
Rule-Based Adaptation of Workflow Patterns
for Generic Workflows

Marina Tropmann-Frick, Niklas Sasse
Christian-Albrechts-University of Kiel

Department of Computer Science
Kiel, Germany

Email: {mtr, nsa}@informatik.uni-kiel.de

Abstract—This paper focuses on the application of an adaptation
rule system for generic workflows based on the basic concepts of
rewrite systems in the context of disaster management. Disaster
management is one of the challenging, complex and critical
application areas dealing with hyper dynamic situation changes,
high velocity, voluminous data and organizational heterogeneity.
We propose to use generic workflows that satisfy these complex
requirements and that provide support for organizing processes
and information flow in disaster situations thereby providing
decision support to crisis managers and ”first responders”. We
illustrate our approach in a case study for disaster management.

Keywords–adaptation; generic workflow; workflow pattern;
rewrite system; term rewriting; disaster management.

I. INTRODUCTION

Workflow management systems are commonly used to
plan, execute and control all kinds of business processes.
Workflow management helps to optimize the usage of re-
sources and to provide a view on the business processes
of a company, which help to make the right management
decisions. Profit can be increased by consequently align the
business processes to the customer’s needs. This makes a
workflow management system the basis for controlling system
that allows to steer the success of a company [1].

They are especially applicable for structured processes with
sequential or parallel activities which require coordinated pro-
cessing and involve several actors with different roles. Typical
workflow management systems can mainly be used in a static
environment with clearly defined organizational structures,
completely given business processes and full control. Work-
flows for such business processes are completely predefined
at process design time. Exceptions are part of the workflow.
Deviations are often described as separate workflows. They
must however be known at modeling time [2] [3]. EPC (Event-
driven Process Chain) and BPMN (Business Process Model
Notation) support such business processes and their modeling
[4] [5].

Generic workflows are flexible and adaptable workflows
belonging to the area of process-aware information systems
(in particular workflow management systems). Process-aware
information systems are going to be used in applications which
demand higher flexibility [6]–[12]. For example, M. Reichert
and B. Weber [13] survey approaches to manage dynamics
in process-aware information systems. We can distinguish
between design-time and run-time flexibility. Variability, adap-
tation, evolution and looseness are the four main categories of
flexibility.

Disaster management represents an important, versatile and
critical domain. The processes of disaster management can be
assigned the looseness category of flexibility. They are non-
repeatable (every process instance is different), unpredictable
(there is no knowledge existing about situation changes dur-
ing an event) and emergent (the processes emerge during
execution when more information becomes available). The
situation specific parameters are unknown in the beginning
and might change during process execution. Because of the
huge number of parameters and possibilities of process devel-
opment, dynamic approaches can easily become too complex
and incomprehensible for dealing with.

Disaster management processes are highly dynamic and
there is no possibility to predefine every exception or variation.
Therefore, static approaches are quite ineligible. Although
existing dynamic approaches can deal with a certain degree
of flexibility, they may fail because of the huge number of
parameters and case variations that must be considered.

Our approach is based on the idea of genericity. It allows us
to construct an abstract generic workflow which can be adapted
to dynamic changes at runtime. We present the structure and
basic components of generic workflows and show how our
approach satisfies requirements of disaster management in a
case study. This work extends our research in [14]–[17], which
is going to be used in the EU-project INDYCO [18]. The
main goal of this collaborative project is the development of
an INtegrated DYnamic decision support system COmponent
for disaster management systems.

A. Paper Structure
This paper is structured into four sections. The first section

introduces important terms and discusses related work in the
context of process aware information systems and disaster
management. In Section 2, the structure and components of
generic workflows are defined and explained. In Section 3, the
essential aspects of term rewriting systems and the approach
of their application for the adaptation techniques of generic
workflows are described. The following Section 4 involves a
case study from the area of disaster management. Afterwards
we conclude by summarising and discussing our next steps
and future work.

II. GENERIC WORKFLOWS

This section explains the methodical and technical funda-
mentals of generic workflows. We understand generic work-
flows as abstract, configurable, mutable and adaptable work-
flows, which are used to derive the current workflow instance.

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

The current workflow is developed within the framework of the
generic workflow and uses all its services. The current work-
flow considers the current situation, the current requirements
and the current data available.

A. Genericity
The notion of genericity is not new. According to [19],

genericity can be described as a quality to be not specific,
typifying, applied to or characteristic of all members of a
genus, species, class or group.
In our everyday life, we come almost permanently upon
generic activities. In science, particularly in computer science
genericity is also widely used. A good example is the usage
of generic algorithms in context of generic programming [20].
We understand genericity as a capability to describe a group
or class of objects on a certain abstraction level. This allows
higher adaptation and flexibility.

B. Generic Components
In our previous work [14]–[17], we already described in

detail the construction and components of generic workflows.
Therefore for the sake of completeness, we give a short
overview about the most important parts and refer for more
details to our previous work.

1) Generic Functions: The concept of generic functions
provided by Bienemann [21] is based on government and
binding (GB) approach that was introduced by Chomsky [22].
Chomsky proposed a universal theory of languages. Basic
concepts of the theory are the atomic units of the syntax [23],
[24].
Consider functions F, F1, ..., Fn of a chosen function algebra.
Generic functions are functions

F = (Dom,φ, F, ψ,Rng), (1)

with free configuration parameters, with predicates φ for the
domain Dom and ψ for the range Rng of F . A derived
function is generated from F = θ(F1, ..., Fn) based on
expression and instantiation of the configuration parameters
and on instantiation of the predicates; θ is here an n-ary
operator θ ∈ opF (set of function manipulation operators [21]).
In [15], we described the approach of generic functions more
detailed.
Generic functions are basic elements for generic workflows.
They represent the atomic activities within a generic workflow
and are indecomposable.

2) Mini Stories: The next level of abstraction for our
generic approach are semantically logical units - mini stories
[14]. This are also atomic components, but in an abstract
semantic way.
Mini stories represent abstract collections of generic functions
which can be dynamically composed at runtime based on
parameter initialization. We define a mini story as a quadruple
[16]

M = (F , T ,S, P), (2)

where F is a set of generic functions as defined above. T is a
set of transitions within a mini story. S is a set of parameters
defining the current state of the mini story. And P is a priority
function.
Transitions are given as tuples of the form Tij = (Fi, Fj) ∈ T
and can be represented as edges of a directed graph with node

set F .
The priority function P is defined as follows:

P : (F ,S)→ R≥0, (3)

and assigns each function Fi ∈ F depending on the current
state Sj ∈ S a priority. The function with the highest priority
is the best for current situation.
The instantiation of a mini story is performed at runtime
depending on the current state (and influencing parameters)
during the execution of the priority function.

3) Generic Workflows: As the next level of abstraction
for our generic approach we define generic workflows as
collections of semantically indecomposable mini stories. In
order to specify a generic workflow the composition rules for
mini stories are needed. These rules describe the conditions
for composition of mini stories within a generic workflow. For
example, there can be rules that require the execution of some
specific mini story after another or even as a successor of
another specific mini story. There can also be rules defined for
the prohibition of mini story execution in a specific order.
Mini story composition is a complex issue, that can be char-
acterized by the following three general aspects:

• The order of mini story execution is partly given by
the execution order of generic functions. Depending
on the priority function generic functions for the next
execution step are selected. Therefore, only those mini
stories can be executed as next, which contain the
selected generic functions and optimally start with one
of them.

• On the other hand, some rules for the composition are
given by the context, where the execution takes place.
The context of disaster management discussed in this
paper possesses specific requirements and conditions.
For the most disaster categories there are hazard maps,
contingency plans or other guidelines existing (e.g.,
from the natural hazard management or municipal-
ity), which partly determine the order of mini story
execution.

• The next important part are the influencing param-
eters. They can be characterized as configuration or
control parameters. Some parameters belong only to
one mini story and get their values allocated during
the instantiation. Another parameters can be shared
between various mini stories. As a consequence the
instantiation of one mini story reduces the set of mini
stories suitable for the next step and sets inevitably
limitations for the instantiation of the following mini
stories.

C. Adaptation
The general understanding of adaptation in computer sci-

ence means a process in which an interactive system adjusts
its behavior to an individual user by processing context in-
formation. Context information is defined as any information
that can be used to characterize the situation of entities
(whether a person, place or object) [25]. A readjustment of
a system is often necessary after gaining new or additional
context information. The concept of adaptation can be applied
for generic workflows as well. The interactive system is the
generic workflow itself and the individual adjustments develop

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

the unfolded workflow based on the given context information
available at the time.

At this point it is necessary to define the scope of adap-
tation. In this case, adaptation means the rule-based transfor-
mation of a generic workflow or rather the composition of
different mini stories which will eventually build the concrete
and unfolded workflow. The processing of context information
parameters, the specification and instantiation of generic tasks
within the mini stories is to this effect not part of adaptation
but rather a part of workflow refinement and goes beyond the
scope of this paper.

The adaptation is performed via rule-based transformations
of a generic workflow. Therefore, a system of well-structured
rules has to be derived. This system should fulfill some
properties to avoid runtime errors or complications between
different rules. Since adaptation is heavily dependent on con-
text information it is not possible to derive one abstract and
universally valid system of rules. A set of rules is merely
applicable for similar situations within an application domain.

In disaster scenarios a lot of action patterns are transferable
so that similar sets of adaptation rules can be applied to dif-
ferent disaster situations. In combination with the appropriate
refinement methods for generic tasks a decision support system
can be developed that allows an automated adaptation for
effective response in disastrous situations.

III. REWRITE SYSTEMS

To create a reliable system of rules for the adaptation of
generic workflows the system has to be well-structured. For
that purpose the concept of rewrite systems, especially term
rewriting systems are considered to derive suitable properties
for the rule-based transformation of generic workflows. Rewrit-
ing covers a wide range of methods for replacing subterms of
formulas or terms with other subterms using rules.

A. Term Rewriting
Term rewriting systems are sets of directed equations which

are used to repeatedly replace subterms of a formula until the
simplest form of it is reached. The term rewriting introduced by
Gorn [26] can be seen as a nondeterministic Markov algorithm
which is used as an effective way to analyze and evaluate
algorithms.

A term t consists of a set of function symbols F and a
set of variables X [27]. Working with terms often requires
replacement of parts of the initial terms with new terms. If at
the position p of a term t the following subterm t|p is replaced
with a new term s it is represented as t[s]p. Through this
operation a new term u is created which equals t except in
position p so that u[s]p = t is true [27]. The new term u can
be seen as an abstraction or a specification of t based on the
context leading to the transformation. A substitution σ is a
special kind of rewrite relation where terms are assigned to
several variables of the initial term {x1 → s1, ..., xm → sm}.
For example, there is a substitution σ = {x/g(y)} for a term
f(x) then f(x)σ = f(xσ) = f(g(y)) is true after applying
the substitution.

In the scope of term rewriting systems we find mainly
binary relations → which are used on sets of terms T . They
are called term rewriting relations. The general idea in term
rewriting is the usage of directional equations. A term rewriting

rule of a set T is an ordered pair < l, r > of terms that stands
in a directional binary relation l→ r. A finite or infinite set of
term rewriting rules R over T is called term rewriting system.
For a given term rewriting system R and the terms s and t of
the set of terms T , s should be replaced by t, then s→R t is
true if s|p = lσ and t = s[rσ]p comply for a rule l → r in R
with position p and substitution σ [27].

Term rewriting systems should be applied to a term as long
as it is possible. If no term t exists for a subterm s in T so
that s →R t is applicable, the term s is no longer reducible
and is in a normal form. A derivation in R is every possible
sequence t0 →R t1 →R ... →R ti →R ... which develops
from applying term rewriting rules. If every derivation leads
to at least one normal form, the term rewriting system is called
normalizing. If independent of the derivation the same normal
form is always reached from an initial term, the term rewriting
system is called canonical [27].

The basic concepts of term rewriting systems can be
applied for generic workflows. In this case, the set of terms is
comparable with a generic workflow that can be represented as
a graph with a tree structure. The different paths are derivations
of the generic workflow and possible compositions of mini
stories. When a leaf is reached the term is in normal form.
That means the generic workflow is concrete and unfolded. The
navigation that leads the flow of the generic workflow is based
on rules similar to term rewriting systems. The substitutions
or rather abstractions or specifications are based on context
information instead of matching variables. Therefore, the left
side of an adaptation rule represents context information and
the right side the mini story that has to be executed if the
current context matches the rules context. By following this
procedure and repeatedly applying the adaptation rule system
the generic workflow will more and more unfold until a normal
form is reached and the concrete workflow is complete.

In order to create a system that matches a broad variety of
situations given through context information a lot of adaptation
rules need to be derived. Furthermore, additional properties
have to be fulfilled or at least need to be considered to
prevent unexpected problems by application of an adaptation
rule system to a generic workflow.

B. Termination
One of the most important characteristics of the term

rewriting systems is the termination property. A binary relation
→ on a set T terminates if there are no endless chains
t1 → t2 → t3 → ... of elements generated from T . For
a term rewriting system R this implies that it terminates if
there are no endless derivations t1 →R t2 →R ... developed
by the application of R on the set of terms T . That means,
every term in T has at least one normal form. In case of
term rewriting systems termination can be proved by using
term orders, e.g., Knuth-Bendix-Order, Recursive-Path-Order
or Polynomial-Order [28] [29].

For generic workflows termination implies that no endless
sequence of mini stories is generated by applying the adap-
tation rule system. In practice it is obvious that a generic
workflow cannot be endless because at some point every
business process comes to an end, especially if dealing with
disaster scenarios. Some problems arise based on the flexibility
of generic workflows. E.g., it is possible and required to repeat
the same mini story more than once. This can lead to cycles

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

within the workflow and for this reason to endless activity
chains. Therefore, it is necessary to define assumptions to
maintain the termination property.

For this problem we can use the mini stories as labels
on the nodes of our workflow graph, so that there can be
many repetitions of the same mini story on different nodes
between which we can distinguish. In order to monitor the
whole process the adaptation rule system must be controlled
by a higher instance. For that purpose a controller must be
implemented which monitors the workflow during runtime. Its
main priority is then to prevent runtime errors and exceptions
by using appropriate abort criteria.

C. Church-Rosser Property
Presumably the set of term rewriting rules is finite in a

term rewriting system. The Church-Rosser property is used
to describe, whether for the terms s and t of the set T the
statement s =R t is true. Therefore, the term rewriting system
R is applied to both terms to check whether the results are
identical. If derivations differ it is possible that different normal
forms are reached during the usage of the term rewriting
system. This problem does not exist if in every situation (for
all derivations of the initial term) a term exists where they
can be reunited. This means that every derivation of a term
leads exactly to one single normal form. This characteristic is
described as Church-Rosser property [30].

A binary relation → on a set of terms T is called Church-
Rosser relation if its reflexive-transitive-symmetric closure↔∗
is maintained in the junction relation →∗ ◦ ←∗. That means
for every term t1 and t2 in a set of terms T , if t1 ↔∗ t2 is
true, there exists another term s in T , for which t1 →∗ s and
t2 →∗ s is true as well [27].

The Church-Rosser property is equivalent to the slightly
simpler property of confluence [31]. A binary relation → on a
set of terms T is confluent if the reflexive-transitive-symmetric
closure of the relation ←∗ ◦ →∗ is maintained in the junction
relation→∗ ◦ ←∗. That means for every term u, t1 and t2 in a
set of terms T with u→∗ t1 and u→∗ t2 there exists another
term s in T , so that t1 →∗ s and t2 →∗ s are true as depicted
in Figure 1 [27]. So the confluence of a term rewriting system
R on a set of terms T implies the impossibility of more than
one normal form for every particular term t1, ..., ti of T . But at
the same time it does not guarantee the existence of a normal
form for every term t1, ..., ti of T because of the termination
property that must be fulfilled as well in this case.

FIGURE 1. CONFLUENCE

Regarding the adaptation rule system for generic workflows
the fulfillment of confluence is not crucial because for the con-
cept of generic workflows it isn’t important that the resulting
unfolded workflow is in every case the same. In reality, it is

rather the opposite. This results from the fact that after every
application of an adaptation rule new context information is
processed. Therefore, it is possible that the priority for the
execution of different mini stories may change over time and
affect the finally concrete workflow. However the important
effect that can be shown through confluence is the prevention
of execution for some mini stories by application of certain
adaptation rules.

D. Critical Pairs
The consideration of critical pairs is an extension of

the Church-Rosser property and the confluence. In general
confluence is a nondeterministic criteria [32] but with special
methods it is possible to force confluence for finite and
terminating term rewriting systems.

Two different term rewriting rules l → r and s → t
overlap if they are both applicable on the same term. In this
case, a decision is necessary to determine which rule shall
be executed. The proof of Knuth & Bendix [33] considers
all possible positions of terms and subterms on which term
rewriting rules can be applied and it shows that every critical
pair can be solved by using the superposition test. Thereby
confluence can be forced for a finite and terminating term
rewriting system.

The handling of critical pairs is a very important part
by creating an adaptation rule system for generic workflows
because there occur a lot of them, especially when dealing
with disaster scenarios where many activities are performed
simultaneously by various actors and the amount of available
resources is limited.

To determine which adaptation rule should be executed if
more than one rule applies at the same time for the given
context of a generic workflow, it is necessary to prioritize the
tasks of the mini stories. The processing of the prioritization is
also part of the controller which monitors the generic workflow
during runtime. The controller has to consider different actors
and the amount of available resources before it decides which
action alternatives should be performed. The goal of prioriti-
zation is the effective usage of all resources and appropriate
selection of mini stories possible for a given context. Thus the
concrete, unfolded workflow is the most efficient way to carry
out the treated business process.

IV. CASE STUDY

By the case study we want to illustrate how our ideas
can be used in a practical way. In order to demonstrate
our approach and create a first adaptation rule system for
generic workflows we selected two scenarios from the disaster
management area. The scenarios were reviewed to deviate
rules and to gather information that the controller can use
for evaluation of different situations. To have the ability to
compare both regarded scenarios are flooding events, so that
rules and information deviated from the first scenario can
directly be evaluated with the second. In both cases activities
on the micro level and context information is supposed to be
given so that the description is more on the abstraction level
of mini stories.

The first scenario is an emergency plan that describes
the actions which have to be performed mainly by a task
force during a flooding disaster. It is an abstract scenario

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

and refers to a region in Austria near a huge European
river. The plan distinguishes different levels of escalation. At
first all measures are described which will help dealing with
the situation without taking any severe damage or encounter
exceptional circumstances. These measures contain among
other things description of how the information flow works and
of allocations of actors to their respective roles. Furthermore,
the plan shows how to handle some critical situations, e.g.,
the burst of a dam or a complete system failure. For these
exceptional escalations suitable countermeasures are specified.

After analyzing the emergency plan adaptation rules for
the generic workflow were derived. For the deriving process it
was important to consider the level of abstraction. On the one
hand the rules cannot be too specific because they should also
be applicable for similar disaster scenarios. On the other hand,
if they are too abstract they are of little help in guiding the
sequence of the generic workflow at all. Based on the given
information first adaptation rule system was formed containing
several rules which describe and process the activities during
a flooding event. the rules were prioritized and divided into
three different categories so that the controller should be able
to decide between rules if necessary.

The derived adaptation rule system was then evaluated with
the second disaster scenario in order to prove whether the
rules and the prioritization are applicable to control a generic
workflow during similar situations. The second scenario deals
with a real flooding disaster which took place in Germany
in 2010. It was triggered by heavy and ongoing rainfall and
led to a quick escalation of the situation. Similar to the
emergency plan the response actions were performed mainly
by a task force, the information flow and the involved actors
are accurately documented as well.

During evaluation it was tested if the derived adaptation
rule system is also applicable to a real scenario. In general most
of the adaptation rules were suitable for the second scenario
and the prioritization of the performed actions and selected
mini stories was mostly correct. Minor changes and additional
rules which could be derived from this scenario were then
added to the adaptation rule system. Therefore, it could be
shown that the system is applicable to similar scenarios.

However the current system isn’t able to control the generic
workflow during a disaster scenario by itself. Much more
information has to be gathered through processing a lot of
disaster situations, so that the adaptation rule system can
handle any given situation which is described through context
information. Especially the functionality of the controller is
important to give sufficient support for making intelligent
decisions and to learn from new situations.

V. CONCLUSION AND FUTURE WORK

In this contribution we discuss an adaptation rule system
approach for generic workflows and its application for disaster
management. Most actions during a disaster response are not
predictable and cannot be planned completely beforehand.
So the corresponding processes cannot be prespecified and
handled in a standard way. We intend to use generic workflows
for coordination of disaster management processes. They allow
accurate, fast and dynamic activity guidance and information
coordination in complex situations.

The theoretically elaborated concepts were tested positively
while they were applied to a real world scenario. Therefore,

it is possible to integrate the adaptation rule system into the
framework of generic workflows. This concept should help
to provide a software system to support decision making and
workflow control in disastrous situations.

Our next step will be to specify a refinement mechanism
for generic workflows that could fit to our overall concept.
We intend also to develop a toolkit which allows informa-
tion gathering about past disaster management processes and
preparation of the information for generic workflows.

REFERENCES
[1] L. Fischer, Ed., Workflow Handbook 2003. Future Strategies Inc.,

Published in association with the Workflow Management Coalition,
2003.

[2] D. Georgakopoulos, M. Hornick, and A. Sheth, “An Overview of Work-
flow Management: From Process Modeling to Workflow Automation
Infrastructure,” in Distributed and Parallel Databases, 1995, pp. 119–
153.

[3] N. Russell, A. H. Hofstede, D. Edmond, and W. van der Aalst, “Work-
flow Data Patterns: Identification, Representation and Tool Support,”
in 24th International Conference on Conceptual Modeling, L. M. L.
Delcambre, C. Kop, H. C. Mayr, J. Mylopoulos, and O. Pastor, Eds.
Klagenfurt, Austria: Springer, 2005, pp. 353–368.

[4] L.Fischer, Ed., BPMN 2.0 Handbook Second Edition. Future Strate-
gies Inc., Published in collaboration with the Workflow Management
Coalition (WfMC), 2012.

[5] D. M. Stephen A. White, BPMN Modeling and Reference Guide.
Future Strategies Inc., 2008.

[6] C. Ellis, K. Keddara, and G. Rozenberg, “Dynamic change within
workflow systems,” in Proceedings of conference on Organizational
computing systems, ser. COCS ’95. New York, NY, USA: ACM,
1995, pp. 10–21.

[7] Y. Han and A. Sheth, “On Adaptive Workflow Modeling,” in Pro-
ceedings of the 4th International Conference on Information Systems
Analysis and Synthesis, Orlando, Florida, July 1998, pp. 108–116.

[8] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke, “A
Comprehensive Approach to Flexibility in Workflow Management Sys-
tems,” in WACC99, Work Activities Coordination and Collaboration,
ACM Press, San Francisco, USA, February 1999, pp. 79–88.

[9] M. Momotko and K. Subieta, “Dynamic change of Workflow Participant
Assignment,” in ADBIS 2002. LNCS. Springer, 2002.

[10] J. Klingemann, “Controlled Flexibility in Workflow Management,”
in Proceedings of the 12th International Conference on Advanced
Information Systems Engineering, ser. CAiSE ’00. London, UK, UK:
Springer-Verlag, 2000, pp. 126–141.

[11] W. M. P. van der Aalst, “How To Handle Dynamic Change and Capture
Management Information? An Approach Based on Generic Workflow
Models,” Comput. Syst. Sci. Eng., vol. 16, no. 5, 2001, pp. 295–318.

[12] R. Müller, U. Greiner, and E. Rahm, “AgentWork: a Workflow System
Supporting Rule-Based Workflow Adaptation,” Data and Knowledge
Engineering, vol. 51, no. 2, 2004, pp. 223 – 256.

[13] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems - Challenges, Methods, Technologies. Berlin-
Heidelberg: Springer, 2012.

[14] B. Thalheim and M. Tropmann-Frick, “Mini Story Composition for
Generic Workflows in Support of Disaster Management,” in Proceedings
of the 24th international workshop on Database and Expert Systems
Applications, ser. DEXA 2013. IEEE Computer Society, 2013, pp.
36–40.

[15] B. Thalheim, M. Tropmann-Frick, and T. Ziebermayr, “Application
of Generic Workflows for Disaster Management,” in Proceedings of
the 23rd European-Japanese Conference on Information Modelling and
Knowledge Bases, ser. Information Modeling and Knowledge Bases
XXIII, Y. Kiyoki, T. Tokuda, and N. Yoshida, Eds. IOS Press, 2013,
pp. 68–85.

[16] M. Tropmann-Frick, B. Thalheim, D. Leber, C. Liehr, and G. Czech,
“Generic Workflows - A Utility to Govern Disastrous Situations,” in
Proceedings of the 24th European-Japanese Conference on Informa-
tion Modelling and Knowledge Bases, ser. Information Modeling and

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Knowledge Bases XXIV, Y. Kiyoki, T. Tokuda, and N. Yoshida, Eds.
IOS Press, 2014, pp. 473–485.

[17] M. Tropmann-Frick and T. Ziebermayr, “Generic approach for dynamic
disaster management system component,” in Proceedings of the 25th
international workshop on Database and Expert Systems Applications,
ser. DEXA 2014. IEEE Computer Society, Sept 2014, pp. 160–164.

[18] INDYCO, “http://www.is.informatik.uni-kiel.de/ project/indyco/en/,”
accessed 06.04.2015.

[19] Webster’s Third New International Dictionary, 1993.
[20] D. R. Musser and A. A. Stepanov, “Generic Programming,” in Lecture

Notes in Computer Science 358. Springer Verlag, 1989, pp. 13–25.
[21] A. Bienemann, Context-Driven Generation of Specifications for Inter-

active Information Systems, ser. Dissertationen zu Datenbanken und
Informationssystemen. AKA, 2008.

[22] N. Chomsky, Some Concepts and Consequences of the Theory of
Government and Binding, ser. Linguistic Inquiry Monographs. MIT
Press, 1982.

[23] N. Chomsky, The minimalist program. Cambridge: MIT Press, 1995.
[24] E. Stabler, “Derivational Minimalism,” in Logical aspects of computa-

tional linguistics, C. Retore, Ed., vol. LNCS 1328. Springer, 1998, pp.
68–95.

[25] D. Crestani, A. Jean-Marie, and C. Coves, “Petri Nets Analysis:
Complexity and Finite Coverability Graph in Modular Design,” Studies
in Informatics and Control, vol. 14, no. 1, 2005, pp. 55–64.

[26] S. Gorn, J. Hart, and S. Takasu, “Explicit Definitions and Linguistic
Dominoes,” in Systems and Computer Science. University of Toronto
Press, 1967, pp. 77–105.

[27] N. Dershowitz and J.-P. Jouannaud, “Handbook of Theoretical Com-
puter Science (Vol. B),” J. van Leeuwen, Ed. MIT Press, 1990, pp.
243–320.

[28] N. Dershowitz, “Termination,” in Proceedings of the First International
Conference on Rewriting Techniques and Applications (Dijon, France),
ser. Lecture Notes in Computer Science, vol. 202. Springer-Verlag,
Berlin, 1985, pp. 180–224.

[29] ——, “Orderings for Term-Rewriting Systems,” in Theoretical Com-
puter Science, vol. 17, no. 3, 1982, pp. 279–301.

[30] A. Church and J. B. Rosser, “Some Properties of Conversion,” in
Transactions of the American Mathematical Society, vol. 39, no. 3,
1936, pp. 472–482.

[31] M. H. A. Newman, “On Theories with a Combinatorial Definition of
”Equivalence”,” in Annals of Mathematics, vol. 43, no. 2, 1942, pp.
223–243.

[32] G. Huet, “Confluent Reductions: Abstract Properties and Applications
to Term Rewriting Systems: Abstract Properties and Applications to
Term Rewriting Systems,” J. ACM, vol. 27, no. 4, Oct. 1980, pp. 797–
821.

[33] D. E. Knuth and P. B. Bendix, “Simple Word Problems in Universal
Algebras,” in Automation of Reasoning. Springer-Verlag, Berlin, 1983,
pp. 342–376.

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

