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Abstract—A challenging issue many online social media have to
deal with is facing egocentric workloads that are very frequent.
Such a situation is generally due to the simultaneous access of
several users to a small piece of data owned by a user or a
few ones. A key example is the number of comments posted
on the Manchester United Facebook page after the manager
announced his retirement (more than 1 billion comments on
the related subjects). Since egocentric workloads are transient,
two dimensions must be taken into account to deal with them:
(1) the rapidity to react to the peak load and, (2) the lightness
of the solution or its low cost. Therefore, the first goal of this
paper is to exploit the underlying social structure of online social
media to localize from which the peaks take place and to face
them in their early stage. The second goal is to combine an
elastic approach with a load balancing process to sustain the
overall performances while minimizing the required resources.
Our solution is evaluated through simulation with SimJava. The
obtained results show the soundness of the approach as well as
it feasibility.

Keywords–Transaction, Social workload, Load balancing, Elas-
ticity.

I. INTRODUCTION

Social media applications are characterized by online col-
laborative actions such as chatting, tagging and content shar-
ing. The user experience is more and more guided by her social
context or social position, i.e., a user with many connections
tends to be involved in frequent online interactions. As reported
in [1], the data belonging to the most popular users are the most
frequently accessed. Furthermore, when a popular user acts in
response to another user’s action, this can causes other users
to respond subsequently, generating a so called net effect. As
a result, users may simultaneously access the same piece of
data for a short period of time. We say that we face a set
of egocentric workloads that are characterized by a socially
dependent and fluctuating access pattern. The reason is that
the overall workload derives from few users and their close
contacts based on the status or role of users. To face egocentric
workloads, a challenging issue is to deliver fast, scalable and
cheap data access, using a reduced amount of resources.

A. Motivations and Problem Statement

The interactions between users as well as the actions
(comment, tag, etc.) made by a user on the items owned by
others shape the well-known social structure. This structure is
generally represented as a graph of a set of vertices with edges
between them. Vertices are users or their items while edges are
interactions or links between users. The number of neighbors
or edges of a user is called centrality degree. A node with

a high number of neighbors is called a popular or important
node and has therefore a high centrality degree value. Less
important nodes are called peripheral nodes. Figure 1 depicts
a social network where big rings represent popular users and
small rings designate peripheral users.

It is obvious that popular users are involved more fre-
quently than peripheral ones in online interactions. That is,
paramount of the workload derives essentialy from popular
users and is the main reason we characterize the social
workload as a set of egocentric workloads. Furthermore, an
egocentric workload is transient since users behaviors are
event-dependent and old events attract less attention leading
to a disappearence of the related workload.

However, based on the interactions of users or their similar-
ity, nodes can form groups for which the network connections
are dense, but between which they are sparse. Such groups
are called communities [2][3] or circles as in Google+. For
instance, Figure 1 shows different groups: users within a group
have a similar color. Moreover, users interact more with their
neighbors within a circle than with others belonging to another
circle. Thus, it is worth-noting that the overall workload is
biaised since the social position of a user as well as the size of
its group impacts the number of interactions within the circle.
Whatsoever the particularity of the social workload, it is
made of by read and write intensive operations since (1) the
overall number of users is very important and (2) almost
every user action causes data read, insert and update. That
is, even though the actions or interactions done by users are
socially dependent, the generated workload is quite the same
as the workload of classical applications (i.e., set of read and
write operations). Therefore, egocentric peak load observed
from social applications can be handled by using and adapting
traditional techniques such as data partition and replication.
The main issue to address therefore is how such techniques can
be used for facing peak load while including social features. To
face this issue, three problems may be formulated as follows

• How to detect data causing transient workload in its
early stage within a social network?

• How to partition such data while ensuring fast inter-
actions between a user and its contacts?

• How to forecast data that will cause a peak and to
anticipate it based on the social structure?

Here are the set of problems we unveil and that we want
to deal with through this paper. It is worth noting that even
though the peak load is transient, it lasts thousand times longer
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Figure 1: A social network graph.

than the time to execute a transaction. That is, partition and
replication done for facing a peak load are cost for value.

B. Contributions and paper organization

Our goal in this paper is to face the previous problems
and the key novelties of our approach can be summarized as
follows.

• A fine-grain identification of a peak load. Actually, we
propose 1) a naive approach that relies on the number
of transactions accessing a partition, and, 2) a social-
based approach that uses interactions between users.
The last approach is in fact a peak prediction model
and it is designed using the homophily principle,
which states that the flow of information from person
to person is a declining function of distance in Blau
space [4]. That is, it is possible to locate the scope of
interactions initiated by a user, and to assess whether
such interactions may lead to a peak.
Moreover, since social network is composed by a set
of communities, peak origins are located in those
communities. Such a mechanism has the edge to
isolate the peak origin and to face it locally.

• A lightweight data migration method that moves only
relevant data, on a pull-on-demand basis, with minimal
disruption on transactions processing. The data migra-
tion method is coupled with an elastic load balancing
mechanism that is optimized for reducing resource
usage while maintaining bounded response time.

The rest of this paper is structured as follows: in Section
II, we present the the social workloads, basic concepts and
global architecture of our system. In Section III, we show how
we detect peak load as well as the prediction model we use
to anticipate their appearance. In Section IV, we present the
management of transient heavy workload. In Section V, we
present the validation of our approaches and we highlight, in
Section VI, a few related works before we conclude in Section
VII.

II. BASIC CONCEPTS AND GLOBAL ARCHITECTURE

In this section, we describe the global architecture we use
and the social workloads we plan to face.

A. Social workload

The workload is made of user actions. A user action is a
sequence of transactions and we assume that each transaction
reads and writes data owned by a single user. A user may share
data with other users and grants consequently read and/or write
permissions on them.
Actually, with a social networking website as Facebook or
Google+, users have a various sort of data that may concern
distinct subsets of their contacts. In other words, the user
belongs to several circles. For instance, users may have pro-
fessional circles that contain their items related to their profes-
sional activities and that will attract more their colleagues and
collaborators. They can share a private circle with only their
close friends and relatives. Therefore, the items of one user
may be seen as a set of cohesive data that are more attached
to a specific circle.
Furthermore, the workload looms from users with various
popularity levels. Thus, a peak load may be observed on
so called popular data belonging to popular users. Since all
popular users are not active at the same time, therefore, the
overall workload is not distributed uniformelly over circles
as well as over popular users (say we face a non-uniform
distribution of the workload). In other words, the workload
of the group i can be light while the one of the group j is
heavy. With this insigth, it is trivial to identify groups with
peaks or those underloaded. Getting this kind of information
has the edge to apply a selective mechanism to face peak load
within a group while minimizing the cost and required time.

B. Architecture

We devise an architecture using two layers: the routing
layer and the datastore layer (see Figure 2). Our solution
is a middleware that serves as an interface with the data
manipulation procedures of applications. The routing layer is
made of a set of nodes called client nodes (CN) and routers
while the datastore layer contains database nodes (DB) that
store data and execute queries. Data are stored on DB nodes
by using community or cricle configuration in such a way
that all related data of one group are on the same DB node.
This is possible since the number of users within a circle is
generally limited and hence, the related data can be hold in
one single DB node. Transactions are sent by CN to any router,
which afterwards forwards them to the right DB based on their
access classes for execution. Note that each router stores a
part of the global index, which allows them to locate data
among database nodes. Transactions accessing the same data
are routed in a serial way and the DBs guarantee consistent
execution of transactions without locking.

Moreover, the routing layer includes a special and useful
node called Controller node (CtlN). It monitors the database
layer for detecting whether a DB becomes a bottleneck or tends
to be underloaded. In this respect, every DB sends periodically
its load to the CtlN in order to permit overload detection
based on a threshold. We mention that once a DB is found
as overloaded, a migration process consisting of moving part
of its data to a less loaded DB or a new one is initialized.
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Figure 2: System architecture.

Reversely, an underloaded DB will bring out the merge of its
data with another DB that has not enough load.

Furthermore, DB nodes are able to communicate between
them for ensuring data migration from one to another in a
consistent manner. To figure out the part of data to migrate
from one to another DB, we rely on metadata hold via a
data structure called trace. The trace records information about
transactions such as their identifiers, their arrival dates, their
waiting times.

III. PEAK LOAD DETECTION

A. Definitions

We consider a set of nodes N . Each node Nk ∈ N is
a (virtual) machine managing the database DBk. Each DBk
node stores a set of partitions, pki denoting the partition i
of database k. During operation, a DB node executes the
incoming transactions in sequence. Let ω denote the most
recent observation window, expressed in second. Each DB
node logs the incoming transactions requests: Tω(pki ) denotes
the set of transactions requesting the partition pki , which either
terminated during ω or are not currently terminated (i.e.,
pending or running transactions). The log informs about the
current execution time and waiting time of each transaction. To
quantify the node load, we aggregate recent log information,
let RTω(pki ) denote sum of the execution and waiting times
of all transactions in Tω(pki ).

We define load(pki ) as the mean load of pki within ω as:

load(pki ) =
RTω(pki )

| ω |
(1)

Since a DB node may store many partitions based on its
storage capacity, we define the load of a DB node as the sum
of the loads of all partitions under its control. Formally, the
load of a DBk holding n partition is:

load(DBk) =
∑
i

load(pki ) | pki ∈ DBk (2)

Let τk be the standalone transaction processing time at
node DBk. Let rtk be the observed transaction response

time (including the waiting time). The load(DBk) can be
considered as a penality factor impacting rtk as follows:
rtk = τk.load(DBk)

B. Detecting peak load

We define the stability conditions of every DB node as
the conditions under which it is neither overloaded nor under-
loaded. More precisely, we expect every transaction to be
executed in bounded time. Let Tmax denote the maximum
expected response time of a transaction. For each DB node,
we expect rtk ≤ Tmax, that is, the following condition must
hold:

load(DBk) ≤ Tmax
τk

(3)

Reversely, a node is considered under-loaded if it remains
idle (i.e., no transaction execution). Thus any DB node must
satisfy the following condition:

load(DBk) > 0 (4)

A node is detected as overloaded (resp. idle ) if the
condition (3) (resp. (4)) does not hold for a given amount
of time ωoverload (resp. ωidle). It is worth noting that Tmax
as well as the size of the time windows ωoverload and ωidle,
are key performance indicators. Tmax can be set based on the
SLA of the of cloud provider, while ω values are tuned in
order to make accurate decisions.

C. Identifying peak origins

A peak load occurs at a DB node if one or many partitions
are overloaded, resulting in slow response time. With this
respect, finding the origins of a peak can be summarized
intuitively as identifying the sufficient set of partitions, with the
highest load, that correspond to the extra load ∆load defined
as:

∆loadk = load(DBk)− Tmax
τk

(5)

For each overloaded DBk node, we sort its set of partitions
{pik} in descending order of load(pki ). Then, we determine a
subset Mk of {pki } such that:∑

pki ∈Mk

load(pki ) ≥ ∆loadk (6)

Notice that the size of Mk is minimal since Mk is a prefix of
the ordered set {pki }. This aim to further reduce the number of
partitions to move. Next, we will move iteratively all partitions
in Mk, to restore DBk in a normal load status.

D. Predicting peak origins

The peak origin is identified previously based on the load
of the partition. That is, we gather some statistics during a set
of time windows before being able to detect peak. Briefly, we
detect peak after their arrivals. However, we should be able
to detect whether a pic will arrive soon based on the social
interactions. We aim in this section to predict when a peak
can happen based on data social characteristics or the social
graph.
In fact, since each interaction corresponds to a transaction,
thus, it is possible to estimate the number of transactions that
are related to a user ui and his/her related data. Therefore,
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the partition that stores data of ui can be continually checked
whether it is overloaded or not.
To reach our goal, we rely entirely on the homophily principle,
which states that the flow of information from person to person
is a declining function of distance. Thus, using the degree
centrality of nodes or its neigbhorhood can help to locate the
scope of interactions initiated by a user, and to assess whether
such interactions may lead to a peak.

We start from the point that each neighbor of ui may either
partake to ui’s activities or not. Let pm be the probability that
m neighbors are involved in a given activity ai of ui. Thus,
the number of transactions associated with ai is approxima-
tively equal to m when considering that each neighbor of ui
reacts only one time to ai. Therefore, it is trivial to express
the social load Ls(p

k
i ) of the partition pki storing ui’s data

by using Equation 1. For sake of presentation, we assume
Ls(p

k
i ) = χ.m, where χ is the mapping function that expresses

the load in terms of response time. Once Ls(pki ) is obtained,
we consider two possible states for pki : acceptable (A) and
overloaded (O). The partition is overloaded if Ls(pki ) ≥ Tmax.
Given an activity ai of ui, its neigbhors can either partake to it
or not, thus we can define a set of Bernoulli random variables
X = X1 + X2 + ... + Xn where Xl is representing a situation
in which actor l have participated to ai. Hence, the sum of
such independent variables S follows the binomial distribution
∼ B(n, p), from which we derive the probability pm of having
m actors during an activity.

pm = p(X = m) =

(
n

m

)
pm(1− p)n−m, (7)

where p is the probability that an actor participates to an
activity and (1 − p) the probability it misses it. Moreover,
the probability of having m neighbors interacting during N
activities is

N∏
i

pm. (8)

Once this probability defined, we set a threshold γ beyond
which the likelihood of having Ls(p

k
i ) = χ.m is very high,

i.e., the pic load prediction is more accurate. Formally,

N∏
i

pm ≥ γ (9)

with γ a threshold based on the average participation rate of
users. This approach has the advantage to take into account
interactions of social network and therefore helps to forsee a
peak once some users start interacting.

IV. FACING TRANSIENT WORKLOAD

The main idea of facing transient workload is to migrate
data of overloaded partitions to a less loaded DB. To this
end, we proceed by selective fragmentation and migration that
directly takes the overloaded partitions and distribute them to
less loaded databases. The problems we face are twofold: 1)
identify the database candidate that will receive the extra load
and, 2) process the migration mechanism.

A. Naive Identication of DB candidates

The basic and naive approach consists of using the less
under-loaded DB as candidates to receive extra loads. Basi-
cally, when a database is chosen to receive a load from another
database, it must remain not overloaded. The naive algorithm
of facing a peak of DBk works step by step as follows:

• For each pki in Mk (see section III-C) that is over-
loaded, evaluate its load;

• Find all DB candidates that are not overloaded and
able to receive load(pki ) without being overloaded
afterwards. In fact, DBd is a candidate destination to
receive load(pki ) if:

load(DBd)) ≤
Tmax
τd
− load(pki ) (10)

• If there is no database able to receive pki , then the
condition (10) is checked for pki+1.

• After each pki migration, Mk is updated. If Mk still not
empty and if no database is able to receive its content
then we start a new DB instance and the Mk’s content
is allocated to it.

This approach has the edge to be simple and easy to be imple-
mented and works well for rather regular, slowly fluctuating,
workloads. However, in case of stressed workloads generating
frequent peaks, this may lead to cascading migrations, i.e.,
migrating data from a DB that just previously received data
from another DB. We need to better anticipate workload
fluctuations in order to avoid overloading a DB, which receives
an extra load recently. To this end, we propose to take into
account the social characteristics of the data. We will exclude
a DB candidate that stores data of important users, since it has
a high probability to become overloaded in a near future.

B. Social-based identification of DB candidates

As mentioned before, important users hold data that are
usually the peak origins. An intuitive approach can be to
stave off gathering data of several important users in the same
database. To this end, we rely on the user interactions graph
when migrating data. That is, before moving data of DB1 to
DB2 we check if the latter does not have important users and
if neighbors of such users are likely to participate to activities.
In fact, we replace step 2 of the naive approach by an
identification method based on the prediction model that uses
graph interactions. A DB is a candidate if the data of users it
holds respect the model. The other steps are kept unchanged.

C. Migration process

We use a similar migration mechanism as in Relational
Cloud [5] and ElasTraS [6]. Data is lazily fetched from the
source as needed to support transactions on the destination. In-
flight transactions are redirected to the destination. Once the
data to be migrated and their destination DB are identified, the
migration process starts; it consists of two steps:

• First, the initialization step. The source DB informs its
associated router and the destination DB. The router
spreads this information to the other routers. The
indexes, which locate the data partitions are updated.
From now, the future transactions on that data are
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redirected to the new destination DB. This initiates
load balancing. However, at this stage, no data is
transmitted yet. Only the indexes are updated and the
destination DB is ready for inserting new data when
needed.

• Once the initialization step is done, all the transac-
tions accessing the migrated data are routed to the
destination DB. When the destination DB receives a
transaction on the migrated data, it pulls the pieces of
the data that the transaction intends to access, from
the source and write it to the DB destination. And so
forth, the pieces of the migrated data are transmitted to
the destination DB on demand until completion. This
pull on demand migration process has the advantages
(i) to allow the source DB to alternate data transfer
and transaction processing, which reduce the overhead
(waiting time) due to the migration; and (ii) to migrate
just the needed part of the data. In fact, even if a data
have to be migrated, only actually accessed pieces of it
are transmitted from the source DB to the destination
DB. This aims to reduce the amount of transmitted
data, saving communication resource.

• Preventing continuous migration of a partition We as-
sume that if a partition pki of database DBk is migrated to
another newly initialized DBz then the maximum load of that
partition pki could not exceed the DBz capacities. That means
this partition won’t be migrated anymore for overload reasons.

D. Example

Given the database {p1..p10000}. Each pi represents one
users’ data. The data are distributed among three DB nodes
DB1 to DB3 of various processing capacity. The standalone
processing time of a single transaction at DB1, DB2, and
DB3 is τ1 = 20ms, τ2 = 10ms, τ3 = 8ms respectively.
The users require a maximum response time Tmax equals
to 100ms. Thus, the maximum supported load at DB1 is
Tmax

τ1
= 5. Respectively, DB2 and DB3 support a maximum

load of 10 and 12.5.
During operation, each DB node process incoming transactions
in sequence, queuing pending transactions. We see in Figure 3,
two (red colored) transactions pending at node DB1: they
will wait too long and exceed Tmax; such case requires
data migration. To this end, during the last period ω (10s),
we measure at node DB1, the following workload values:
load(p11) = 1.4, load(p17) = 2.1 and load(p18) = 3.5, which
sums to load(DB1) = 7. The amount of extra load at DB1 is:

∆load1 = 7− Tmax

τ1
= 2

The smaller load(p1i ) value greater than ∆load1 is load(p17) =
2.1. Thus, migrating p17 will cause to drop 2.1 of extra load,
and to return under Tmax response time.
Finally, to find a destination candidate, we measure the amount
of ∆load that non-overloaded DBs could accept: ∆load values
are 1 for DB2, which is too small compared to our need, and
2.5 for DB3, which suits our need. The migration operation
give the result we can see in Figure 4.
Note that while estimating the availability a DB node (i.e.,
the maximum load it may accept), we take into account the

Figure 3: Example: State before migration.

Figure 4: Example: State after migration.

predicted load of its important users so to prevent cascading
migrations.

V. VALIDATION

In this section, we evaluate the overall performances of our
approach and we answer the following questions: (i) how long
does it take the system to respond to an overload? (ii) What
is the cost of facing to an overload? (iii) What is the impact
of the reconfiguration on transaction latency? (iv) Does the
system can ensure a response time below a given thresholdd
for more than 90 % of cases? (v) How does the number of
DB evolve, depending on the workload?
We begin by describing the environment and the tools used
during the experiments. Afterwards, we describe the experi-
ments and their results while answering the unveiled questions.

A. Experimental setup

We use Simjava [7] to simulate our approach and to eval-
uate it. Simjava is a toolkit (API Java) for modeling complex
systems. It is based on discrete events simulation and includes
facilities for representing simulation objects. We implement
each of entities: Client nodes (CN), Routeurs, Database nodes
(DB) and the Controller node (CtrlN). We use during the
simulations, some data structures to represent the storage
layer. Each entity is embedded into a thread and exchanges
with others through events. During simulation experiments,
we focus on the reaction of our system against an heavy and
transient workload, and the evolution of the DB nodes. The
experiments were conducted on an Intel duo core with 2 GB
of RAM and 2.66 GHz running under Ubuntu LTS 12.04.

In the experiments, we implemented the social workload
using the algorithm described below. In all experiments, we
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started with a small size system (relatively to the number of
running machines): one Router and two DB nodes, which store
all the data. All transactions are read and write accesses.

1) Algorithm for workload generation

We aim to generate the load peaks in a controlled way,
ensuring that the load at each partition (i.e., load(pki )) cor-
responds to a given value. Indeed, the load values at each
partition characterizes the workload pattern. We propose an
algorithm to generate the workload, which follows the biased
(e.g., power-law) pattern of social networks, as described
in [1], i.e., the data of users with a high centrality degree
receive a higher load. Accordingly, we control how many
users are concurrently accessing each partition. Without loss
of generality, we assume that a user involved into a peak load
is accessing only one partition, as long as the peak occurs.
Notice that a user may still access several partitions if her
session lasts longer than the peak duration.

More precisely, we design an algorithm to assign users
to partitions. We also change this assignment dynamically
such that the overall data access frequency follows the same
distribution as the underlying centrality degree distribution.
Our algorithm takes as input the number m of partitions,
the number U of users, the peak duration D in seconds,
a distribution function f (e.g. the zipfian function), and the
amount of work to do in a run expressed as the number N of
transactions to process.

• We assess the distribution of the N transactions to the
m partitions. We use f to get the number of accesses
Aki to each partition pki , such that the sum of all the
Aki values equals N .

• We distribute the U users to a subset of the partitions
such that there is Aki users per partition, and the sum
of the Aki of the partitions in that subset equals U .

• For D seconds, every user submits a sequence of
transactions to its assigned partition.

• Then we redistribute the users to another subset of
the partitions; then we continue the run for D more
seconds, redistribute again, and so on until all the
partitions have been accessed by Aki users.

B. Experiments

1) Reaction to unexpected overload

The objective of this experiment is to assess how our
system reacts against a higher load and how fast this is done.
The results of the experiment are depicted on Figures 5 and 6.
Data are horizontally partitioned and each DB node stores 50%
of the overall data. We consider a heavy load on a small range
of data that does not change during the experiment. Since we
use a zipfian distribution to generate this range of hot data,
most of them are for the first hundred users and are stored on
DB0. We set a threshold of one second for the response time.
We observe that the system handles the overload situation a
few seconds after it starts: hot data are identified and the load
is balanced between DB0 and DB1. Actually, after a peak
arrival, one can see it does not take a long time to our system
to deal with the peak and to stabilize the latency. The difference
between results obtained on DB0 and DB1 is mainly due by

Figure 5: Reaction to a high and subite load at DB0.

Figure 6: Reaction to a high and subite load at DB1.

Figure 7: Not controlled: Response times on DB0 increases rapidly while the number of
users increases (peaks are on DB0).

the fact that data are moved from DB0 to DB1. That is, it will
take more time to DB1 to store arriving data and to process
afterwards transactions on such data. Moreover, the workload
on DB0 is slightly more dense than the one on DB1.

2) Not controlled vs Controlled system

This experiment highlights the impact of controlling the
peak load on the performances. In this respect, we compare
our system with another one without a peak load management.
Results of such comparison are shown on Figures 7 and 8.
To this end, the load is gradually increasing from 500 to
1500 users at regular intervals. As expected, the response time
increases drastically with a non-controlled system as pointed
out by Figure 7. Meanwhile, the response time increases in a
logarithmic fashion with our system (see Figure 8).
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Figure 8: Controlled: Response times on DB0 increases slowly.

Figure 9: number of DB vs. workload variation.

3) Number of resources used

In this experiment, we aim at computing the number of
DB used when the load varies. The main goal is to check
whether the total number of DB decreases or increases when
the workload changes. The load varies from 150 to 300
concurrent users. After a while (i.e., one minute), we reduce
the number of clients till 95% of them are off. We set the
latency threshold to one second. As one can see on Figure
9, the number of DB nodes grows from 2 to 5 when the
workload is increasing. When the workload becomes lighter,
the number of DB nodes decreases till we get the initial
configuration. Our load balancing algorithm achieves to save
computing resources.

C. Futher experiments and prototype

We still conducting our experiments in a real-world cloud
environment: the Amazon EC2. In this thorough experiments,
we use the Oracle NoSQL Database for the storage layer and
each of entities (i.e., Client nodes (CN), Routeurs, Database
nodes (DB)) is embeded in a virtual machine.

The first obtained results are promising and confirm what
we got with SimJava. We will publish this results in an
extended subsequent version of this work as soon as possible.

VI. RELATED WORK

Elasticity and load balancing are essential features to opti-
mize the operation cost in data management systems deployed
on a pay-per-use cloud infrastructure, particulary when those
data concerns some social media applications. They permit
to cope with transient and unpredictable peak loads in the
involved systsem, if they are automated. In this context, several
works have been proposed to address the problem of elasticity

[6][8][9][10][11][12]. Most of these studies have adopted the
principle of a partitioned database [6][11] and live migration
to distribute the load. In particular, Carlo Curino et al. in [8],
ElasTras [6] and Albatross [12] that tackle the problem of
minimizing the operating costs of Database systems serving
multitenant cloud platforms by efficient resource sharing.

In the literature, most of the work that focused on pro-
moting elasticity in databases are accompanied by migration
techniques, and some studies have simply focused on the
migration itself. We can mention among them the work done
in Slacker [9], which uses hot Back-Up tools to copy the
database while allowing service continue during this phase.
The migration method is based on the available processing
capacity on the node source node in order to bound the
response time. It is a solution that prevents interruption of the
execution during the migration, but it is based on a Back-Up
solutions that are database dependent. However, the authors
argue that the Back-Up solution is not a problem since their
migration is in middleware. Another problem we raise is, as
in [10][11][12], the choice of moving a partition (a tenant in
this case) without specifying which one. The idea of moving
an entire partition is risky if we do not identify which one to
move. With the solution such as Zephyr [10] and Albatros
[12], the authors, after identifying the destination, propose
a lightweight migration method to move data to their new
destination. This migration technique uses an on-demand copy
during transaction processing. Thus, they prevent interruptions
during transaction processing. The main differences between
these solutions and ours are twofold: i) we identify the data to
move in order to face directly the source of the bottleneck;
and ii) we migrate only required data. More recently, Jan
Schaffner et al. propose RTP: Robust Tenant Placement for
Elastic In-Memory Database Clusters [13]. This work tackles
the minimization of operational costs by proposing algorithms
that elastically adapt the system size depending on the tenant
behavior. This work differs from ours in the way that they
consider a read-intensive workload and use replication on their
system.

More generally, there are some data management
systems recently produced (less than a decade)
[14][15][16][17][18][19][20][21]. These systems are usually
oriented to the management of web data (NoSQL, key/value,
document, etc..) or transactional data [14]. Some of them
provide elasticity mechanisms [15][16][17][18], but their
elasticity is rather related to the amount of current data. When
it becomes too large, they add a new node and place there a
part of the data. This assumes that load is evenly distributed
on all the data. This does not fit our context where the load
is biased.

Furthermore, elasticity is often coupled with load balancing
to minimize resources. In addition, such a minimization of
resources has an indirect effect that is the gain in energy
consumption. This specific objective called green computing,
is reached through the effective use of available resources.
In this context, many works was done or are being done to
develop new techniques for load balancing [22]. The purpose
of load balancing [23][24][25][26][27][28] is an efficient use
of resources by redistributing dynamically load through all
nodes in the system. Our algorithm is based on such principles
for for more effectiveness.
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Moreover, some works are conducted for load-balancing
while avoiding distributed transactions across multiple parti-
tions [29][30]. These approaches balance data based on current
load level on that data. They use graph (hyper-graph in Sword)
partitioning algorithm to find a replacement that prevents data
distributed transactions. The main objective of these works is
to provide an improved throughput while providing fault tol-
erance and scalability for distributed OLTP data management
systems. They do not reflect the economy of resources used
as we do.

VII. CONCLUSION AND FUTURE WORK

We propose to exploit the social structure of online media
to face transient heavy workload. Our solution monitors the
load level within the database layer and identifies the hot data,
which are the sources of peaks load when overload happens.
After identifying the origins of peaks load, we proceed by mi-
grating parts of the hot data among the database nodes, with the
goal of keeping the transactions response time under a given
value. In order to fully make the identification of the sources of
peaks load, and choose the right destinations for migration, we
have developed fine-grain identification model. Furthermore,
we leverage on the social user network to anticipate the load
of popular data mostly owned by users with high centrality
degree. This allows for early data migration while prevent-
ing cascading migration. We validate our approach through
experimentation with a synthetic dataset. These experiments
show promising performances in terms of resources saved
and response time guaranty. Ongoing works are conducted to
evaluate our solution on a real-world database workloads for
social applications. To this end, we are experimenting on top of
Amazon EC2 cloud, using Oracle KVLite [31] for data storage
and access at each DB node. We are using the data and the
workload from the LinkBench [1] benchmark.
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