
Design of Distributed Storage Manager for Large-Scale RDF Graphs

Iztok Savnik
University of Primorska &

Institute Jǒzef Stefan, Slovenia
iztok.savnik@upr.si

Kiyoshi Nitta
Yahoo Japan Research

Tokyo, Japan
knitta@yahoo-corp.jp

Abstract—Storage and management of large-scale RDF repos-
itories is a challange that may be compared to storage and
management of large-scale HTML repositories. The main dif-
ference is in the modelling power of RDF data model comparing
it to HTML hyper-graph model. RDF is much closer to the
database data model and requires the capabilities of database
management system rather than those offered by informational
retrieval query engine. Triple-based storage systems seem to
provide the functionality needed for storing RDF graphs. Triples
are very natural means for the representation of graphs at
various levels of abstraction. To cope with growing demand for
querying large-scale triple-stores including up to several Tera
triples we propose the use of massively parallel system that can
be dynamically configured for particular queries into a set of
parallel data-flow machines. The paper presents the design of
large-scale triple-store database systembig3store.

Keywords-databases; RDF databases; distributed database systems;
query processing system; database system implementation.

I. I NTRODUCTION

There exists a growing interest to gather, store and query
data from various aspects of human knowledge including
geographical data; data about various aspects of human ac-
tivities (like music, literature, and sport); scientific data (from
biology, chemistry, astronomy and other scientific fields);as
well as data presenting the activities of governments and other
important institutions.

There is consensus that data should be presented in some
form of graph data model, where simple and natural abstrac-
tions are used to represent data assubjectsand theirproperties
described byobjects, that is, by means of nodes and edges of
a graph. Seeing this from the point of view of knowledge
developed in the fields of data modeling and knowledge
representation, all existing data models and languages forthe
representation of knowledge can be transformed, many times
very naturally, to some form of agraph.

There exist a number of practical projects that allow for
gathering and storing graph data. One of the most famous
examples is Linked Open Data (LOD) project that gathered
more than 32 giga triples from the areas such as media,
geography, government, life sciences and others. The language
employed for the representation of data is Resource Descrip-
tion Framework (RDF), which is a form of graph data model.

Storing and querying such huge amounts of structured data
represent a problem that could be compared to the problem of

querying huge amounts of text that appeared after the advent
of Internet. The differences are in the degree of structure and
semantics that data formats such as RDF and Web Ontology
Language (OWL) encompass comparing them to HyperText
Markup Language (HTML). HTML data published on Internet
represents a huge hypergraph of documents interconnected
with links. Links between documents do not carry any specific
semantics except representing URIs.

Differently to HTML, RDF is a data modelwhere all
data are represented by means of triples (subject, predicate,
object). In this format, one can represent entities and their
properties in a similar way as provided in object-oriented
models or AI frames. One can represent objects at different
levels of abstraction: RDF can serve to model ordinary data,
data modeling schemata as well as meta-data.

Primary modeling principle of RDF is assignment of spe-
cial meaning to properties with selected names. In this way,we
can define the exact meaning of properties that are commonly
used to describe documents, persons, relationships and others.
Vocabularies are employed to standardize the meaning of
properties. For example, Dublin Core [5] project defined a
set of common properties of things. Next, XML-schema [24]
vocabulary defines the properties that can specify types of
objects. Furthermore, vocabularies of properties and things are
used to define higher-level data models realized on top of RDF.
Such examples include, RDF Schema [17] as well as OWL
[16] that provide object-oriented data modeling facilities and
constructs for the representation of logic.

A. Challenges in storing and querying RDF

The amount of data in the form of triples gathered world-
wide is expected to grow further towards peta (i.e.,10

15)
triples so that existing techniques for storing and accessing
data will have to be adapted. Something similar appeared
after the development of Internet, where search engines had
to cope with huge hypergraph of documents including many
giga documents. It seems a natural choice to tend to use similar
methods to deal with the problem.

The leading idea of our approach is the use of massively
parallel systems where data and query processing are dis-
tributed to many data servers. The challenges and problems
that will be addressed are the following.

1) Definition of namespace of RDF triple-store,
2) Automatic distribution and replication of RDF data,

154Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

3) Intelligent distribution of query processing,
4) Dynamic updates in RDF storage manager,
5) Multi-threaded architecture of query executor, and
6) Distributed cache for query executor.

The first problem deals with definition of methods for
naming entities and triples of database that will allow efficient
way of managing huge amounts of structured data distributed
and replicated to thousands of servers as one uniform name
space. Naming schema must include ways to dynamically
allocate data server for the execution of query optimally with
regards to distance of data server in the network and the
execution load of replicas.

The second challenge is about the design of schemas
for distribution and replication of data to distributed servers
so that optimal computation load is achieved. While manual
distribution may seem possible, the storage of peta tripleswith
data from all areas of human interest may require automatic
distribution of data, which must be placed on distributed data
server in such manner that query execution will be balanced
among the servers.

Large number of servers that store distributed database
require intelligent distribution of query processing to achieve
appropriate response time to queries. This is covered by
challenge 3. The uniform distribution schemas like hashing
do not take into account semantics and structural properties
of data resulting in the distribution where data on particular
subject is scattered to too many data servers. The distribution
of data based on semantics of data may result more efficient
configuration of data servers for fast execution of queries.

In light of recent proposals for architecture of super-
computers presented in [8] and by using the knowledge from
the area of distributed query processing, we propose the use
of global distributed query optimization, which results in
optimal distributed query tree and a configuration of data
servers forming a fastdataflow machine. Similar to super-
computer systems the execution is comprised of two phases:
in first phase the program or query, in our case, is optimized
resulting specific dataflow machine configuration, and, in the
second phase, the program executes on the specific hardware
configuration, or in our case, on selected configuration of data
servers.

Challenge 4 deals with updates of RDF databases. While
most RDF data published through Linked Data community
are stable, some portions of data are dynamically updated
or found. Examples of such data would represent stock data,
scientific data, or data presenting the state of institutions. With
the growth of RDF databases the problem of updating RDF
databases will become more important. Triple-store including
very large quantities of data must be designed to provide
capabilities for keeping track of changes in existing datasets
as well as adding new RDF datasets.

Large-scale parallel computer systems can be recently
constructed using commodity hardware that includes multi-
processor systems and multi-threaded CPUs. It becomes more
demanding to design triple-store architecture that maximizes
query execution performance by utilizing concurrency of
processes or threads running on large clusters of servers
equiped with multiple processors. This problem is the topic

of challange 5. We will provide the design of big3store,
which exploits process and thread parallelism, by constructing
custom parallel architecture of big3store using programming
constructs of Erlang.

Finally, large-scale distribution of data and query process-
ing in big3store calls for efficient architecture ofmemory
hierarchythat will exploit locality of data. The design of local
cache of data servers is presented as challange 6. The leading
idea of architecture of local cache will be its tight interrelation
with query processor system, which will tend to tie data servers
to particular users, and for processing particular portionof
data. Data gathered in a cache of data server will contain
“local” data most probably needed for processing subsequent
queries assigned to a given data server.

B. Outline

The rest of the paper is organized as follows. Section II
presents architecture of RDF storage manager big3store. Stor-
age manager is distributed to an array of servers including
front servers and data servers, as described in Section II-
A. Distribution of RDF database is discussed in Section II-
B. Functions of front servers and data servers are described
in Sections II-C and II-D. Some implementation aspects of
big3store are presented in Section III. In particular, we describe
distributed cache in Section III-A, distributed query execution
in Section III-B, distributed query optimization in Section
III-C, and architecture of dynamic updates in Section III-
D. Related work is presented in Section IV and concluding
remarks are given in Section V.

II. A RCHITECTURE OFRDF STORAGE MANAGER

To provide fast access to big RDF databases and to allow
heavy workload storage manager has to provide facilities for
flexible distribution and replication of RDF data. Storage man-
ager has to be re-configurable to allow many servers to work
together in a cluster and to allow for different configurations
of clusters to be used when executing different queries.

Storage manager for big RDF databases should be based
on SPARQL and on algebra of RDF graphs [20]. To provide
more general and durable storage manager its design should
be based on ideas of graph databases [2]. Such a design would
allow adding interfaces for popular graph data models, besides
RDF, to be added later.

A. Storage manager as cluster of data servers

Possible distribution and replication is crucial for the
design of storage manager to be available globally and to
provide heavy workload that is to be expected if LOD data
is going to be used by masses.

Heavy distribution and replication is currently possible
because of the availability of inexpensive commodity hardware
for servers with huge RAM (1-100GB) and relatively large
disks. The same idea was used by Google while bootstrapping
and remains to be the main design direction for Google data
centers [9].

As further detailed in the sequel, cluster of data servers
can be easily configured into very fast data-flow machine
answering a particular SPARQL query. Similar idea appears

155Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

c

c

c

c

c

c

c

s

c

c

c

c

c

c

c

c

c

s

c

c

s

c

c

s

c scc c¦
¦
¦
XXX

,
,

,
,

,
,

, ¡
¡

¡
¡

¡
¡

2.

5.

1.

4.
3.

(a) (b)B

A

(c) (d) (e) (f)

Figure 1. Configuration of servers for particular query.

recently in the area of super-computers [8], where advancesin
hardware technologies allow preprocessor of compiler to con-
figure hardware facilities for a specific program. Program then
runs on specially configured hardware that gains considerable
speed.

The leading idea for distribution of SPARQL query pro-
cessing is splitting SPARQL query into parts that are executed
on different data servers in such way that the processing time
of query is minimal. Data servers executing parts of SPARQL
query are connected by streams of data to form cluster con-
figuration defined for a particular SPARQL query. As with
super-computers based on configuring intelligent hardwarewe
also have strict separation between two phases: compiling
the program into hardware configuration, and executing the
program on selected hardware configuration.

Figure 1 presents a cluster composed of two types of
servers:front serversrepresented as nodes of plane A, and
data serversrepresented as nodes of plane B. Data servers
are configured incolumnslabeled from (a) to (f). Complete
database is distributed to columns where each column stores
a portion of the complete database. The methods for the dis-
tribution of RDF data are discussed in the following sections.

Portion of database stored in a column is replicated into
rows labeled from 1 to 5. The number of rows for a particular
column is determined dynamically based on the query work-
load for each particular column. More heavy load we have
on a given column more row data servers will be chosen for
replication. The particular row used for execution of a query
is selected dynamically based on current load of servers in a
column.

A particular cluster configuration for answering a particular
SPARQL query is programmed by front servers where also
the optimization of SPARQL query takes place. Front server,
receives SPARQL query, parses it to query tree and performs
optimization based on algebraic properties of SPARQL set
algebra operations. Parts of query tree are sent to internaldata
servers to define cluster configuration used for particular query
execution.

B. Data distribution

The schema for distribution of RDF data to a cluster of
data servers has to be designed very carefully. The distribution
of RDF data in local data clusters has to be transparent
from outside world. Ideally, RDF data would be distributed
automatically aiming to distribute transaction load optimally
to data servers forming cluster on the basis of the transaction
load in a given time period.

RDF data stored in a data center is distributed tocolumns
of data servers that form the cluster. Each data server includes

a triple-store accessible through TCP/IP. Each column is com-
posed of an array of data servers referred to asrows that are
the replicas storing the same portion of big3store database.

Distribution of RDF data to columns can be defined in
more ways. Firstly, data can be split manually by assigning
larger datasets (databases) to columns. An example of such
dataset may be dbpedia. This may be practical solution used in
the initial phase of big3store implementation. Secondly, RDF
data can be split to columns automatically by using SPARQL
queries as the means to determine groups of RDF triples that
are likely to be accessed by one query. In this context, RDFS
classes are employed as the main subject of distribution as
suggested in [19]. Groups of classes that are usually accessed
together are assigned tocolumnswhere class instances are
stored.

The benefits of splitting a triple store in more separate data
stores (tables) has been shown ba Yan et al. in [25]: queries can
be executed few times faster. The reason for this can only be
the size and height of indexes defined for tables representing
triples. This means that few-times less blocks have to be read
from database if RDF data is distributed to different tables.

There are two points where automatic reconfiguration of
RDF database can be implemented. Firstly, complete database
may be automatically distributed into columns as described
above. Secondly, the degree of replication of portion of
database stored in a column has to be determined. In other
words, we have to determine how many rows (replicas) do we
need to process queries targeting particular column.

C. Front servers

Front servers are servers where SPARQL queries initiated
by remote user are accepted, parsed, optimized and then
distributed to data servers.

SPARQL parser checks the syntax of query and returns
diagnosis to the user as well as prepare the query tree for the
optimization phase. The most convenient approach to optimize
SPARQL query is to transform queries into algebra and use
algebraic properties for optimization. Algebra of RDF graphs
[20] designed for big3store is based on work of Angles and
Gutierrez [1] and the work of Schmidt et al. [22].

Algebra of RDF graphsreflects the nature of RDF graph
data model. While it is defined on sets, the arguments of
algebraic operation and its result are RDF graphs. Furthermore,
expressions of RDF graph algebra are graphs themselves.
Triple patterns represent the leafs of expressions. Graph pat-
terns are expressions that stand for graphs with variables in
place of some nodes and edges.

To be able to ship partial results of distributed query tree
among data servers algebra of RDF graphs use operationcopy
introduced by Daniels et al. in [4]. Operationcopy can be well
integrated with operations defined on graphs due to simple set
of algebraic rules that can be used forcopy.

Global query optimizerwill be based on rules and a
form of dynamic programming algorithm for optimization
of algebraic expressions [19]. Most of rules that apply to
relational query optimization can be used for graph patterns.
The operationcopy also has a well defined set of rules that

156Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

can be integrated with rules for relational operations. Thequery
optimization algorithm performs beam search guided by query
cost estimation. The statistics of big3store distributed database
stored with metadata server.

The result of query optimization for a given SPARQL query
is a query tree where operationscopy are placed optimally
representing the points where triples are shipped from one
data server to another one. The global query is therefore split
into parts that are executed on different data servers. Initially,
front server sends a query to a data server from a column that
includes data needed to process top level of query tree. Note
that all query parts are already in optimized form.

D. Data servers with local triple-store

In this section, we present the main features of distributed
query evaluation. Firstly, we give a general view of the evalu-
ation of distributed query. Next, we present some properties of
local triple-store and the evaluation of queries in local triple-
store.

Evaluation of distributed query

The primary job of data server is to evaluate query tree
received from front server or some other data server. Query tree
includes detailed information about access paths and methods
for implementation of joins used for processing the query.
We refer to such query tree asannotated query tree. Data
server evaluates annotated query tree as it is without further
optimization.

Triple store of data server accepts queries via TCP/IP and
returns results to the return address of calling server. The
communication between calling server and a given data server
is realized by means of streams of triples representing results
of query tree evaluation. When needed, the materialization of
stream results is handled by calling server.

Query tree can include parts that have to be executed on
some other data servers since data needed for a particular query
part is located at some other columns. Such query parts are
represented by query sub-trees with root nodes that denote
operationcopy. Again, query sub-trees can include more
instances of operationcopy, so the resulting structure of data
servers constructed for a particular SPARQL query can form
a tree.

Since operationcopy is implemented by using stream
of triples the query parts that form complete query tree can
execute in parallel. While data server processing query sub-tree
is computing the next triple to be consumed by a given data
server, this data server can process previously read tripleor
perform some other task like accessing local triples. Moreover
big3store can process many query parts in parallel functioning
as a parallel dataflow machine.

Local evaluation of queries

Let us now present the evaluation of query on local data
server. Let say that data server receives an annotated querytree
qt. Recall thatqt includes information about access paths to
tables of triples and algorithms to be used for implementation
of algebra operations.

Local triple-store includes the implementation of algebra
operations and implementation of access paths, i.e., methods
for accessing possibly indexed tables of triples. Algebraic
operations are: selection with or without the use of index;
projection; set operations union, intersection and difference;
and variants of nested-loop join with or without index where
the index is either index supporting equality joins or range
queries.

Non-distributed storage manager for storing triples and
indexes for accessing triples has to deal with very similar
problems that appear in relational and object-relational storage
managers. Since triple-stores are designed mainly around a
table with three or four columns we propose to use existent
implementation of local storage manager that implements
solutions from existent relational and object-relationaldatabase
technology.

We use local database management system of Erlang called
Mnesia to store tables of triples. Mnesia includes high-level
functions for accessing data stored in possibly distributed
tables. Although Mnesia does not support SQL, it provides
many practically useful features for distributed environment.
Any table can be configured as RAM table or disk table. It
supports horizontal partitioning for large tables and transac-
tion control for distributed table operations. Tables can be
reconfigured dynamically. Any Erlang object (complicated data
structure) can be stored in Mnesia. If a local triple table is
small enough, we might construct a fast in-memory storage
using Mnesia’s direct access functions. If a local table have to
store large amount of triples, we might construct distributed
and partitioned triple table using safe and robust transactions
supporting parallel operations for distributed repositories.

Let us now present also the implementation of operation
copy in more detail. Operationcopy implements a stream
between two data servers. The stream is realized by first
initiating the execution of sub-tree ofcopy (i.e., query part)
and requesting that the results are sent back to calling data
server by means of a stream. On caller side access to the
stream, i.e., the results of operationcopy, is realized as access
method that reads triples from the stream. that

III. O N IMPLEMENTATION OF BIG3STORE

The initial prototype of big3store is currently under de-
velopment in a high-level programming language Erlang. Er-
lang provides rich set of constructs convenient for distributed
programming and offers abstract programming environment to
allow rapid-prototyping. Successful implementation of initial
prototype will allow gradual improvement of big3store effi-
ciency that can result in a production version of the system.

A. Distributed cache

One of the most important principles used in database
management systems is to implement some form of memory
hierarchy where data read from the slow media is cached by
faster media. In this way, the access to slow media may speed-
up significantly. Implementation of distributed query execution
on cluster of data servers with huge quantities of RAM calls for
the use of memory hierarchy, i.e., exploitation of data fetched
or pre-fetched from the disk and then stored in main memory.

157Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

Local cache of data servers can be in Erlang environment
implemented by means of in-memory tables that store triples
read from disk tables. Access to tables storing triples can be
implemented by using additional database layer hiding the
access to in-memory tables before reading data from disk. Such
database layer would also allow seamless integration of other
database management systems besides Mnesia to be plugged
to query executor.

The problem of using local caches on data servers is
somehow similar to the problem of scheduling on multi-
processor systems that have access to RAM via bus. After
a process is executed on a particular processor the cache is
loaded with data used in execution of process. Similarly, after
a query tree is executed on a particular data server, cache is
loaded with data used in the execution of given query.

In the case of multiprocessor scheduling, the next invo-
cation of the same process should be executed on the same
processor that includes data used in previous invocations.In
the case of distributed query processing, if we select the same
data server for processing the next query in the session of
particular user we will most likely find some of data needed
for this query already in the cache. The algorithm that selects
the most appropriate row data server in a given column must
therefore takes into account the affinity of user sessions to
particular data servers.

The solution proposed in the area of process and thread
scheduling is to use two level scheduling. On the first level
process is, after creation, associated with particular processor.
On the second level of scheduling the processes associated
with particular processor are scheduled as in the case of uni-
processor system.

While the task of particular query can be compared to
process, we can also compare the access to database system
(albeit local to each data server) to the access to common RAM
in the case of multiprocessor scheduling. Seeing this from the
point of view of distributed query processing, user sessions
are associated to data servers while we have to take care of
balanced distribution of workload. This may mean that we can
expand the set of data servers in a column to be employed for
particular user session.

B. Distributed query execution

Whether or not a column local repository has indexes, the
whole storage management system should perform distributed
query executions considering load regulations. While thereare
many possible solutions for the load regulation problems, Er-
lang/OTP programming environment may provide a convenient
solution that is suitable for developing initial prototyperapidly.

In order to regulate task loads of clustered column lo-
cal repositories, fixed number ofgen_server (general
server library of Erlang/OTP) processes are invoked on each
physical server. Agen_server can update server activity
codes dynamically through inter-process messages. The stor-
age management system’s bootstrap process initializes some
gen_servers as front server processes and others as data
server processes. The bootstrap process distribute data-to-data
server processes according to the column configuration. When
a front server process accept a query, it divides the query into

sub queries and sends them to idling data server processes
according to query optimization algorithms considering effi-
ciency and load regularity.

If a data server process should have indexes, it is a good
solution to implement the process as agen_server that
calls Mnesia (distributed DBMS for Erlang) library functions
internally for processing queries. When a data server process
has to replicate to another physical server (copy operation),
following steps are executed.

1) Find a remote physical server that has enough available
CPU and memory resources (low load), and runs at least
one idling data server process.

2) Replicate the Mnesia database instance used by the data
server process to the remote physical server.

3) Serialize thegen_server implementation codes of the
data server process, and install it on an idling data server
process on the remote physical server.

The results of queries produced by data server processes are
translated as streams. Becausegen_server model includes
message waiting loop as default functionality, it is easy tocode
synchronous translation of bunch of result elements. Additional
codes for implementing FIFO buffer may be enough to make
front and data server processes to communicate via triple
streams.

C. Distributed query optimization

Query optimization takes place on front server. SPARQL
query is parsed and converted into algebra of RDF graphs.
Algebra expression is converted into query tree representation,
which serves as the basic data structure used in the process of
optimization, cost estimation and query evaluation. The design
of query processing is rooted in the design of query processor
Qios [18], [19], [21].

Algebra of RDF graphs is based on relational algebra
extended with operations specific for graphs. The operations
areselection, projection, a form of join, set operationsunion,
differenceand intersection, and operationoptional. Finally,
algebra of triples includes operationcopy, which allows for
shipping sets of triples among data servers.

Query optimization is based on rules including pushing
projection and selection towards the leafs of query tree,
associativity and comutativity ofjoin, rules for operations
optionalandcopy, which integrate well with rules for relational
operations. Rules are represented as patterns of query trees that
stand for input and output of rule transformation.

General form of query optimization is rooted in an instance
of dynamic programming technique calledmemoization. Query
tree is optimized by first optimizing the children of query tree
root and then by using rules to transform root of query tree.
Optimized query sub-trees are inserted into the appropriate
equivalence classesand their cost is stored for further use.
Since the space of all hypotheses (query trees) is too big to
explore completely, sub-optimal additions to the basic form of
dynamic programming can be employed. For instancebeam
search selects at each point of optimization only the most
promising alternatives for query transformation.

158Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

D. Architecture for managing dynamic updates

Although most amount of RDF data are stable, some data
are dynamically updated. It makes difficult for data manager
to build index on the set including updated data. If data
managers are distributed on cluster of several PC servers,
data statistics and query patterns strongly influence means
for distributing and caching data over the cluster. The data
might change or grow dynamically. The system load may also
influence distribution configuration and cache lifetime. These
make the problem more complicated. Occasionally, new RDF
links might be discovered through unrelated search processes.

RDF repositories should include efficient means for access-
ing dynamically updated data. If elements in a data-set are
updated frequently, computational cost of indexing the data-
set may exceed speed-up benefit of accessing operations. We
will have the threshold updating frequency by investigations
with practical experiments. Because columns exceeding the
threshold should not have indexes, they should be stored in a
special type of repository for efficient retrieval.

One possible solution is to implement triple-store local
to column by a set of tiny proactive on-memory processes.
Such repositories can be easily coded using Erlang program-
ming language. Adding, deleting, and modifying operations
only require accesses to the target triple-store processes. The
manager of column triple-store can broadcast query messages
to local triple-store processes. Each process may respond
asynchronously to the caller, if the query matches its contents.
For the manager receives answers asynchronously, it can
provide query results as a stream to its caller process. Copy
operations can be easily implemented using the process dictio-
nary serialization function of Erlang programming language.
Triple-store processes execute copy or modification reflection
operations independently. If the process is coded to execute
those operations only under low load situations, the repository
may have a method for high load tolerance.

IV. RELATED WORK

This section presents some of more important systems for
querying RDF data including: 3store, 4store, Virtuoso, RDF-
3X, and Hexastore; see survey presented in [14] for a more
complete overview of RDF storage managers.

a) 3store: 3store [10] was originally used for semantic
web applications in particular for storing hyphen.info RDF
dataset describing computer science research in UK. Final
version of database consisted of 5000 classes and about 20
million triples. 3store was implemented on top of MySQL
database management system. It included simple inferential
capabilities, e.g. class, sub-class, and sub-property queries
mainly implemented by means of MySQL queries. Hashing
is used to translate URIs into internal form of representation.

Query engine of 3store used RDQL query language origi-
nally defined in frame of Jena project. RDQL triple expressions
are first translated into relational calculus. Constraintsare
added to relational calculus expressions and they are translated
into SQL. Inference is implemented by a combination of
forward and backward chaining computing the consequences
of asserted data.

b) 4store:4store [11] was designed and implemented to
support a range of novel applications emerged from semantic
web. RDF databases were constructed from web pages includ-
ing people-centric information resulting ontology with billions
of RDF triples. The requirements were to store and manage
15x10

9 triples.

4store is designed to operate on clusters of low-cost servers.
It is implemented in ANSI C. It was estimated that the
complete index for accessing quads would require around
100 GB of RAM, which was the reason to distribute data
to a cluster of 64-bit multicore x86 Linux servers each
storing a partition of RDF data. The architecture of cluster
uses ”Shared Nothing” architecture. Cluster nodes are divided
into processing and storage nodes. Data segments stored on
different nodes are determined by a simple formula calculating
RID of subject modulo number of segments. The benefits of
such design is parallel access to RDF triples distributed to
nodes holding segments of RDF data. Furthermore, segments
can be replicated to distribute total workload to the nodes
holding replicated RDF data. The communication between
nodes is directed by processing nodes via TCP/IP. There is
no communication between data nodes.

The 4store query engine is based on relational algebra.
Primary source of optimization is the conventional ordering on
the joins. However, they also use common subject optimization
and cardinality reduction. In spite of considerable work on
query optimization, 4store lacks complete query optimization
as it is provided by relational query optimizers.

c) Virtuoso: Virtuoso [6], [7], [15] is a multi-model
database management system based on relational database
technology. The approach of Virtuoso is to treat triple-store
as a table composed of four columns. The main idea of the
approach to management of RDF data is to exploit existing
relational techniques and to add functionality to RDBMS in
order to deal with features specific to RDF data. The most
important aspects that were considered by Virtuoso designers
are: extending SQL types with RDF data type, dealing with
unpredictable sizes of objects, providing efficient indexing and
extending relational statistics to cope with RDF store based on
single table, as well as efficient storage of RDF data.

Virtuoso integrates SPARQL into SQL. SPARQL queries
are translated into SQL during parsing. SPARQL has in this
way all aggregation functions. SPARQL union is translated
directly into SQL and SPARQL optional is translated into left
outer join. Since RDF triples are stored in one quad table,
relational statistics is not useful. Virtuoso uses sampling during
query translations to estimate the cost of alternative plans.
Basic RDF inference on TBox is done using query rewriting.
For ABox reasoning Virtuoso expands semantics of owl:same-
as by transitive closure.

d) RDF-3X: Triple-store RDF-3X presented by Neu-
mann and Weikum [12], [13] builts 6 independent indexes of
SPO, SOP, OSP, OPS, PSO and POS (for subject, property
and object columns) from one large triple table. The indexes
are compressed using a byte-wise method that was carefully
chosen to improve query process performance. Join re-ordering
is used to optimize query process. The optimization uses se-
lectivity statistics calculated for given queries using selectivity
histograms and frequent path statistics. Although it equips a

159Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

table to treat long URI strings as simple ids, Atre et al. in
[3] points that its search performance was very bad. RDF-
3X system was compared with PostgreSQL and MonetDB.
The benchmark data contained Barton data. RDF-3X exceeded
other systems with large margins. The source code is available
for non-commercial purposes.

e) Hexastore:Hexastore [23] approach to RDF storage
system uses triples as the basis for storing RDF data. The
problems of existent triple-stores pursued are the scalability
of RDF databases in distributed environment, and complete
implementation of query processor including query optimiza-
tion, persistent indexes, and other topics provided by database
technology.

Six indexes are defined on top of table with three columns,
one for each combination of three columns. Index used for the
implementation has three levels ordered by particular combi-
nation of SPO attributes. Each level is sorted giving in this
way the means to use ordering for optimizations during query
evaluation. Proposed index provides natural representation of
multi-valued properties, and it allows fast implementation of
merge-join, intersection and union.

V. CONCLUSION

The design of large-scale storage manager for RDF is
presented in the paper. The presented work is focused to the
definition of most important design directions and implementa-
tion decisions of big3store. Hardware architecture of big3store
is based on massive parallel array of data servers arranged into
columns. Rows of columns are replicas, i.e., data servers that
store a portions of big3store database. Distribution of complete
big3store database is guided by semantic information used to
group RDF triples.

The initial prototype in Erlang programming environment
is currently under development. Erlang provides efficient pro-
gramming constructs for implementation of massively parallel
systems. Distributed query evaluation system of big3store, for
instance, will use processes to represent query nodes that stand
for operations of algebra of RDF graphs. SPARQL queries,
optimized by means of programming technology provided by
relational database systems, are translated to data-flow machine
composed of Erlang processes. Therefore, array of distributed
data servers becomes resource for optimized allocation of data-
flow machines executing individual queries.

ACKNOWLEDGMENT

This work was supported by the Slovenian Research
Agency and the ICT Programme of the EC under PlanetData
(ICT-NoE-257641).

REFERENCES

[1] R. Angles and C. Gutierrez. The expressive power of sparql. In
Proceedings of the 7th International Conference on The Semantic Web,
ISWC ’08, pages 114–129, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] R. Angles and C. Gutierrez. Survey of graph database models. ACM
Comput. Surv., 40(1):1:1–1:39, Feb. 2008.

[3] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”bit” loaded:
a scalable lightweight join query processor for rdf data. InProceedings
of the 19th international conference on World wide web, WWW ’10,
pages 41–50, New York, NY, USA, 2010. ACM.

[4] D. Daniels, P. G. Selinger, L. M. Haas, B. G. Lindsay, C. Mohan,
A. Walker, and P. F. Wilms. Introduction to distributed querycompila-
tion in r*. IBM Research Report RJ3497 (41354), IBM, June 1982.

[5] Dublin core metadata inatiative. http://dublincore.org/, 2013.

[6] O. Erling and I. Mikhailov. Rdf support in the virtuoso dbms. InCSSW,
pages 59–68, 2007.

[7] O. Erling and I. Mikhailov. Rdf support in the virtuoso dbms. In
Networked Knowledge - Networked Media, volume 221 ofStudies in
Computational Intelligence, pages 7–24, 2009.

[8] M. J. Flynn, O. Mencer, V. Milutinovic, G. Rakocevic, P. Stenstrom,
R. Trobec, and M. Valero. Moving from petaflops to petadata.Commun.
ACM, 56(5):39–42, May 2013.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
Proceedings of the nineteenth ACM symposium on Operating systems
principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[10] S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage. In 1st
International Workshop on Practical and Scalable SemanticSystems
(PSSS’03), pages 1–15, 2003. Event Dates: 2003-10-20.

[11] S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and im-
plementation of a clustered rdf store. InProceedings of the The 5th
International Workshop on Scalable Semantic Web KnowledgeBase
Systems, 2009.

[12] T. Neumann and G. Weikum. Rdf-3x: a risc-style engine for rdf. Proc.
VLDB Endow., 1(1):647–659, Aug. 2008.

[13] T. Neumann and G. Weikum. The rdf-3x engine for scalable manage-
ment of rdf data.The VLDB Journal, 19(1):91–113, Feb. 2010.

[14] K. Nitta and I. Savnik. Survey of rdf storage managers. Technical
Report (In preparation), Yahoo Japan Research & FAMNIT, University
of Primorska, 2013.

[15] OpenLink Software Documentation Team.OpenLink Virtuoso Universal
Server: Documentation, 2009.

[16] Owl 2 web ontology language. http://www.w3.org/TR/owl2-overview/,
2012.

[17] Rdf schema. http://www.w3.org/TR/rdf-schema/, 2004.

[18] I. Savnik. Qios: Querying and integration of internet data.
http://osebje.famnit.upr.si/ savnik/qios/, 2009.

[19] I. Savnik. On using object-relational technology for querying lod
repositories. InThe Fifth International Conference on Advances in
Databases, Knowledge, and Data Applications, DBKDA 2013, pages
39–44, Jan. 2013. Dates: from January 27, 2013 to February 1,2013.

[20] I. Savnik and K. Nitta. Algebra of rdf graphs. TechnicalReport (In
preparation), FAMNIT, University of Primorska, 2013.

[21] I. Savnik, Z. Tari, and T. Mohoric. Qal: A query algebra of complex
objects.Data & Knowledge Engineering, 30(1):57 – 94, 1999.

[22] M. Schmidt, M. Meier, and G. Lausen. Foundations of sparql query
optimization. InProceedings of the 13th International Conference on
Database Theory, ICDT ’10, pages 4–33, New York, NY, USA, 2010.
ACM.

[23] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for
semantic web data management.Proc. VLDB Endow., 1(1):1008–1019,
Aug. 2008.

[24] Xml schema. http://www.w3.org/XML/Schema, 2012.

[25] Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan. Efficient
indices using graph partitioning in rdf triple stores. InProceedings of
the 2009 IEEE International Conference on Data Engineering, ICDE
’09, pages 1263–1266, Washington, DC, USA, 2009. IEEE Computer
Society.

160Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

