.04
6 d) 21.92778 1.12

	
Queries

Energy (Joules)

Figure 8. Energy consumed by each transformation rule version

Lastly, data from transformation rule 6 suggests that it is
greener to do the selection operation before doing theta-join
operations. As previously mentioned, cardinality reduction
means less energy consumption. Finally, in Figure 8 we can

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

see a chart showing the energy consumption of each one of
the queries that were used and tested in each transformation
rule.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we presented some heuristics to optimize

the energy consumption of relational database queries. The
heuristics presented here were devised by analyzing the data
from gSQL tool. This was a first approach towards the
creation of a more refined set of energy consumption
heuristics. As far as we know, nothing similar was done yet
in this field of expertise. Saving energy on a query that is
executed several times in a data center reduces the monthly
energy bill and therefore, decreases the costs of a data
center. It is interesting to notice different energy
consumptions by doing simple tweaks and transformation
rules. Although, we present some heuristics in this paper,
some of them having a parallel that corresponds to
performance optimization heuristics well defined in the area
database systems. Hence, for systems with the same type of
hardware optimizing a query to be greener is equivalent to
optimizing a query to be faster.

In a near future, we intend to verify if the heuristics
proposed here can be transposed to different DBMS. It is
important to know how to rank the different DBMS, in
order to offer to database administrators the possibility to
adopt an eco-friendlier DBMS to support their operational
systems. Another issue that we expect to explore is the
impact of the established heuristics in DBMS performance
structures, such as indexes, execution plans or materialized
views, in order to prepare DBMS internal configuration
structures regarding energy saving issues.

REFERENCES
[1] G. Graefe, “Database servers tailored to improve energy

efficiency,” in Proceedings of the 2008 EDBT Workshop on
Software Engineering for Tailor-made Data Management,
2008, pp. 24-28.

[2] M. Jarke, “Query optimization in database systems,” in ACM
Computing Surveys, Vol. 16, No. 2, 1984, pp 11-152.

[3] S. Chaudhuri, “An Overview of Query Optimization”. In
Proceedings of the seventeenth ACM SIGACT, 1998, pp. 34-
43.

[4] S. Ceri and G. Gottlob, “Translating SQL Into Relational
Algebra: Optimization, Semantics, and Equivalence of SQL
Queries,” in IEEE Transactions on Software Engineering,
Vol. SE-11, No. 4, 1985, pp. 324-345.

[5] D. Taniar, H. Khaw, T. H. Cokrowijoyo, and E. Pardede,
“The use of Hints in SQL-Nested query optimization,”
Information Sciences, Vol. 177, No 12, 2007, pp. 2493-2521.

[6] D. Li, L. Han, and Y. Ding, “YiSQL Query Optimization
Methods of Relational Database System,” in Second
International Conference on Computer Engineering and
Applications, 2010, pp. 557-560.

[7] S. Mittal, “Power Management Techniques for Data Centers:
A Survey”, 2014. [online] Available at:
http://arxiv.org/abs/1404.6681 [Accessed 11 March 2016].

[8] M. Poess and R. O. Nambiar, “Energy cost, the key challenge
of today's data centers: a power consumption analysis of TPC-

C results,” in Proceedings of the VLDB Endowment, vol. 1,
2008, pp. 1229-1240.

[9] R. Gonçalves, J. Saraiva, and O. Belo, “Defining Energy
Consumption Plans for Data Querying Processes”. In
Proceedings of 2014 IEEE Fourth International Conference
on Big Data and Cloud Computing (BdCloud 2014), IEEE
computer Society, Sidney, Australia, 2014, pp. 641-647.

[10] T. Carção, “Measuring and visualizing energy consumption
within software code”. In: Visual Languages and Human-
Centric Computing (VL/HCC), 2014 IEEE Symposium on,
July, 2014, pp. 181– 182.

[11] M. Couto, T. Carção, J. Cunha, J. P. Fernandes, and J.
Saraiva, “Detecting anomalous energy consumption in
android applications”. In Pereira, F.M.Q., ed.: Programming
Languages - 18th Brazilian Symposium, SBLP 2014, Maceio,
Brazil, October 2-3, 2014. Proceedings. Volume 8771 of
Lecture Notes in Computer Science., Springer, 2014, pp. 77–
91.

[12] R. Agrawal et al., “The claremont report on database
research”. SIGMOD Rec. 37(3), September, 2008, pp. 9–19.

[13] J. Wang, L. Feng, W. Xue, and Z. Song, “A Survey on
Energy-efficient Data Management,” in SIGMOD Rec. 40, 2,
September, 2011, pp. 17-23.

[14] W. Lang, R. Kandhan, and J. M. Patel, “Rethinking query
processing for energy efficiency: Slowing down to win the
race”. IEEE Data Eng. Bull. 34(1), 2011, pp. 12–23.

[15] W. Lang and J. M. Patel, “Towards eco-friendly database
management systems”. In CIDR 2009, Fourth Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 4-7, 2009, Online Proceedings,
www.cidrdb.org, 2009.

[16] Z. Xu, Y. Tu, and X. Wang, “Exploring power-performance
tradeoffs in database systems”. In Li, F., Moro, M.M.,
Ghandeharizadeh, S., Haritsa, J.R., Weikum, G., Carey, M.J.,
Casati, F., Chang, E.Y., Manolescu, I., Mehrotra, S., Dayal,
U., Tsotras, V.J., eds.: Proceedings of the 26th International
Conference on Data Engineering, ICDE 2010, March 1-6,
2010, Long Beach, California, USA, IEEE, 2010, pp. 485–
496.

[17] M. Kunjir, P. K. Birwa, and J. R. Haritsa, “Peak power plays
in database engines”. In E. A. Rundensteiner, V. Markl, I.
Manolescu, S. Amer-Yahia, F. Naumann, and I. Ari, eds.:
15th International Conference on Extending Database
Technology, EDBT ’12, Berlin, Germany, March 27-30,
2012, Proceedings, ACM, 2012, pp. 444–455.

[18] M. Rodríguez et al., “Analyzing power and energy
consumption of large join queries in database systems,”
Industrial Electronics and Applications (ISIEA), 2013 IEEE
Symposium on, Kuching, 2013, pp. 148-153.

[19] Z. Xu, Y. Tu, and X. Wang. “PET: reducing Database Energy
Cost via Query Optimization,” in Proc. VLDB Endow. 5, 12,
August, 2012, pp. 1954-1957.

[20] K. Liu, G. Pinto, and D. Liu, “Data-oriented characterization
of application-level energy optimization”, in: Proceedings of
the 18th International Conference on Fundamental
Approaches to Software Engineering, FASE’15, 2015.

[21] T. Connoly and C. Begg, “Database Systems: A pratical
Approach to Design, Implementation, and Management”,
2005, Addison-Wesley Longman Publishing Co., Inc.,
Boston, USA

[22] A. V. Aho and J. D. Ullman, “Universality of Data Retrieval
Languages”, in Proceedings of the 6th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages, POPL ’79, (New York, NY, USA), ACM, 1979,
pp. 110–119.

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

