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Abstract—A skyline query retrieves a set of non dominate objects.
In this paper, we consider a skyline query for sets of objects
(objectsets) in a database. Since a skyline query of objectsets
is important in portfolio analysis, privacy aware data analysis,
outlier-resistant data analysis, etc., we have previously considered
“convex skyline objectsets query”, in which we did not select
some of skyline objectsets that is not on convex hull. To solve the
shortcoming, we propose an efficient algorithm to select complete
skyline objectsets in this paper. We investigated the properties of
objectset skyline computation and develop two major pruning
conditions to avoid unnecessary objectset enumerations as well
as comparisons among them. We conduct a set of experiments to
show the meaningfulness and scalability of the proposed skyline
objectset algorithm.

Keywords–Dataset; Skyline queries; Objectsets; Dominance re-
lationship.

I. INTRODUCTION

Skyline query [1] and its variants are functions to find
representative objects from a numerical database. Given a m-
dimensional dataset D, an object O is said to dominate another
object O′ if O is not worse than O′ in any of the m dimensions
and O is better than O′ in at least one of the m dimensions. A
skyline query retrieves a set of non dominate objects. Consider
an example in the field of financial investment. In general, an
investor tends to buy the stocks that can minimize cost and risk.
Based on this general assumption, the target can be formalized
as finding the skyline stocks with smaller costs and smaller
risks. Figure 1 (a) shows seven stocks records with their costs
(a1) and risks (a2). In the list, the best choice for a client
comes from the skyline, i.e., one of {O1, O2, O3} in general
(see Figure 1 (b)).

A key advantage of the skyline query is that it does not
require a specific ranking function; its results only depend on
the intrinsic characteristics of the data. Furthermore, the sky-
line is not affected by potentially different scales at different
dimensions (risk unit or cost unit in the example of Figure 1);
only the order of the dimensional projections of the objects
is important. Skyline query has broad applications including
product or restaurant recommendations [2], review evaluations
with user ratings [3], querying wireless sensor networks [4],
and graph analysis [5]. Algorithms for computing skyline
objects have been discussed in the literature [6] [7] [8] [9].

One of the known weaknesses of the skyline query is that
it can not answer various queries that require us to analyze not
just individual object of a dataset but also their combinations.
It is very likely that an investor has to invest more than one
stock. For example, investment in O1 will render the lowest
cost. However, this investment is also very risky. Are there
any other stocks or sets of stocks which allow us to have a

ID a1(cost) a2(risk)

O1 2 8

O2 4 4

O3 8 2

O4 8 4

O5 6 6

O6 4 6

O7 10 10

O1

O2

O3

O7

O5

O4

O6

a2(risk)

a1(cost)

b) Skyline a) Dataset

Figure 1. A skyline problem

lower investment and/or a lower risk? These answers are often
referred to as the investment portfolio. How to efficiently find
such an investment portfolio is the main issue studied in this
paper.

We consider a skyline query for sets of objects (objectsets)
in a database. Let k be the number of objects in each set and n
be the number of objects in the dataset. The number of sets in
the dataset amounts to nCk. We propose an efficient algorithm
to compute skyline of the nCk sets.

Assume an investor has to buy two stocks. In Figure 1, con-
ventional skyline query outputs {O1, O2, O3}, which doesn’t
provide sufficient information for the set selection problem.
Users may want to choose the portfolios which are not domi-
nated by any other sets in order to minimize the total costs and
risks. Figure 2 shows sets consisting of two stocks, in which
attribute values of each set are the sums of two component
stocks. Objectsets {O1,2, O2,3, O2,6} cannot be dominated by
any other objectsets and thus they are the answers for the
objectset skyline query. Again, if the investor wants to buy
three stocks then the objectset skyline query will retrieve
objectsets {O1,2,3, O1,2,6, O2,3,4, O2,3,6} as the query result.

Though a skyline query of objectsets is important in
portfolio analysis, privacy aware data analysis, outlier-resistant
data analysis, etc., there have been few studies on the objectsets
skyline problem because of the difficulty of the problem. The
objectsets skyline operator was introduced by Siddique and
Morimoto in 2010 [10]. They tried to find the skyline objectsets
that are on the convex hull enclosing all the objectsets, yet it
misses some skyline objectsets, which are not on the convex
hull. Su et al. proposed a solution to find the top-k optimal
objectsets according to a user defined preference order of at-
tributes [11]. However, it is difficult to define a user preference
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beforehand for some complicated decision making tasks. Guo
et al. proposed a pattern based pruning (PBP) algorithm to
solve the objectsets skyline problem by indexing individuals
objects [12]. The key problem of the PBP algorithm is that
it needs object selecting pattern in advance and the pruning
capability depends on this pattern. Moreover, this algorithm
is for fixed size objectset k and failed to retrieve result for
all k. In this paper, we present an efficient solution that
can select skyline objectsets, which include not only convex
skyline objectsets but also non-convex skyline objectsets. The
objectset size k can be varied from 1 to n and within which
a user may select a smaller subset of his/her interest.

We propose an algorithm to resolve the objectsets skyline
query problem. It progressively prunes the objectsets that are
impossible to be the objectsets skyline result, and uses a
filtering mechanism to retrieve the skyline objectsets without
enumerating all objectsets. We develop two pruning strategies
to avoid generating a large number of unpromising objectsets.
The efficiency of the algorithm is then examined with experi-
ments on a variety of synthetic and real datasets.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the notions and
properties for objectsets as well as the problem of objectsets
skyline. In Section IV, we provide details of our proposed
algorithm with appropriate examples and analysis. We exper-
imentally evaluate the proposed algorithm in Section V under
a variety of settings. Finally, Section VI concludes the paper
and introduces our future works.

II. RELATED WORK

Our work is motivated by previous studies of skyline query
processing as well as objectsets skyline query processing.

A. Skyline Query Processing
Borzsonyi et al. first introduced the skyline operator

over large databases and proposed three algorithms: Block-
Nested-Loops(BNL), Divide-and-Conquer (D&C), and
B-tree-based schemes [1]. BNL compares each object of the
database with every other object, and reports it as a result
only if any other object does not dominate it. A window
W is allocated in main memory, and the input relation is
sequentially scanned. In this way, a block of skyline objects
is produced in every iteration. In case the window saturates, a
temporary file is used to store objects that cannot be placed in
W . This file is used as the input to the next pass. D&C divides
the dataset into several partitions such that each partition can
fit into memory. Skyline objects for each individual partition
are then computed by a main-memory skyline algorithm. The
final skyline is obtained by merging the skyline objects for
each partition. Chomicki et al. improved BNL by presorting,
they proposed Sort-Filter-Skyline(SFS) as a variant of
BNL [6]. Among index-based methods, Tan et al. proposed two
progressive skyline computing methods Bitmap and Index [13].
In the Bitmap approach, every dimension value of a point
is represented by a few bits. By applying bit-wise AND
operation on these vectors, a given point can be checked if
it is in the skyline without referring to other points. The index
method organizes a set of m-dimensional objects into m lists
such that an object O is assigned to list i if and only if its value
at attribute i is the best among all attributes of O. Each list is
indexed by a B-tree, and the skyline is computed by scanning

the B-tree until an object that dominates the remaining entries
in the B-trees is found. The current most efficient method is
Branch-and-Bound Skyline(BBS), proposed by Papadias
et al., which is a progressive algorithm based on the best-first
nearest neighbor (BF-NN) algorithm [8]. Instead of searching
for nearest neighbor repeatedly, it directly prunes using the
R*-tree structure.

Recently, more aspects of skyline computation have been
explored. Chan et al. proposed k-dominant skyline and de-
veloped efficient ways to compute it in high-dimensional
space [14]. Lin et al. proposed n-of-N skyline query to support
online query on data streams, i.e., to find the skyline of the
set composed of the most recent n elements. In the cases
where the datasets are very large and stored distributedly, it
is impossible to handle them in a centralized fashion [15].
Balke et al. first mined skyline in a distributed environment by
partitioning the data vertically [16]. Vlachou et al. introduce
the concept of extended skyline set, which contains all data
elements that are necessary to answer a skyline query in any
arbitrary subspace [17]. Tao et al. discuss skyline queries
in arbitrary subspaces [18]. More skyline variants such as
dynamic skyline [19] and reverse skyline [20] operators also
have recently attracted considerable attention.

B. Objectsets Skyline Query Processing

There are two closely related works, which are “top-
k combinatorial skyline queries” [11] and “convex skyline
objectsets” [10]. Su et al. studied how to find top-k optimal
combinations according to a given preference order in the
attributes. Their solution is to retrieve non-dominate combi-
nations incrementally with respect to the preference until the
best k results have been found. This approach relies on the
preference order of attributes and the limited number (top-k) of
combinations queried. Both the preference order and the top-k
limitation may largely reduce the exponential search space for
combinations. However, in our problem there is no preference
order nor the top-k limitation. Consequently, their approach
cannot solve our problem easily and efficiently. Additionally,
in practice it is difficult for the system or a user to decide a
reasonable preference order. This fact will narrow down the
applications of [11].

Siddique and Morimoto studied the “convex skyline ob-
jectset” problem. It is known that the objects on the lower
(upper) convex hull, denoted as CH , is a subset of the
objects on the skyline, denoted as SKY . Every object in
CH can minimize (maximize) a corresponding linear scoring
function on attributes, while every object in SKY can minimize
(maximize) a corresponding monotonic scoring function [1].
They aims at retrieving the objectsets in CH , however, we
focuses on retrieving the objectsets in CH ⊆ SKY . Since
their approach relies on the properties of the convex hull, it
cannot extend easily to solve complete skyline problem.

The similar related work is “Combination Skyline Querues”
proposed in [12]. Guo et al. proposed a pattern based pruning
(PBP) algorithm to solve the objectsets skyline problem by
indexing individuals objects. The key problem of PBP algo-
rithm is that it needs object selecting pattern in advance and
the pruning capability depends on this pattern. For any initial
wrong pattern this may increase the exponential search space.
Moreover, it fails to vary the cardinality of objectset size k. Our
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ID a1(cost) a2(risk)

O1,2 6 12

O1,3 10 10

O1,4 10 12

O1,5 8 14

O1,6 6 14

O1,7 12 18

O2,3 12 6

O2,4 12 8

O2,5 10 10

O2,6 8 10

O2,7 14 14

ID a1(cost) a2(risk)

O3,4 16 6

O3,5 14 8

O3,6 12 8

O3,7 18 12

O4,5 14 10

O4,6 12 10

O4,7 18 14

O5,6 10 12

O5,7 16 16

O6,7 14 16

a) Sets of 2 Stocks b) Skyline of 2 Stocks

a2(risk)

a1(cost)

Figure 2. Objectset skyline problem

solution does not require to construct any pattern previously
and also vary the objectset size k from 1 to n.

There are some other works focusing on the combination
selection problem but related to our work weakly [21] [22].
Roy et al. studied how to select “maximal combinations”. A
combination is “maximal” if it exceeds the specified constraint
by adding any new object. Finally, the k most representative
maximal combinations, which contain objects with high diver-
sities, are presented to the user. Wan et al. study the problem to
construct k profitable products from a set of new products that
are not dominated by the products in the existing market [22].
They construct non-dominate products by assigning prices to
the new products that are not given beforehand like the existing
products.

III. PRELIMINARIES

Given a dataset D with m-attributes {a1, a2, · · · , am} and
n objects {O1, O2, · · · , On}. We use Oi.aj to denote the j-th
dimension value of object Oi. Without loss of generality, we
assume that smaller value in each attribute is better

Dominance
An object Oi ∈ D is said to dominate another object Oj ∈

D, denoted as Oi ≤ Oj , if Oi.ar ≤ Oj .ar (1 ≤ r ≤ m) for
all m attributes and Oi.at < Oj .at (1 ≤ t ≤ m) for at least
one attribute. We call such Oi as dominant object and such
Oj as dominated object between Oi and Oj .

Skyline
An object Oi ∈ D is said to be a skyline object of D,

if and only if there does not exist any object Oj ∈ D (j 6=
i) that dominates Oi, i.e., Oj ≤ Oi is not true. The skyline
of D, denoted by Sky(D), is the set of skyline objects in
D. For dataset shown in Figure 1(a), object O2 dominates
{O4, O5, O6, O7} and objects {O1, O3} are not dominated
by any other objects in D. Thus, skyline query will retrieve
Sky(D) = {O1, O2, O3} (see Figure 1(b)).

In the following, we first introduce the concept of objectset,
and then use it to define objectsets skyline. A k-objectset s is
made up of k objects selected from D, i.e., s = {O1, · · · , Ok}

and for simplicity denoted as s = O1,··· ,k. Each attribute value
of s is given by the formula below:

s.aj = fj(O1.aj , · · · , Ok.aj), (1 ≤ j ≤ m) (1)

where fj is a monotonic aggregate function that takes k pa-
rameters and returns a single value. For the sake of simplicity,
in this paper we consider that the monotonic scoring function
returns the sum of these values, i.e.,

s.aj =

k∑
i=1

Oi.aj , (1 ≤ j ≤ m) (2)

though our algorithm can be applied on any monotonic aggre-
gate function. Recall that the number of k-objectsets in D is
nCk = n!

(n−k)!k! , we denote the number by |S|.

Dominance Relationship
A k-objectset s ∈ D is said to dominate another k-objectset

s′ ∈ D, denoted as s ≤ s′, if s.ar ≤ s′.ar (1 ≤ r ≤ m) for
all m attributes and s.at < s′.at (1 ≤ t ≤ m) for at least
one attribute. We call such s as dominant k-objectset and s′

as dominated k-objectset between s and s′.

Objectsets Skyline
A k-objectset s ∈ D is said to be a skyline k-objectset if s

is not dominated by any other k-objectsets in D. The skyline
of k-objectsets in D, denoted by Skyk(D), is the set of skyline
k-objectsets in D. Assume k = 2, then for the dataset shown in
Figure 2(a), 2-objectset O1,2, O2,3, and O2,6 are not dominated
by any other 2-objectsets in D. Thus, 2-objectset skyline query
will retrieve Sky2(D) = {O1,2, O2,3, O2,6} (see Figure 2(b)).

Domination Objectsets
Domination objectsets of k-objectsets, denoted by DSk(D)

is said to be a set of all dominated k-objectsets in D. Since
the 1-objcetsets skyline result is Sky1(D) = {O1, O2, O3},
then the domination objectsets of 1-objectsets is DS1(D) =
{O4, O5, O6, O7}, i.e., D − Sky1(D).
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TABLE I. domRelationTable for 1-objectsets

Object Dominant Object
O1 ∅
O2 ∅
O3 ∅
O4 O2, O3

O5 O2, O6

O6 O2

O7 O1,··· ,6

IV. COMPLETE SKYLINE OBJECTSETS ALGORITHM

In this section, we present our proposed method called
Complete Skyline objectSets (CSS). It is a level-wise iterative
algorithm. Initially, CSS computes conventional skyline, i.e.,
1-objectsets skyline then 2-objectsets skyline, and so on, until
k-objectsets skyline.

Initially, k = 1 and we can compute 1-objectsets skyline
using any conventional algorithms. In this paper, we use
SFS method proposed in [6] to compute 1-objectsets skyline
and receive the following domination relation table called
domRelationTable.

For the objectsets skyline query problem, the number
of objectsets is |S| = nCk for a dataset D containing n
objects when we select objectsets of size k. This poses serious
algorithmic challenges compared with the traditional skyline
problem. As Figure 2(a) shows, |S| = 21 (7C2) possible
combinations are generated from only seven objects when
k = 2. Even for a small dataset with thousands of entries,
the number of objectsets is prohibitively large. Thanks to the
Theorem 1, which gives us opportunity to eliminate many non-
promising objectsets without composing them.

Theorem 1. If all k member of an objectset s are in DSk(D),
where DSk(D) = DS1(D) ∪ · · · ∪ DSk(D), then objecsets
s /∈ Skyk(D).

Proof: Assume s = {O1, · · · , Ok} and s ∈ Skyk(D).
Since all members of s are in DSk(D), then there must
be k distinct dominant objectsets for each member of s.
Suppose they are {O′1, · · · , O′k} and construct an objectset
s′. Now, according to dominance relationship s′ ≤ s, which
contradict initial assumption s ∈ Skyk(D). Hence, a k-
objectsets contains at least one skyline objectset.

Dominance relation given in Table I retrieves DS1(D) =
{O4, O5, O6, O7}. By using Theorem 1 and k = 2
we can safely prune 4C2 = 6 objectsets such as
{O4,5, O4,6, O4,7, O5,6, O5,7, O6,7} for Sky2(D) query with-
out composing them. The remaining objecsetsets number 15
(21-6) is still too large for our running example. However, CSS
applies the second pruning strategy as follows:

Theorem 2. Suppose S1, S2, and S3 be the three objectsets
in D. If objectset S1 ≤ S2, then their super objectset with S3

also dominates, i.e., S1S3 ≤ S2S3 is true.

Proof: Suppose S1S3 ≤ S2S3 is not true. After eradicate
S3 from both objectsets we get S1 ≤ S2, which contradict our
assumption. Thus, if S1 ≤ S2 and S3 is another objectset then
S1S3 ≤ S2S3 is always true.

Theorem 2 gives us another opportunity to eliminate
huge number objectsets without computing them. Table I

shows that object O4 is dominated by O2 and O3. By con-
sidering {O1, O2, O3} as common objects and using The-
orem 2 without any computation as well as any compar-
isons we get O1,2 ≤ O1,4, O2,3 ≤ O2,4, O2,3 ≤ O3,4

dominance relation for 2-objectsets. Similarly, object O5 is
dominated by {O2, O6} and using {O1, O2, O3} as common
objects gives us O1,2 ≤ O1,5, O2,3 ≤ O3,5, O2,6 ≤ O2,5.
For O2 ≤ O6 and {O1, O3} as common objects pro-
duces O1,2 ≤ O1,6, O2,3 ≤ O3,6. Finally, for {O1,··· ,6 ≤
O7} gives guarantee of the following dominance relation-
ship {O1,2 ≤ O1,7, O1,2 ≤ O2,7, O1,3 ≤ O3,7}. Thus
according to Theorem 2 we can safely prune 11 ob-
jectsets such as {O1,4, O2,4, O3,4, O1,5, O2,5, O3,5, O1,6, O3,6,
O1,7, O2,7, O3,7} for Sky2(D) query without composing them.
Actually, CSS algorithm will compose remaining (15 - 11)
four objecsets such as {O1,2, O1,3, O2,3, O2,6} and perform
domination checks among them. After performing domination
check it retrieves {O1,2, O2,3, O2,6} as Sky2(D). However,
during this procedure CSS also updates the dominance relation
table for 2-objectsets as shown in II.

Dominance relation table II retrieves DS2(D) =
{O1,3, O1,4, O1,5, O1,6, O1,7, O2,4, O2,5, O2,7, O3,4, O3,5,
O3,6, O3,7}. When k = 3, then for any conventional
skyline algorithm needs to dominance relation check
among |S| = 35 (7C3) objectsets. However, according
to Theorem 1 we are enough lucky and need not to
compose any 3-objectsets if the distinct 3 objects in
DS1(D) ∪ DS2(D). For DS1(D), CSS does not compute
4C3 = 4 objectsets such as {O4,5,6, O4,5,7, O4,6,7, O5,6,7}.
Whereas for DS1(D) ∪ DS2(D) we have checked that CSS
pruned another 22 objectsets. After implementing Theorem
1 successfully the remaining objectset number is 9 (35-26).
Applying Theorem 2 CSS does not need to compute another 5
objectets. Finally, proposed algorithm will compose only five
objecsets such as {O1,2,3, O1,2,6, O2,3,4, O2,3,6} and perform
domination check among them to obtain Sky3(D). After
domination check CSS retrieves {O1,2,3, O1,2,6, O2,3,4, O2,3,6}
as Sky3(D). CSS will continue similar iterative procedure
for the rest of the k values to compute Skyk(D).

V. PERFORMANCE EVALUATION

We conducted a set of experiments with different dimen-
sionalities (m), data cardinalities (n), and objectset size (k)
to evaluate the effectiveness and efficiency of our proposed
method. All experiments are run on a computer with Intel
Core i7 CPU 3.4GHz and 4 GB main memory. We compiled
the source codes under Java V8 in Windows 8 32-bit operating
system. We also compared the performance with Brute Force
method. To make the comparison fair, we have exclude all
the pre-processing cost,i.e., cost of objectset generation. Each
experiment is repeated five times and the average result is
considered for performance evaluation.

A. Performance on Synthetic Datasets

Three data distributions such as correlated, anti-correlated,
and independent data distribution are considered to do all of the
experiments. The results are shown in Figure 3, 4, and 5. All
figures are shown in a logarithmic scale. From the experimental
results we observe a pattern that the speedup of proposed
method over Brute Force is 2 to 3 times faster.
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TABLE II. domRelationTable for 2-objectsets

Objectset Dom. Objectset Objectset Dom. Objectset Objectset Dom. Objectset
O1,2 ∅ O1,7 O1,2 O2,7 O2,3

O1,3 O2,6 O2,3 ∅ O3,4 O2,3

O1,4 O1,2 O2,4 O2,3 O3,5 O2,3

O1,5 O1,2 O2,5 O2,6 O3,6 O2,3

O1,6 O1,2 O2,6 ∅ O3,7 O2,3

a) Anti-correlated

b) Independent

c) Correlated
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Figure 3. Performance for different cardinality

Effect of Cardinality
For this experiment, we fix the data dimensionality m

to 4, objectset size k to 3, and vary dataset cardinality n.
n takes the values of 25, 50, 75, and 100 that means total
objectset size respectively become 2.3k, 19.6k, 67.5k, and
161.7k. Figure 3(a), (b), and (c) reports the performance on
correlated, independent, and anti-correlated datasets. Where
both of the methods are affected by data cardinality. If the data
cardinality increases then their performances decreases. The
result shows that proposed method significantly outperforms
the Brute Force method. However, the performance of Brute
Force method degrades rapidly as the the dataset size increases,
especially for anti-correlated data distribution. This represents
that proposed method can successfully avoid objectset com-
posing as well as many unnecessary comparisons.

Effect of Dimensionality
We study the effect of dimensionality on our technique.

We fix the data cardinality n to 50, objectset size k to 3 and
vary dataset dimensionality m ranges from 2 to 5. The elapsed
time results for this experiment are shown in Figure 4(a), (b),
and (c). The result exhibits that as the dimension increases
the performance of the both methods becomes slower. This
is because for high dimension the number of non dominant
objectset increases as a result the performance of both methods
degraded. The proposed algorithm achieves a satisfactory run-
ning time even when the dimension size is large. However, the
result on correlated data dataset is 9 times and 16 times faster
than independent and anti-correlated data dataset respectively.

Effect of Objectset Size
In another experiment, we study the performance of pro-

posed method under various objectset size k. We fix the data
cardinality n to 50 and dataset dimensionality m to 4. The
results are reported in Figure 5(a), (b), and (c). The result
indicate that as the objectset size k increases the performance
of the both methods becomes slower. However, the result of
Brute Force method is much worse than that of proposed
method when the value of objectset size k is greater than 1.
This is because for k = 1 the proposed method use SFS
algorithm to construct domRelationTable, and performing
domination check. After that for higher s it does not required
to compose all objectset as well as succeeded to avoid huge
number of unnecessary comparisons.

B. Performance on Real Dataset
To evaluate the performance for real dataset,

we use the FUEL dataset which is extracted from
“www.fueleconomy.gov”. FUEL dataset is 24k 6-
dimensional objects, in which each object stands for the
performance of a vehicle (such as mileage per gallon of
gasoline in city and highway, etc). For this dataset attribute
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Figure 4. Performance for different data dimension

domain range is [8, 89] and we conduct the following
experiments.

For FUEL dataset, we performed similar experiments like
synthetic datasets. For cardinality experiment, we set the
dimensionality m to 4 , objectset size k to 3, and vary dataset
cardinality n from 25 to 100. Result is shown in Figure 6(a).
To study dimensionality, we fix the data cardinality n to
50, objectset size k to 3 and vary dataset dimensionality m
ranges from 2 to 5. Figure 6(b) shows the result. In the final
experiment, we study the performance under various objectset
size k. We fix the data cardinality n to 50 and dimensionality m
to 4. The result is reported in Figure 6(c). For all experiments
with FUEL dataset, we obtain similar result like independent
dataset that represents the scalability of the proposed method
on real dataset. However, in all experiments with real FUEL
dataset proposed method outperform than Brute Force method.
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Figure 5. Performance for different objectset size

VI. CONCLUSION

This paper addresses a skyline query for set of objects
in a dataset. We propose an efficient and general algorithm
called CSS to compute objectsets skyline. In order to prune the
search space and improve the efficiency, we have developed
two major pruning strategies. Using synthetic and real datasets,
we demonstrate the scalability of proposed method. Intensive
experiments confirm the effectiveness and superiority of our
CSS algorithm.

It is worthy of being mentioned that this work can be
expanded in a number of directions. First, how to solve the
problem when the aggregation function is not monotonic.
Secondly, to design more efficient objectsets computation on
distributed MapReduce architectures. Finally, to find small
number of representative objectsets is another promising future
research work.
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