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Abstract—Storage and management of large-scale RDF repos-
itories is a challange that may be compared to storage and
management of large-scale HTML repositories. The main dif-
ference is in the modelling power of RDF data model comparing
it to HTML hyper-graph model. RDF is much closer to the
database data model and requires the capabilities of database
management system rather than those offered by informational
retrieval query engine. Triple-based storage systems seem to
provide the functionality needed for storing RDF graphs. Triples
are very natural means for the representation of graphs at
various levels of abstraction. To cope with growing demand for
querying large-scale triple-stores including up to several Tera
triples we propose the use of massively parallel system that can
be dynamically configured for particular queries into a set of
parallel data-flow machines. The paper presents the design of
large-scale triple-store database systerhig3store.
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querying huge amounts of text that appeared after the advent
of Internet. The differences are in the degree of structac a
semantics that data formats such as RDF and Web Ontology
Language (OWL) encompass comparing them to HyperText
Markup Language (HTML). HTML data published on Internet
represents a huge hypergraph of documents interconnected
with links. Links between documents do not carry any specific
semantics except representing URIs.

Differently to HTML, RDF is adata modelwhere all
data are represented by means of triples (subject, predicat
object). In this format, one can represent entities andr thei
properties in a similar way as provided in object-oriented
models or Al frames. One can represent objects at different
levels of abstraction: RDF can serve to model ordinary data,
data modeling schemata as well as meta-data.

Primary modeling principle of RDF is assignment of spe-
cial meaning to properties with selected names. In this way,
can define the exact meaning of properties that are commonly
used to describe documents, persons, relationships aatsoth

There exists a growing interest to gather, store and queryocabulariesare employed to standardize the meaning of
data from various aspects of human knowledge includingroperties. For example, Dublin Core [5] project defined a
geographical data; data about various aspects of human aset of common properties of things. Next, XML-schema [24]

tivities (like music, literature, and sport); scientifictdgfrom
biology, chemistry, astronomy and other scientific fields;
well as data presenting the activities of governments ahdrot
important institutions.

There is consensus that data should be presented in so
form of graph data modelwhere simple and natural abstrac-

tions are used to represent datssabjectsand theirproperties

described byobjects that is, by means of nodes and edges o
a graph. Seeing this from the point of view of knowledge

vocabulary defines the properties that can specify types of

objects. Furthermore, vocabularies of properties andythare

used to define higher-level data models realized on top of. RDF

Such examples include, RDF Schema [17] as well as OWL
16] that provide object-oriented data modeling facistiand
Bnstructs for the representation of logic.

tA' Challenges in storing and querying RDF

The amount of data in the form of triples gathered world-

developed in the fields of data modeling and knowledgewide is expected to grow further towards peta (i.80}°)

representation, all existing data models and languagethéor

triples so that existing techniques for storing and acoessi

representation of knowledge can be transformed, many timegata will have to be adapted. Something similar appeared
very naturally, to some form of graph after the development of Internet, where search engines had

There exist a number of practical projects that allow forto cope with huge hypergraph of documents including many

X . iga documents. It seems a natural choice to tend to useasimil
gathering and storing graph data. One of the most famo‘f%ethods to deal with the problem

examples is Linked Open Data (LOD) project that gathere
more than 32 giga triples from the areas such as media, The leading idea of our approach is the use of massively
geography, government, life sciences and others. The éayjggu parallel systems where data and query processing are dis-
employed for the representation of data is Resource Descrifributed to many data servers. The challenges and problems
tion Framework (RDF), which is a form of graph data model.that will be addressed are the following.

Storing and querying such huge amounts of structured datal) Definition of namespace of RDF triple-store,
represent a problem that could be compared to the problem of2) Automatic distribution and replication of RDF data,
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3) Intelligent distribution of query processing, of challange 5. We will provide the design of big3store,
4) Dynamic updates in RDF storage managet, which exploits process and thread parallelism, by constrgc
5) Multi-threaded architecture of query executor, and custom parallel architecture of big3store using prograngmi
6) Distributed cache for query executor. constructs of Erlang.

The first problem deals with definition of methods for . Finally, large-scale distribution of data and query prsees
naming entities and triples of database that will allow &ffic N9 in big3store calls for efficient architecture afiemory
way of managing huge amounts of structured data distributefi€rarchythat will explo_lt locality of data. The design of local _
and replicated to thousands of servers as one uniform nan] che of data servers is presented as challange 6. Thedeadin
space. Naming schema must include ways to dynamicallji€ of architecture of local cach_e Wlll_be its t|gh_t|ntéatmn
allocate data server for the execution of query optimallthwi With query processor system, which will tend to tie data sesv

regards to distance of data server in the network and thi9 Particular users, and for processing particular porn
execution load of replicas. data. Data gathered in a cache of data server will contain

“local” data most probably needed for processing subsequen
The second challenge is about the design of schemagueries assigned to a given data server.

for distribution and replication of data to distributed \&s

so that optimal computation load is achieved. While manuaB. Outline

distribution may seem possible, the storage of peta triplds . . .

data from all areas of human interest may require automatic | "€ rest of the paper is organized as follows. Section Il

distribution of data, which must be placed on distributethda Presents architecture of RDF storage manager big3stase. St

server in such manner that query execution will be balance@9& manager is distributed to an array of servers including
among the servers. ront servers and data servers, as described in Section IlI-

A. Distribution of RDF database is discussed in Section II-
Large number of servers that store distributed databasB. Functions of front servers and data servers are described

require intelligent distribution of query processing tdi@ve in Sections II-C and II-D. Some implementation aspects of

appropriate response time to queries. This is covered byig3store are presented in Section Ill. In particular, wectibe

challenge 3. The uniform distribution schemas like hashinglistributed cache in Section Ill-A, distributed query axéan

do not take into account semantics and structural propertiein Section 1II-B, distributed query optimization in Segctio

of data resulting in the distribution where data on particul [lI-C, and architecture of dynamic updates in Section IlI-

subject is scattered to too many data servers. The disbibut D. Related work is presented in Section IV and concluding

of data based on semantics of data may result more efficiemémarks are given in Section V.

configuration of data servers for fast execution of queries.

; . . OFRDF STORAGE MANAGER
In light of recent proposals for architecture of super- Il ARCHITECTURE

computers presented in [8] and by using the knowledge from To provide fast access to big RDF databases and to allow
the area of distributed query processing, we propose the ugeavy workload storage manager has to provide facilities fo
of global distributed query optimization, which results in flexible distribution and replication of RDF data. Storagam
optimal distributed query tree and a configuration of datsager has to be re-configurable to allow many servers to work
servers forming a fastataflow machine Similar to super- together in a cluster and to allow for different configurato
computer systems the execution is comprised of two phasesf clusters to be used when executing different queries.

in first phase the program or query, in our case, is optimized .
resulting specific dataflow machine configuration, and, & th Storage manager for big RDF databases should be based

second phase, the program executes on the specific hardwd¥a SPARQL and on algebra of RDF graphs [.20]' To provide
configuration, or in our case, on selected configuration td da More general and durable storage manager its design should
servers ' ' be based on ideas of graph databases [2]. Such a design would

allow adding interfaces for popular graph data models,daessi
Challenge 4 deals with updates of RDF databases. Whil&DF, to be added later.

most RDF data published through Linked Data community

are stable, some portions of data are dynamically updated. Storage manager as cluster of data servers

or found. Examples of such data would represent stock data,

scientific data, or data presenting the state of institstid¥ith

the growth of RDF databases the problem of updating RD

databases will become more important. Triple-store iroigid

very large quantities of data must be designed to provid

capabilities for keeping track of changes in existing datias Heavy distribution and replication is currently possible

as well as adding new RDF datasets. because of the availability of inexpensive commodity hadkv

Large-scale parallel computer systems can be recentlfqr servers with huge RAM (1-100GB) and relatively large

constructed using commodity hardware that includes muIti—M'Sks' The same idea was used by Google while bootstrapping
. and remains to be the main design direction for Google data

processor systems and multi-threaded CPUs. It becomes MOL& ters []

demanding to design triple-store architecture that mazesi '

query execution performance by utilizing concurrency of As further detailed in the sequel, cluster of data servers

processes or threads running on large clusters of servecan be easily configured into very fast data-flow machine

equiped with multiple processors. This problem is the topicanswering a particular SPARQL query. Similar idea appears

Possible distribution and replication is crucial for the

Igiesign of storage manager to be available globally and to
provide heavy workload that is to be expected if LOD data
és going to be used by masses.
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B @ ® © @ @ O a triple-store accessible through TCP/IP. Each columnfis-co
1. @) O O o o
2 o o o o o posed of an array of data servers referred tooass that are
30 o o o o the replicas storing the same portion of big3store database
4. o o) le)
5.0 o | Distribution of RDF data to columns can be defined in

more ways. Firstly, data can be split manually by assigning
larger datasets (databases) to columns. An example of such
dataset may be dbpedia. This may be practical solution used i
Figure 1. Configuration of servers for particular query. the initial phase of big3store implementation. SecondFR
data can be split to columns automatically by using SPARQL
queries as the means to determine groups of RDF triples that
are likely to be accessed by one query. In this context, RDFS
classes are employed as the main subject of distribution as
bsuggested in [19]. Groups of classes that are usually aadess
together are assigned mlumnswhere class instances are
stored.

recently in the area of super-computers [8], where advaimces
hardware technologies allow preprocessor of compiler t® co
figure hardware facilities for a specific program. Prograenth
runs on specially configured hardware that gains consitkera
speed.

The leading idea for distribution of SPARQL query pro- The benefits of splitting a triple store in more separate data
ing i litting SPARQL int ts that artut . :
cessing 1S spiting QL query into parts that are exatu stores (tables) has been shown ba Yan et al. in [25]: quedies ¢

on different data servers in such way that the processing timb a1 . f Th for thi v b
of query is minimal. Data servers executing parts of SPARQL>€ executed few times faster. The reason for this can only be

query are connected by streams of data to form cluster corihe size and height of indexes defined for tables repregentin

figuration defined for a particular SPARQL query. As with (iPIes. This means that few-times less blocks have to be rea
sgper-computers based opn configuring int(glliggnt ﬁlard\mwe from database if RDF data is distributed to different tables

also have strict separation between two phases: compiling There are two points where automatic reconfiguration of
the program into hardware configuration, and executing th@DF database can be implemented. Firstly, complete databas
program on selected hardware configuration. may be automatically distributed into columns as described

Figure 1 presents a cluster composed of two types ofioove. Secondly, the degree of replication of portion of
servers:front serversrepresented as nodes of plane A, anddatabase stored in a column has to be determined. In other
data serversrepresented as nodes of plane B. Data server$/0rds, we have to determine how many rows (replicas) do we
are configured ircolumnslabeled from (a) to (f). Complete Need to process queries targeting particular column.
database is distributed to columns where each column stores
a portion of the complete database. The methods for the disS. Front servers

tribution of RDF data are discussed in the following secion L
g Front servers are servers where SPARQL queries initiated

Portion of database stored in a column is replicated intQ)y remote user are accepted, parsed, optimized and then
rows labeled from 1 to 5. The number of rows for a particulardistributed to data servers.
column is determined dynamically based on the query work-
load for each particular column. More heavy load we have SPARQL parser checks the syntax of query and returns
on a given column more row data servers will be chosen fofi2gnosis to the user as well as prepare the query tree for the
replication. The particular row used for execution of a guer OPtimization phase. The most convenient approach to opéimi

is selected dynamically based on current load of servers in @ ’ARQL query is to transform queries into algebra and use
column. algebraic properties for optimization. Algebra of RDF drap

[20] designed for big3store is based on work of Angles and

A particular cluster configuration for answering a partisul - Gutierrez [1] and the work of Schmidt et al. [22].
SPARQL query is programmed by front servers where also

the optimization of SPARQL query takes place. Front server, Algebra of RDF graphseflects the nature of RDF graph
receives SPARQL query, parses it to query tree and perform@ata model. While it is defined on sets, the arguments of
optimization based on algebraic properties of SPARQL seglgebraic operation and its result are RDF graphs. Furtbeerm
algebra operations. Parts of query tree are sent to intdatal  €xpressions of RDF graph algebra are graphs themselves.

servers to define cluster configuration used for particuwery, ~ Triple patterns represent the leafs of expressions. Graph p
execution. terns are expressions that stand for graphs with variables i

place of some nodes and edges.

B. Data distribution To be able to ship partial results of distributed query tree
The schema for distribution of RDF data to a cluster ofamong data servers algebra of RDF graphs use opecobipy

data servers has to be designed very carefully. The ditisibu introduced by Daniels et al. in [4]. Operatioopy can be well

of RDF data in local data clusters has to be transpareribtegrated with operations defined on graphs due to simple se

from outside world. Ideally, RDF data would be distributed of algebraic rules that can be used tawpy.

automatically aiming to distribute transaction load oatily

to data servers forming cluster on the basis of the trarmacti

load in a given time period.

Global query optimizerwill be based on rules and a
form of dynamic programming algorithm for optimization
of algebraic expressions [19]. Most of rules that apply to

RDF data stored in a data center is distribute@datumns  relational query optimization can be used for graph pastern
of data servers that form the cluster. Each data serverdaslu The operatiorcopy also has a well defined set of rules that
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can be integrated with rules for relational operations. qinery Local triple-store includes the implementation of algebra
optimization algorithm performs beam search guided byyueroperations and implementation of access paths, i.e., mgtho
cost estimation. The statistics of big3store distributathdase for accessing possibly indexed tables of triples. Algebrai
stored with metadata server. operations are: selection with or without the use of index;
projection; set operations union, intersection and diffiee;

and variants of nested-loop join with or without index where
tahe index is either index supporting equality joins or range

ueries.

The result of query optimization for a given SPARQL query
is a query tree where operatioo®py are placed optimally
representing the points where triples are shipped from on
data server to another one. The global query is therefore spl
into parts that are executed on different data serversallyit Non-distributed storage manager for storing triples and
front server sends a query to a data server from a column thaidexes for accessing triples has to deal with very similar
includes data needed to process top level of query tree. Nofsroblems that appear in relational and object-relatiotabge

that all query parts are already in optimized form. managers. Since triple-stores are designed mainly around a
table with three or four columns we propose to use existent
D. Data servers with local triple-store implementation of local storage manager that implements

: . . . olutions from existent relational and object-relatictaabase
In this section, we present the main features of dlstrlbutecf )

. ) . . echnology.
guery evaluation. Firstly, we give a general view of the aval
ation of distributed query. Next, we present some properdfe We use local database management system of Erlang called
local triple-store and the evaluation of queries in locgllé=  Mnesiato store tables of triples. Mnesia includes high-level
store. functions for accessing data stored in possibly distrithute
tables. Although Mnesia does not support SQL, it provides
Evaluation of distributed query many practically useful features for distributed envir@mn

Any table can be configured as RAM table or disk table. It
The primary job of data server is to evaluate query treesupports horizontal partitioning for large tables and $em

received from front server or some other data server. Queey t tion control for distributed table operations. Tables can b
includes detailed information about access paths and miethoreconfigured dynamically. Any Erlang object (complicatedid
for implementation of joins used for processing the querystructure) can be stored in Mnesia. If a local triple table is
We refer to such query tree amnotated query treeData  small enough, we might construct a fast in-memory storage
server evaluates annotated query tree as it is withoutefurth using Mnesia’s direct access functions. If a local tableehtav
optimization. store large amount of triples, we might construct distelut
nd partitioned triple table using safe and robust transast

Triple store of data server accepts queries via TCP/IP anaupporting parallel operations for distributed repogr

returns results to the return address of calling server. The
communication between calling server and a given data serve Let us now present also the implementation of operation
is realized by means of streams of triples representingtsesu copy in more detail. Operatiomopy implements a stream
of query tree evaluation. When needed, the materialization doetween two data servers. The stream is realized by first
stream results is handled by calling server. initiating the execution of sub-tree afopy (i.e., query part)

and requesting that the results are sent back to calling data

sorr?eugtrr)]/etrrggtgzgrl\?:rhsji?ng:gzt;hgégggg fgor :e aer)t(ii(l:ted uogerver by means of a stream. On caller side access to the
P 9 stream, i.e., the results of operatioapy, is realized as access

part is located at some other columns. Such query parts a :
represented by query sub-trees with root nodes that deno@ethOd that reads triples from the stream. that

operationcopy. Again, query sub-trees can include more
instances of operationopy, so the resulting structure of data [1l. ON IMPLEMENTATION OF BIG3STORE
servers constructed for a particular SPARQL query can form

a tree The initial prototype of big3store is currently under de-

velopment in a high-level programming language Erlang. Er-
Since operationcopy is implemented by using stream lang provides rich set of constructs convenient for disted
of triples the query parts that form complete query tree camprogramming and offers abstract programming environnent t
execute in parallel. While data server processing quentiag- allow rapid-prototyping. Successful implementation oitiah
is computing the next triple to be consumed by a given datgrototype will allow gradual improvement of big3store effi-
server, this data server can process previously read toiple ciency that can result in a production version of the system.
perform some other task like accessing local triples. Megeo
big3store can process many query parts in parallel funictipn -
asga parallel dgtaﬂow macr)(inqe. yP P new A. Distributed cache
One of the most important principles used in database
Local evaluation of queries management systems is to implement some form of memory
hierarchy where data read from the slow media is cached by
Let us now present the evaluation of query on local datdaster media. In this way, the access to slow media may speed-
server. Let say that data server receives an annotated fygery up significantly. Implementation of distributed query exiéan
gt . Recall thatgt includes information about access paths toon cluster of data servers with huge quantities of RAM calts f
tables of triples and algorithms to be used for implemenati the use of memory hierarchy, i.e., exploitation of dataHett
of algebra operations. or pre-fetched from the disk and then stored in main memory.
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Local cache of data servers can be in Erlang environmergub queries and sends them to idling data server processes
implemented by means of in-memory tables that store tripleaccording to query optimization algorithms considering- ef
read from disk tables. Access to tables storing triples @an bciency and load regularity.
implemented by using additional database layer hiding the i o
access to in-memory tables before reading data from disth Su _!f @ data server process should have indexes, it is a good
database layer would also allow seamless integration afroth Solution to implement the process asgan_server that

database management systems besides Mnesia to be plugf@ls Mnesia (distributed DBMS for Erlang) library funatie
to query executor. internally for processing queries. When a data server psoces

has to replicate to another physical server (copy opergtion
The problem of using local caches on data servers igollowing steps are executed.

somehow similar to the problem of scheduling on multi-

processor systems that have access to RAM via bus. Afterl) Find a remote physical server that has enough available

a process is executed on a particular processor the cache is CPU and memory resources (low load), and runs at least

loaded with data used in execution of process. Similarkgraf one idling data server process.
a query tree is executed on a particular data server, cache i) Replicate the Mnesia database instance used by the data
loaded with data used in the execution of given query. server process to the remote physical server.

3) Serialize thegen_ser ver implementation codes of the
data server process, and install it on an idling data server
process on the remote physical server.

In the case of multiprocessor scheduling, the next invo-
cation of the same process should be executed on the same
processor that includes data used in previous invocations.

the case of distributed query processing, if we select theesa g results of queries produced by data server processes are
data server for processing the next query in the session Qfangiated as streams. Becagse_ser ver model includes
particular user we will most likely find some of data neededmessage waiting loop as defaultfﬁnctionality, it is easyade

for this query already in the cache. The algorithm that $8lec gy nchronous translation of bunch of result elements. Aatutit

the most appropriate row data server in a given column mustodes for implementing FIFO buffer may be enough to make

therefore takes into account the affinity of user sessions t§ont and data server processes to communicate via triple
particular data servers. streams.

The solution proposed in the area of process and thread
scheduling is to use two level scheduling. On the first level I L
process is, after creation, associated with particulacgssor. C. Distributed query optimization
On the second level of scheduling the processes associated Query optimization takes place on front server. SPARQL
with particular processor are scheduled as in the case ef unguery is parsed and converted into algebra of RDF graphs.
processor system. Algebra expression is converted into query tree repretienta
; ; which serves as the basic data structure used in the protess o
While the task of particular query can be compared to jmization, cost estimation and query evaluation. Thegfe

process, we can also compare the access to database sys oo ted in the desi f
(albeit local to each data server) to the access to common RAIJ. dU€ry Processing is rooted in the design ot query proeesso

in the case of multiprocessor scheduling. Seeing this fioen t los [18], [19], [21].

point of view of distributed query processing, user session  Algebra of RDF graphs is based on relational algebra

are associated to data servers while we have to take care gtended with operations specific for graphs. The opemtion

balanced d|Str|bUt|On Of WOI’kloa_d. Th|S may mean that we Carhre Se|ecti0n' projectiona form ijoin’ set operationﬂnion’

expand the set of data servers in a column to be employed fQjifference and intersection and operationoptional Finally,

particular user session. algebra of triples includes operatiaropy, which allows for
shipping sets of triples among data servers.

B. Distributed query execution Query optimization is based on rules including pushing

Whether or not a column local repository has indexes, therojection and selection towards the leafs of query tree,
whole storage management system should perform distdbuteassociativity and comutativity ofoin, rules for operations
query executions considering load regulations. While tlieee  optionalandcopy, which integrate well with rules for relational
many possible solutions for the load regulation problents, E operations. Rules are represented as patterns of quesytirate
lang/OTP programming environment may provide a convenienstand for input and output of rule transformation.

solution that is suitable for developing initial prototyyzpidly. General form of query optimization is rooted in an instance

In order to regulate task loads of clustered column lo-of dynamic programming technique callegtmoizationQuery
cal repositories, fixed number ofjen_server (general tree is optimized by first optimizing the children of querger
server library of Erlang/OTP) processes are invoked on eactoot and then by using rules to transform root of query tree.
physical server. Agen_server can update server activity Optimized query sub-trees are inserted into the apprapriat
codes dynamically through inter-process messages. The stequivalence classeand their cost is stored for further use.
age management system’s bootstrap process initializeg sorfsince the space of all hypotheses (query trees) is too big to
gen_servers as front server processes and others as datxplore completely, sub-optimal additions to the basiofaf
server processes. The bootstrap process distribute algi@a dynamic programming can be employed. For instabheam
server processes according to the column configuration. Whesearch selects at each point of optimization only the most
a front server process accept a query, it divides the quéoy in promising alternatives for query transformation.
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D. Architecture for managing dynamic updates b) 4store: 4store [11] was designed and implemented to
support a range of novel applications emerged from semantic
Although most amount of RDF data are stable, some datge; RDF databases were constructed from web pages includ-
are dynamically updated. It makes difficult for data managef,g people-centric information resulting ontology witHlioins

to build index on the set including updated data. If datagf RpF triples. The requirements were to store and manage
managers are distributed on cluster of several PC servergs,.19 triples.

data statistics and query patterns strongly influence means
for distributing and caching data over the cluster. The data 4store is designed to operate on clusters of low-cost server
might change or grow dynamically. The system load may alsdt is implemented in ANSI C. It was estimated that the
influence distribution configuration and cache lifetimee$@ complete index for accessing quads would require around
make the problem more complicated. Occasionally, new RDR00 GB of RAM, which was the reason to distribute data
links might be discovered through unrelated search presess to a cluster of 64-bit multicore x86 Linux servers each
storing a partition of RDF data. The architecture of cluster
RDF repositories should include efficient means for accessyses "Shared Nothing” architecture. Cluster nodes areleiii
ing dynamically updated data. If elements in a data-set argyto processing and storage nodes. Data segments stored on
updated frequently, computational cost of indexing theadat ifferent nodes are determined by a simple formula calmgat
set may exceed speed-up benefit of accessing operations. VD of subject modulo number of segments. The benefits of
will have the threshold updating frequency by investigadio sych design is parallel access to RDF triples distributed to
with practical experiments. Because columns exceeding thgodes holding segments of RDF data. Furthermore, segments
threshold should not have indexes, they should be stored in@n be replicated to distribute total workload to the nodes
special type of repository for efficient retrieval. holding replicated RDF data. The communication between
nodes is directed by processing nodes via TCP/IP. There is

One possible solution is to implement triple-store local e
P P P no communication between data nodes.

to columnby a set of tiny proactive on-memory processes.
Such repositories can be easily coded using Erlang program- The 4store query engine is based on relational algebra.
ming language. Adding, deleting, and modifying operationsPrimary source of optimization is the conventional ordgm

only require accesses to the target triple-store proce3$es the joins. However, they also use common subject optinrati
manager of column triple-store can broadcast query messagand cardinality reduction. In spite of considerable work on

to local triple-store processes. Each process may responfliery optimization, 4store lacks complete query optinirat
asynchronously to the caller, if the query matches its e¢tiBte as it is provided by relational query optimizers.

For the manager receives answers asynchronously, it can ) ) )

provide query results as a stream to its caller process. Cop ¢) Virtuoso: Virtuoso [6], [7], [15] is a multi-model
operations can be easily implemented using the procede-dict database management system based on relational database
nary serialization function of Erlang programming langeiag technology. The approach of Virtuoso is to treat triplersto
Triple-store processes execute copy or modification réflect 2S @ table composed of four columns. The main idea of the
operations independently. If the process is coded to ezecu@PProach to management of RDF data is to exploit existing

may have a method for high load tolerance. order to deal with features specific to RDF data. The most

important aspects that were considered by Virtuoso dessgne

are: extending SQL types with RDF data type, dealing with
IV. RELATED WORK unpredictable sizes of objects, providing efficient indexand

extending relational statistics to cope with RDF store Hame

This section presents some of more important systems fagingle table, as well as efficient storage of RDF data.
querying RDF data including: 3store, 4store, Virtuoso, RDF

3X, and Hexastore; see survey presented in [14] for a more Virtuoso integrates SPARQL into SQL. SPARQL queries

complete overview of RDF storage managers. are translated int_o SQL d_uring parsing. SPARQL has in this
way all aggregation functions. SPARQL union is translated

a) 3store: 3store [10] was originally used for semantic directly into SQL and SPARQL optional is translated inta lef
web applications in particular for storing hyphen.info RDF outer join. Since RDF triples are stored in one quad table,
dataset describing computer science research in UK. Finaklational statistics is not useful. Virtuoso uses sangptiaring
version of database consisted of 5000 classes and about gQery translations to estimate the cost of alternative plan
million triples. 3store was implemented on top of MySQL Basic RDF inference on TBox is done using query rewriting.
database management system. It included simple infefenti&or ABox reasoning Virtuoso expands semantics of owl:same-
capabilities, e.g. class, sub-class, and sub-propertyiegue as by transitive closure.
mainly implemented by means of MySQL queries. Hashing

is used to translate URIs into internal form of represeatati d) RDF-3X: Triple-store RDF-3X presented by Neu-
mann and Weikum [12], [13] builts 6 independent indexes of

Query engine of 3store used RDQL query language origiSPO, SOP, OSP, OPS, PSO and POS (for subject, property
nally defined in frame of Jena project. RDQL triple expressio and object columns) from one large triple table. The indexes
are first translated into relational calculus. Constraiate are compressed using a byte-wise method that was carefully
added to relational calculus expressions and they ardateds chosen to improve query process performance. Join reiogler
into SQL. Inference is implemented by a combination ofis used to optimize query process. The optimization uses se-
forward and backward chaining computing the consequencdsctivity statistics calculated for given queries usintgsvity
of asserted data. histograms and frequent path statistics. Although it esjap
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table to treat long URI strings as simple ids, Atre et al. in [4]
[3] points that its search performance was very bad. RDF-
3X system was compared with PostgreSQL and MonetDB.
The benchmark data contained Barton data. RDF-3X exceedetf!
other systems with large margins. The source code is alailab [€]
for non-commercial purposes. 7

e) Hexastore:Hexastore [23] approach to RDF storage
system uses triples as the basis for storing RDF data. The
problems of existent triple-stores pursued are the sdijabi (8]
of RDF databases in distributed environment, and complete
implementation of query processor including query optamiz [9]
tion, persistent indexes, and other topics provided byldesta
technology.

Six indexes are defined on top of table with three columns[,10]

one for each combination of three columns. Index used for the
implementation has three levels ordered by particular ¢omb 115
nation of SPO attributes. Each level is sorted giving in this
way the means to use ordering for optimizations during query
evaluation. Proposed index provides natural representat

multi-valued properties, and it allows fast implementatif ~ [12]
merge-join, intersection and union. (3]
V. CONCLUSION [14]

The design of large-scale storage manager for RDF is
presented in the paper. The presented work is focused to tf@ga-]
definition of most important design directions and impletaen
tion decisions of big3store. Hardware architecture of sig@e
is based on massive parallel array of data servers arranted i
columns. Rows of columns are replicas, i.e., data servaits th[17]
store a portions of big3store database. Distribution ofglete  [18]
big3store database is guided by semantic information used t
group RDF triples. [19]

[16]

The initial prototype in Erlang programming environment
is currently under development. Erlang provides efficienat p
gramming constructs for implementation of massively peral
systems. Distributed query evaluation system of big3store
instance, will use processes to represent query nodestamat s [21]
for operations of algebra of RDF graphs. SPARQL queries

[20]

optimized by means of programming technology provided b 22]
relational database systems, are translated to data-flehinea
composed of Erlang processes. Therefore, array of distdbu
data servers becomes resource for optimized allocatioataf d [23]
flow machines executing individual queries.
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