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Abstract—Information integration and modeling and manage-
ment of uncertain information have been active research areas
for decades, with both areas receiving significant renewed in-
terest in recent years. Research on information integration with
uncertainty, on the other hand, is quite recent. In this paper we
concentrate on recent works on uncertain-data integration. We
present experimental results on the efficiency of recent algorithms
for information integration from sources that contain uncertain
data. Our experiments show the algorithms to be efficient,
demonstrating a near linear performance in the total size of the
uncertain data to be integrated.
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I. INTRODUCTION

The importance of information integration with uncertainty,
has been realized recently [1]-[4]. It has been observed that [2]:
“While in traditional database management managing uncer-
tainty and lineage seems like a nice feature, in data integration
it becomes a necessity.” Research on information integration
with uncertainty, is quite recent [5]-[11]. Researchers have
concentrated on two main aspects of information integration
with uncertainty. The first category considers integration of
definite data with uncertain schema mappings [6], [7]. The
second category considers integration of uncertain data [5],
[8], [9], [11]. Our work in [11] falls in the second category.
We presented algorithms for the integration of uncertain data,
and justified the correctness of the algorithms by showing
they coincided with the integration formalism presented in
the foundational work [5]. In this paper, we report the im-
plementation and experimental results of these algorithms.
Note that information integration has many dimensions and
involves a number of important tasks such as data cleaning,
data linkage, schema mapping, data standardization, query
translation, and query optimization. We concentrate only on
the issue of information integration from sources that contain
uncertain data in this paper.

This paper is organized as follows. In Section II, we present
an introduction to integration of information from sources
with uncertain data, and briefly discuss the uncertain data
integration algorithms of [11]. Our implementation is presented
in Section III, and experimental results in Section IV. Our
experiments show the algorithms to be efficient, demonstrating
a near linear performance in the total size of the uncertain data
to be integrated. Conclusion and future work are presented in
Section V.

II. PRELIMINARIES

In this section we will review some of the recent works
regarding issues and algorithms for the integration of uncertain
data.

A. Information Integration with Uncertainty: Foundations

Foundations of information integration with uncertainty
have been discussed in [5], [11]. We will present a brief
summary here. We begin with an example from [11].

Example 1: John and Jane are talking about fellow student
Bob. John says “I am taking CS100 and CS101, and Bob is in
one of them, but not in both.” Jane says “I am taking CS101
and CS102 and Bob is in one of them, but not in both.”

Intuitively, if we integrate the information from these two
sources (John and Jane), we should infer that Bob is either
taking CS101, or he is taking both CS100 and CS102.

The model used in [5], [11] for the representation of
uncertain information is the well-known possible-worlds model
[12]. In Example 1, the information presented by the two
sources (John and Jane) is represented by the possible worlds
shown in Figures 1 and 2. The possible worlds of the result
of integration is shown in Figure 3.

student course
Bob CS100

D1

student course
Bob CS101

D2

Figure 1: Possible Worlds of source S1

student course
Bob CS101

D3

student course
Bob CS102

D4

Figure 2: Possible Worlds of source S2

student course
Bob CS101

student course
Bob CS100
Bob CS102

Figure 3: Possible Worlds of the Integration for Example 1

Here, we will summarize the integration approach from
[11] which uses a simple logic-based technique. It has been

7Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications



shown to be equivalent to the integration formalism of [5]
which is based on the concept of superset-containment. Inter-
ested readers are referred to [11] for details.

First, we should point out that the pure possible world
model is not adequate for uncertain-data integration appli-
cations. We need additional information, namely, the set of
all tuples. The following example demonstrates the possible-
worlds with tuple sets model.

Example 2: Andy and Jane are talking about fellow stu-
dent Bob. Andy says “I am taking CS100, CS101, and CS102
and Bob is in either CS100 or CS101 but not in both.” Jane
says “I am taking CS101 and CS102 and Bob is in one of
them, but not in both.”

Intuitively, if we integrate the information from these two
sources, we should infer that Bob is taking CS101. The second
possibility from Example 1 is not valid anymore since Andy’s
statement rules out the possibility that Bob is taking 102.

To justify this answer, we observe that pairwise combi-
naiton of possible worlds from the two sources result in the
four possible worlds of Figure 4. But only the second possible
world is a valid combination, and the other three are not valid.
The first world is not valid since Andy states that he is taking
CS100, CS101, and CS102 and Bob is taking 100 of 101 but
not both. So Bob can not be in both 100 and 101. The third
and fourth worlds are not valid due to Andy’s statement too.
He is taking 102 (among other courses) and states that Bob is
taking 100 or 101. Hence Bob can not be in 102. Note that
the last world is also not valid due to Jane’s statements. She
says that she is in 101 and 102, and Bob is in one of them,
but not both. The only valid combination is the second world:
Bob must be taking CS101.

student course
Bob CS100
Bob CS101

student course
Bob CS101

student course
Bob CS100
Bob CS102

student course
Bob CS101
Bob CS102

Figure 4: Pairwise combination of possible worlds from the
two sources

However, the possible-worlds representations of these
sources (Andy and Jane) are exactly the same as those of
Example 1 (Figures 1 and 2). Only when we add the tuple-
set to possible worlds of Andy, namely {(Bob, CS100), (Bob,
CS101), (Bob, CS102)}, It becomes explicit that Andy’s
statement eliminates the possibility that Bob is taking CS102.

Hence, we will use the following definition from [5] for
uncertain databases that adds tuple sets to the possible-worlds
model. Note that to simplify presentation, it is assumed that
possible worlds are sets of tuples in a single relation. We adopt
the same convention throughout this paper.

Definition 1: (UNCERTAIN DATABASE). An uncertain
database U consists of a finite set of tuples T (U) and a
nonempty set of possible worlds PW (U) = {D1, . . . , Dm},
where each Di ⊆ T (U) is a certain database.

B. Integration Using Logical Representation

The following definitions and results are from [11].

Given an uncertain database U , we assign a propositional
variable xi to each tuple ti ∈ T (U). We define the formula
fj corresponding to a possible world Dj , and the formula f
corresponding to the uncertain database U as follows:

Definition 2: (LOGICAL REPRESENTATION OF AN UN-
CERTAIN DATABASE). Let Dj be a database in the possible
worlds of uncertain Database U . Construct a formula as the
conjunction of all variables xi where the corresponding tuple ti
is in Dj , and the conjunction of ¬xi where the corresponding
tuple ti is not in Dj . That is,

fj =
∧

ti∈Dj

xi

∧
ti 6∈Dj

¬xi (1)

The formula corresponding to the uncertain database U is
the disjunction of the formulas corresponding to the possible
worlds of U . That is,

f =
∨

Dj∈PW (U)

fj (2)

Now we can integrate uncertain databases using their
logical representations as follows:

Let S1, . . . , Sn be sources containing (uncertain) databases
U1, . . . , Un. Let the propositional formulas corresponding to
U1, . . . , Un be f1, . . . , fn. We obtain the formula f corre-
sponding to the uncertain database resulting from integrating
U1, . . . , Un by conjuncting the formulas of the databases:
f = f1 ∧ · · · ∧ fn.

Example 3: (INTEGRATION USING LOGICAL REPRESEN-
TATION) Consider Example 1. The uncertain database corre-
sponding to John’s statement is represented by (x1 ∧ ¬x2) ∨
(¬x1 ∧ x2), where x1, and x2 correspond to the tuples
(Bob, CS100) and (Bob, CS101), respectively. The uncertain
database corresponding to Jane’s statement is represented by
(x2 ∧ ¬x3) ∨ (¬x2 ∧ x3), where x2 is as above and x3

corresponds to the tuple (Bob, CS102). The integration in this
case is obtained as

((x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)) ∧ ((x2 ∧ ¬x3) ∨ (¬x2 ∧ x3))

= (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ ¬x3)

which corresponds to the possible worlds of Figure 3. The
result is consistent with our intuition: Based on statements by
John and Jan, Bob is taking either CS101 or both CS100 and
CS102.

Now consider Example 2. The uncertain database corre-
sponding to Andy’s statement is represented by (x1 ∧ ¬x2 ∧
¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3), where x1, x2, and x3 represent
(Bob, CS100), (Bob, CS101), and (Bob, CS102), respectively.
The uncertain database corresponding to Jane’s statement is
represented by (x2 ∧ ¬x3) ∨ (¬x2 ∧ x3). The integration in
this case is obtained as

((x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3))∧
((x2 ∧ ¬x3) ∨ (¬x2 ∧ x3))

= (¬x1 ∧ x2 ∧ ¬x3)
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corresponding to the (in this case, definite) relation consisting
only of the tuple (Bob, CS101) (Figure 5). Again, this result
is consistent with our intuition: Based on statements by Andy
and Jane, Bob is taking CS101.

student course
Bob CS101

Figure 5: Possible Worlds of the Integration for Example 2

C. An Alternative View of Integration

Let S1, . . . , Sn be sources containing (uncertain) databases
U1, . . . , Un. Let PW (Ui) represent the set of possible worlds
of uncertain database Ui, and Ti represent the tuple set of
Ui. We can regard the integration of information from these
sources as follows:

Definition 3: (COMPATIBLE SET OF POSSIBLE-WORLDS
RELATIONS). Consider a set of n relations {w1, . . . , wn}
where each wi is a relation in the set of possible worlds of Ui,
that is, wi ∈ PW (Ui), i = 1, . . . , n. If there is a tuple t in a
relation wi, that it is also in Tj −wj for some other possible-
world relation wj , we say the set of possible-world relations
{w1, . . . , wn} is not compatible. Otherwise, {w1, . . . , wn} is
compatible.

Note that t ∈ Tj − wj means that according to source
Sj , the tuple t can not exist (is ruled out) in wj . Hence, if
a set of possible world-relations is not compatible, they can
not be integrated. A compatible set of possible-world relations
{w1, . . . , wn} can be integrated, and the resulting relation
contains all the tuples in the relations, that is, the result of
integrating w1, . . . , wn is w = ∪ni=1wi.

Hence, to integrate sources S1, . . . , Sn, we can compute
the possible-worlds relations of the integration by

1) forming all possible combinations {w1, . . . , wn},
wi ∈ PW (Ui),

2) determining compatible sets, and
3) obtaining the union of the relations in the compatible

set.

This alternative characterization of integration results in a
simpler integration algorithm. We use the logical formulation
only to determine compatible sets of possible worlds, and then
we obtain the result by calculating the union of the possible
worlds in each compatible set. We have used this characteri-
zation to design our integration algorithm (Section III).

Example 4: (ALTERNATIVE VIEW OF INTEGRATION)
Consider Example 1. The possible-worlds relations of the
uncertain database corresponding to John’s statement were
shown in Figure 1, and the possible-worlds relations of the
uncertain database corresponding to Jane’s statement were
shown in Figure 2. In this case, the compatible sets of possible
worlds are {D1, D4} and {D2, D3}. We can conveniently
represent the compatibility of possible-worlds relations for two
sources by a bi-partite graph, such as Figure 6. The possible-
worlds of the result of integration is shown in Figure 3.

Figure 6: Compatibility graph of Example 1.

III. IMPLEMENTATION

We implemented the information integration approach of
Section II-C, and ran a large number of experiments to assess
the performance of the implementation. In this section we
present the implementation details. Experimental results are
presented and discussed in the next section.

Our implementation consists of several modules imple-
mented in Java.

• The GeneratePossibleWorlds module is a util-
ity module used to randomly generate possible world
relations for the information sources. The user can
specify the following parameters:
◦ Number of information sources.
◦ Number of possible worlds for each source.
◦ Number of tuples for each possible world.
◦ Number of attributes for the possible-worlds

relations.
To generate random tuples for possible worlds rela-
tions, we stored several files of domain values. Each
file contains a large number of values from a spe-
cific domain, such as names, course numbers, course
titles, semesters, and years. The user can specify
the number of attributes for the possible world rela-
tions. The system forms a random tuple by randomly
picking values from the domain of each attribute.
The GeneratePossibleWorlds module stores
the possible worlds relations in Oracle databases, one
for each source. The sizes of the relations, and the
total size of the integration instance are also recorded.

These features were used to generate desired cases for
the experiments by altering the number of sources,
number of possible worlds, size of each possible
world, and total size of the sources data. Hence we
can evaluate the impact of each parameter on the
performance of the algorithm.

• The TableIntegration module performs the
following tasks for each dataset generated by the
GeneratePossibleWorlds module discussed
above.
◦ The module accesses the possible world re-

lations in the databases of the sources. Each
source is represented by an Oracle database
that contains the possible world relations for
thet source.

◦ The tuple set for each source is computed as
the union of the possible world relations for
that source.

◦ The module generates the logical formula for
each possible world relation for the sources
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according to the algorithm of Section II-B
The formulas are conveniently represented by
vectors, which can be used to easily implement
logical operations over the expressions.

◦ The module determines which sets of possible
world relations, one from each source, are
compatible and hence can produce a possible
world relation in the integration. This is done
by computing the conjunction (logical and)
of the corresponding formulas of the possible
world relations. If the result is false, the set of
possible worlds are not compatible. Otherwise
they are compatible.

◦ For all compatible sets of possible worlds,
the modul generates the resulting relation by
unioning the possible worlds relations in the
set. It stores the integrated relation in the
Oracle database for the integration result.

◦ Once all compatible possible wrolds sets are
processed, the module displays the total time
for the integration.

IV. EXPERIMENTAL EVALUATION

We carried out a large number of experiments to evaluate
the performance of the integration algorithm. The experiments
were executed on a 2.10 GHz Intel i3 CPU with 4.00 GB
RAM, 64-bit Windows 7 Operating System using Java 1.7
and Oracle XE 10g. The first few experiments evaluated
the performance of the integration algorithm for integrating
information from two sources.

Figure 7: integration times; fixed number of possible worlds
for each source.

In the first set of experiments the number of possible
world relations of the two sources were kept constant, and
test cases were generated by varying the number of tuples
in the possible world relations (and hence, varying the size of
uncertain databases to be integrated). Figure 7 shows the result
of these experiments. The horizontal axis shows the total size
(KB) of databases to be integrated. The vertical axis shows the
time needed for the integration (sec). The experiments show
that the integration algorithm is almost linear in the total size
of databases to be integrated.

In the second set of experiments, we varied the number of
possible world relations of the two sources while keeping the
number of tuples constant. Figure 8 shows the result of these

experiments. The horizontal axis shows the total size (KB) of
databases to be integrated. The vertical axis shows the time
needed for the integration (sec). Again, the experiments show
that the integration algorithm is almost linear in the total size of
databases to be integrated (no matter whether the size increase
is due to larger number of possible worlds per sources, or larger
possible world relation sizes.)

Figure 8: integration times; variable number of possible
worlds for each source.

In the next set of experiments we evaluated the impact
of the number of possible world relations and their sizes on
the integration algorithm. The total size was kept constant
(approximately) by changing both the number of possible
world relations and the number of tuples in these relations
accordingly. The values of these parameters and the integration
time are shown in Table I. The columns are, respectively,
number of possible worlds for each source, number of tuples
in each possible world, total size, and integration time. Total
size is almost constant – it ranges between 99.6 and 100.4 KB.

TABLE I: Integration experiments; with total size (almost)
constant

PWs tuples size time
20 110 99.9 114
19 116 99.8 114
18 122 99.6 109
17 130 100.4 113
16 138 100.2 116
15 147 100.0 114
14 158 100.3 111
13 170 100.3 116
12 184 100.2 113
11 200 99.8 113
10 220 100.0 114
9 245 100.0 114
8 275 100.0 114
7 315 99.9 111
6 368 100.2 115
5 442 100.3 116
4 553 100.1 119
3 737 100.4 120

Figures 9 and 10 plot the integration time in the ex-
periments of Table I against the number of possible worlds
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Figure 9: integration times vs number of possible worlds;
total size is constant

and the number of tuples in each possible world. The x-
axis of Figure 10 (number of tuples in each possible world)
is logarithmic to better demonstrate the effect of number of
tuples, ranging from 110 to 737 in the experiments. These
experiments show that the number of possible worlds and their
sizes are not factors in the performance of the integration
algorithm when the total size is constant. In other words,
integration time is almost constant when number of possible
world relations and their sizes change while the total size is
fixed. This observation is counter-intuitive since the integration
algorithm needs to determine, for every pair of possible worlds
(w1, w2), whether they are compatible, where w1 and w2

belong to source 1 and source 2, respectively. But the impact of
number of tuples (smaller number of tuples for larger number
of possible world relations) counterbalances the impact of
number of possible worlds.

Figure 10: integration times vs number of tuples in each
possible world; total size is constant

In the next set of experiments we generated test cases by
varying both the number of possible worlds and the number
of tuples in each possible worlds (and hence, varying the
total size). The results are summarized in Table II. The
columns are, respectively, number of possible worlds for each
source, number of tuples in each possible world, total size,
and integration time. Figure 11 plots the integration time in
these experiments against total size. It confirms a near linear
performance of the algorithms as a function of the total size of
the integration. Figure 12 plots the integration time against the

number of tuples in each possible-world relation. Note that the
same figure is also the plot of integration time against number
of possible worlds, since we are using the same numbers
for the two parameters for each data point (See Table II).
This figure suggests integration time is a quadratic function
of number of possible worlds (or number of tuples in each
possible world). This is no surprise, since by varying both
these parameters (and using the same numbers) we obtain a
total size that is quadratic in each of these parameters. So,
again, we confirm that total size is the important parameter in
the performance of the algorithm.

TABLE II: Integration experiments; varying number of
possible worlds and number of tuples in each possible world

PWs tuples size time
4 4 0.7 0
8 8 2.9 1

12 12 6.5 3
16 16 11.5 4
20 20 18 7
24 24 26.1 13
28 28 35.4 22
32 32 46.4 33
36 36 58.8 50
40 40 72.7 70
44 44 87.8 89
48 48 104.5 121
52 52 122.5 149
56 56 142 182
60 60 163.4 219

negvs

Figure 11: integration times vs total time

In the next set of experiments we evaluate the performance
of the integration algorithm when integrating data from more
than two information sources. We generated test cases by
varying the number of information sources, while keeping
the total size constant. Figure 13 plots the integration time
against the number of possible worlds. This performance was
very unexpected. As seen from this graph, the algorithm has
an almost constant time up to about 10 information sources,
then the integration time increases sharply. We postulated that
the reason for the sharp increase is memory saturation, which
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Figure 12: integration times vs number of tuples in
possible-world relations

forces the execution to use virtual memory. In our experiments,
the number of possible world relations for each source was
kept constant at 3, and constant total size was achieved by
varying the number of tuples in each possible world. So, with
10 sources, the number of integration combinations to generate
was 310 = 59, 049. This number increases to 311 = 177, 147
for 11 sources, and to 312 = 531, 441 for 12 sources. The
memory of our testbed system saturates at about 10 sources.

To test our hypothesis, we executed the exact same ex-
periments on systems with lower (2GB) and higher (8GB)
memory sizes. The graphs for these experiments have the same
shape, except at lower memory size the graph is shifted to the
left, and at higher memory size the graph is shifted to the
right. In other words, the sharp increase happens at a lower
number of sources for the lower memory size, and at a higher
number of sources for higher memory size. These additional
experiments confirm our hypothesis that the change in the
performance of the integration algorithm, from constant time
to almost linear, is a result of memory saturation. So, our final
conclusion is that, given adequate memory, the performance of
the integration algorithm is a linear function (approximately)
of the total size of the integration instance. It is not sensitive
to the other factors, namely, number of information sources,
number of possible worlds relations in the sources, and number
of tuples in the possible world relation, when the total size is
kept constant.

V. CONCLUSION

We presented our implementation and experimental evalu-
ation of the uncertain-data integration algorithms of [11]. Our
experiments show the algorithms to be efficient, demonstrating
a near linear performance in the total size of the uncertain data
to be integrated.

There are a number of important issues that require further
investigation. First, uncertain schema mappings is another
source of uncertainty in information integration. We would like
to develop integration algorithms for this case, with definite or
uncertain data. The integration algorithm is a good candidate
for parallel computation, in particular, using the map-reduce
framework [13]. A future direction would be to implement
the integration using Hadoop running on a large number
of computers. More importantly, we would like to devise

Figure 13: integration times vs number of sources

integration algorithms to work with compact representations
of uncertain data, such as the probabilistic relational model of
[14], [15].
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