
Capturing the History and Change Structure

of Evolving Data

George Papastefanatos, Yannis Stavrakas, Theodora Galani

IMIS, RC ATHENA

Athens, Greece

{gpapas,yannis,theodora}@imis.athena-innovation.gr

Abstract—Evo-graph is a model for data evolution that

encompasses multiple versions of data and treats changes as

first-class citizens. A change in evo-graph can be compound,

comprising disparate changes, and is associated with the data

items it affects. In previous papers, we have shown that

recording data evolution with evo-graph is very useful in cases

where the provenance of the data needs to be traced, and past

states of data need to be re-assessed. We have specified how an

evo-graph can be reduced to the snapshot holding under a

specified time instance, we have given an XML representation

of evo-graph called evoXML, and we have presented how

interesting queries can be answered. In this paper, we explain

how evo-graph is used to record the history of data and the

structure of changes step by step, as the current snapshot

evolves. We present C2D, a novel framework that implements

the concepts in the paper using XML technologies. Finally, we

experimentally evaluate C2D for space and time efficiency and

discuss the results.

Keywords-data evolution; change modeling

I. INTRODUCTION AND PRELIMINARIES

Data published on the Web undergo frequent changes
due to advancements in knowledge and due to the
cooperative manner of their curation. Users of scientific data,
in particular, would like to go beyond revisiting past data
snapshots, and review how and why the recorded data have
evolved, in order to re-evaluate and compare previous and
current conclusions. Such an activity may require a search
that moves backwards and forwards in time, spread across
disparate parts of a database, and perform complex queries
on the semantics of the changes that modified the data. The
need for accounting for past changes and tracing data lineage
is evident not only in scientific data, but also in a wide range
of web information management domains.

Motivating Example. We will use an example taken from
Biology: the revision in the classification of diabetes, which
was caused by a better understanding of insulin [12].
Initially, diabetes was classified according to the age of the
patient, as juvenile or adult onset. As the role of insulin
became clearer two more subcategories were added: insulin
dependent and non-insulin dependent. All juvenile cases of
diabetes are insulin dependent, while adult onset may be
either insulin dependent or non-insulin dependent. In Fig. 1,
the leftmost image depicts a tree representation of the initial
diabetes classification, while the rightmost the revised
classification. These two representations, however, do not
provide any information about which parts of the data
evolved and how, which changes led from one version to

another, or what changes were applied on which parts of the
data. Recording change operations in a log or discovering
deltas out of successive versions, like many systems do, do
not solve the problem; in most cases isolated operations are
impossible to interpret a posteriori. This is because they
usually form more complex, semantically coherent changes,
each comprising many small changes on disparate parts of
the data.

We argue that in systems where evolution issues are
paramount, changes should not be treated solely as
transformation operations on the data, but rather as first class
citizens retaining structural, semantic, and temporal
characteristics. In previous work, we proposed a graph
model, evo-graph [16], and its XML representation, evoXML
[17], capturing the relationship between evolving data and
changes applied on them. A key characteristic is that it
explicitly models changes as first class citizens and thus,
enables querying data and changes in a uniform way. In what
follows, we discuss some preliminary concepts on evo-graph
and then present the contribution and structure of this paper.

Snap-graph. We assume that data is represented by a
rooted, node-labeled, leaf-valued graph called snap-graph. A
snap-graph S (V, E) consists of a set of nodes V, divided into
complex and atomic, with atomic nodes being the leaves of
the graph, and a set of directed edges E. At any time
instance, the snap-graph undergoes arbitrary changes.

Evo-graph. An evo-graph G is a graph-based model that
captures all the instances of an evolving snap-graph across
time, together with the actual change operations responsible
for the transitions. It consists of the following components:

 Data nodes, divided into complex and atomic: VD =

VD
c
  VD

a
.

 Data edges depart from every complex data node,

ED  (VD
c
  VD).

 Change nodes are nodes that represent change
events. Change nodes are depicted as triangles, to
distinguish from circular data nodes. They are
divided into complex and atomic (denoting basic

change operations): VC = VC
c
  VC

a
.

 Change edges connect every complex change node
to the (complex or atomic) change nodes it

encompasses: EC  (VC
c
  VC).

 Evolution edges are edges that connect each change
node with two data nodes, specifically the version

before and after the change: EE  (VD  VC  VD).
Intuitively, the evo-graph consists of two interconnected

graphs: a data graph comprising the different versions of

235Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. Snap Graphs of diabetes classification before (left) and after (right) revision and the corresponding evo-graph (middle).

data, and a tree of changes. The data graph defines the
structure of data, while the change graph defines the
structure of changes. These two graphs interconnect via
evolution edges. Consequently, there are two roots: the data
root, rD, and the change root, rC. Moreover, we annotate
change nodes with a timestamp denoting the time instance
that the specific change occurred. These timestamps are used
for determining the validity timespan of all data nodes and
data edges in the evo-graph. Evo-graph can be reduced to a
snap-graph holding under a specified time instance through
the reduction process [16]. A snap-graph is actually a trivial

case of an evo-graph, consisting of a set of data nodes VVD

and a set of data edges EED.
As an evo-graph example consider the middle image in

Fig. 1, which represents the revision in the diabetes
classification from the graph of Fig. 1 left to the graph of
Fig. 1 right. The revision process is denoted by the complex
change reorg_diab_cat, (node &21) composed by 5 basic
snap changes (in the order they occurred): clone (node &8),
add (node &11), remove (node &13), create (node &15),
and create (node &18). Note the use of evolution edges; in
the case of add the evolution edge is annotated with the
timestamp 2 and connects node &3 (initial version) with
node &10 (version after adding the child node &6). Node
&10 is still a child of node &2, but for simplicity the
relevant edge is omitted. The reduction of the evo-graph for
T=start results in the snap-graph of the leftmost image of
Fig. 1, while for T=now in the snap-graph of the rightmost
image of Fig. 1. For the complete definitions of basic snap
changes see section 2.1.

EvoXML. In [17] we have shown how evo-graph can be
represented in an XML format, called evoXML. TABLE I.
presents an evoXML example. Due to space limitations, the
evoXML example covers up to time instance 1 of the evo-
graph in Fig. 1; specifically it includes only the clone
operation (node &8) in lines 12-15, 20. Notice that the edge
from node &7 to node &6 (which actually denotes that &6
remains a child of the next version of node &4) is

represented through the evoXML reference evo:ref in line
13, which points to the element in line 10. Also notice how
the change node &8 is represented in line 20.

Querying Evolution. Finally, in [16],[17] we have
outlined evo-path, an XPath extension that help us posing
regular queries over data snapshots as well as time- and
change-aware queries on evo-graph. We have also shown
how evo-path expressions can be evaluated on evoXML via
equivalent XQuery expressions. Evo-path takes advantage of
the complex change information in order to retrieve and
relate data that are otherwise distant and irrelevant to each
other. Queries expressed on evo-graph include:

 Temporal queries on the history of data nodes, like
“which is the structure of categories before the time
instance 6”?
 Evo-path: //Diabetes/categories [ts() not covers {now}]

 Evolution queries on changes applied to data nodes,
like “which changes are associated with the change
responsible for the reorganization of diabetes
categories” (node &21)?
 Evo-path: <//reorg_diab_cat/*>

 Causality queries on relationships between change
nodes and data nodes, like “what are the previous
versions of all data nodes that changed due to the
reorganization of diabetes categories”?
 Evo-path: //* [evo-before() <//reorg_diab_cat>]

Contribution and Structure. In this paper, we first define
a set of basic changes on the snap-graph, and how these can
be combined to construct complex changes (section 2). We
then define a set of basic operations on the evo-graph, and a
translation from snap-graph changes to evo-graph
operations, such that as changes occur on the snap-graph,
the evo-graph grows to represent those changes together
with all the successive snap-graph versions (section 2).
Furthermore, we introduce the C2D framework (section 3), a
prototype system that implements the concepts introduced in
this paper, and progressively builds the evo-graph as
changes take place on the current snap-graph. We present

236Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I. EVOXML FOR TIME INSTANCE 1.

1

2
3

4

5
6

7

8
9

10

11
12

13

14
15

16

17
18

19

20
21

22

<evo:evoXML xmlns=””

 xmlns:evo=”http://web.imis.athena-innovation.gr/projects/c2d”>
 <evo:DataRoot evo:id=”dataroot”>

 <Diabetes evo:id=”1”>

 <categories evo:id=”2”>
 <cat evo:id=”3”>

 <age evo:id=”5”>juvenile</age>

 </cat>
 <cat evo:id=”4”>

 <age evo:id=”6”>adult onset</age>

 </cat>

 <cat evo:id=”7” evo:ts=”1” evo:previous=”4”>

 <age evo:ref=”6”/>

 <age evo:id=”9”>adult onset</age>

 </cat>

 </categories>

 </Diabetes>
 </evo:DataRoot>

 <evo:ChangeRoot evo:id=”changeroot”>

 <clone evo:id=”8” evo:tt=”1” evo:before=”4” evo:after=”7”/>

 </evo:ChangeRoot>

</evo:evoXML >

and discuss a detailed experimental evaluation of C2D
(section 3). Finally, we review the related work (section 4)
and we conclude the paper (section 5).

II. ACCOMMODATING BASIC AND COMPLEX CHANGES

IN EVO-GRAPH

A. Snap Basic and Complex Change Operations

In this section, we define the basic change operations
applied on a snap-graph S(V,E) (snap changes for short) and
present how they can be employed to define complex
changes. We consider the following snap changes:

 create(v
P
, v, label, value). Creates a new atomic

node v with a given label and value and connects it
with its parent node v

P
. If v

P
 is an atomic node, it

becomes complex.

 add(v
P
, v). Adds the edge (v

P
, v) to E, effectively

adding v as a child node of v
P
. The nodes v

P
, v must

already exist in V. If v
P
 is an atomic node, it

becomes complex.

 remove(v
P
, v). Removes the edge (v

P
, v) from E. If v

has no other incoming edges, it is removed from V.
If v

P
 has no other children, it becomes an atomic

node with the default value (empty string).

 update(v, newValue). Updates the value of an
atomic node v to newValue.

 clone(v
P
, v

source
, v

clone
). Creates a new data node v

clone

with the same label/value as v
source

, and a deep copy
of the subtree under v

source
 as a subtree under the

node v
clone

. The node v
P
 must be a parent of v

source
.

The edge (v
P
, v

clone
) is added to E, making v

clone
 a

sibling of v
source

.
The above definitions describe the effect of each snap

change to the current snap-graph. These changes leave the
snap-graph in any possible consistent state. Note that the
effect of the clone snap-change is to create a deep copy of a
subtree under the same parent node. Although clone can be
expressed as a sequence of other snap changes, we chose to

consider it as a basic operation. The reason is that deep copy
is difficult to express using successive create operations,
while at the same time it is an essential operation for
expressing complex changes like move-to, and copy-to.

A complex change applied on a node of the snap-graph is
a sequence of basic and other complex change operations
that are applied on the node itself or/and the node’s
descendants, and allows us to group operations in
semantically coherent sequences. Applying a complex
change on a snap-graph involves the application of each
constituent change in the order they appear. Consider the
complex change reorg_diab_cat applied on categories node
of the leftmost image of Fig. 1. This change is expressed as a
sequence of five basic snap changes, as follows:

reorg-diab-cat (&2) {

 clone (&4, &6, &9)

 add (&3, &6)

 remove (&4, &6)

 create (&3, &16, “type”, “insulin dependent”)

 create (&4, &19, “type”, “non insulin dependent”) }

B. Capturing Versions and Changes with Evo-graph

In our approach, snap changes are not actually applied on
the snap-graph, but on the evo-graph. This is shown in Fig.
2, which illustrates the effects of snap changes to the evo-
graph. Fig. 2 depicts three images for each snap change; the
leftmost image shows the initial snap-graph before the
change, the rightmost image shows the current snap-graph
after the snap change, and the middle image shows the evo-
graph fragment encompassing both snapshots, together with
the change. Notice that these snap-graph fragments are
actually reductions [16] of the respective evo-graph under
different time instances. Thus, the create operation in Fig. 2
actually causes node &4 to be added under the parent node
&5, and not under &2, as would be the case if create was
applied directly on the snap graph. This is a technical issue
tackled with at the implementation level, and does not
introduce any ambiguities.

In order to implement snap changes on an evo-graph G
we introduce the following evo-graph operations:

 addDataNode (vD
P
, vD, label, value). Creates a new

atomic data node vD as a child of vD
P
 with a given

label and a value. If vD
P
 is an atomic node, it turns

into complex.

 addDataEdge (vD
P
, vD). Creates a new data edge

from node vD
P
 (parent) towards node vD (child). The

two nodes must already exist in VD. If vD
P
 is an

atomic node, it turns into complex.

 applyAtomicChange(vD
1
, vD

2
, value, vC, vC

P
, label,

timestamp). This operation “evolves” node vD
1
 to

node vD
2
, as the result of applying a snap change.

First, a new atomic data node vD
2
 with the same

label as vD
1
 and a given value is created, and is

connected as a child of all the current parents of vD
1
.

Then, a new atomic change node vC with the label
and timestamp is created, and is connected as a child
of node vC

P
єVC

c
. The label denotes one of the snap

changes defined previously. Finally, a new evolution
edge e = (vD

1
, vC, vD

2
) is created between the data

nodes vD
1
, vD

2
 and the change node vC.

237Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

...
D

D

...

...

C

B

remove (&2, &4) at T=8

B

A
&1

&2

snap-graph

T=start
snap-graph

T=8

&3
D

&4

B

A
&1

&5

C

&3

evo-graph

T=8

B

A &1

&2

C

&3
D

&4

8

remove

&5

&4

...

...

...

C

B

create (&2, &4, D, 9) at T=2

B

A
&1

&2

snap-graph

T=start
snap-graph

T=2

&3

B

A
&1

&5

C

&3

evo-graph

T=2

A &1

C

&3

D

&4

2

create

&6

&5

&4

99

D

...

...

C

B

add (&2, &4) at T=12

B

A
&1

&2

snap-graph

T=start
snap-graph

T=12

&3
D

&4

B

A
&1

&5

C

&3

evo-graph

T=12

B

A &1

&2

C

&3
D

&4

12

add

&6

&5

&4

...

...

...

B 5

update (&2, 10) at T=5

A

update

&1

&2

5

snap-graph

T=start

B

A
&1

&3

10

snap-graph

T=5

B

&1

&2

5

&4

B

&3

10

evo-graph

T=5

C

...

C

B

clone (&3, &4, &2) at T=3

B

A
&1

&2

snap-graph

T=start
snap-graph

T=3

&3

B

A
&1

&5

C

&3

evo-graph

T=3

B

A &1

&2

C

&3

C

&4

3

clone

&6

&5

&4

...

Effect of snap changes

 on evo-graph reduction

for T=start

B &2

reduction

for T=2

reduction

for T=start

reduction

for T=12

reduction

for T=start

reduction

for T=5

reduction

for T=start

reduction

for T=3

reduction

for T=start

reduction

for T=8
&6

Figure 2. Effect of snap change operations on the evo-graph.

 applyComplexChange(vD
1
, vD

2
, vC, vC

p
, label,

timestamp, {vC
1
, vC

2
, ..., vC

n
}). This operation

“evolves” node vD
1
 to node vD

2
, as the result of

applying a complex change operation on the snap-
graph. First, a new atomic data node vD

2
 with the

same label as vD
1
and the default value (empty

string) is created, and is connected as a child of all
the current parents of vD

1
. A new complex change

node vC with the label and timestamp is created,
and is connected as a child of the complex change
node vC

pєVC
c
. The label is the name of the

complex change and can be any string. After that,
vC is connected as a parent of the change nodes
{vC

1
, vC

2
, ..., vC

n
}. Finally, a new evolution edge

e=(vD
1
, vC, vD

2
) is created between the data nodes

vD
1
, vD

2
 and the change node vC.

Note that we employ two separate evo-graph
operations for applying snap-graph basic and complex
changes. For complex changes, the applyComplexChange
is used, which creates a new complex change node, a new
version for the affected data node, a new evolution edge
connecting the change node and the two data node
versions and finally connects the complex change node as
the parent of its constituent change nodes. For basic
changes, the applyAtomicChange is used, which creates a
new atomic change node, a new version of the data node
that is affected by the change, and a new evolution edge.
The exact implementation of each snap change in terms of
evo-graph operations is given in TABLE II. .

For each snap change in TABLE II. , a timestamp is
given (appears as t) and, if this change is part of a complex
change, the parent complex change (vC

P
) is also specified.

If no parent complex change is specified, we assume the
parent is the change root rC. Note, that all snap change
implementations in TABLE II. start with
applyAtomicChange, which creates the corresponding
change node and the associated data node in evo-graph.

TABLE II. ACCOMMODATING SNAP CHANGES IN EVO-GRAPH.

1

2
3

4

5

create (vD
P, vD, label, value), t, vC

P

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘create’, t);

 for vigetCurrentChildren(vD
P)

 addDataEdge (v´D
P,vi);

 // create the new data node and connect it to the new parent node

 addDataNode (v´D
P, vD, label, value); }

1

2
3

4

add (vD
P, vD), t, vC

P

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘add’, t);

 //connect the new parent node to all current children plus vD

 for vi(getCurrentChildren(vD
P)vD)

 addDataEdge (v´D
P,vi) ; }

1
2

3

4

remove (vD
P, vD), t, vC

P

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘remove’, t);

 //connect the new parent node to all current children except for vD

 for vi(getCurrentChildren (vD
P)-vD)

 addDataEdge (v´D
P,vi); }

1
update (vD, newValue), t, vC

P

{ applyAtomicChange(vD, v´D, newValue,vC, vC
P, ‘update’, t) }

1

2
3

4

5
6

7

8
9

clone (vD
P, vD

source, vD
clone), t, vC

P

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘clone’, t);

 for vi(getCurrentChildren (vD
P)

 addDataEdge (v´D
P,vi);

 //clone the source data node

 addDataNode (v´D
P, vD

clone, vD
source

.label, vD
source

.value);
 //create a deep copy of the cloned node

 for vigetCurrentChildren (vD
source)

 addDataNode(vD
clone, v´i, , vi.label, vi.value);

 repeat step 7 for vD
source = vi and vD

clone=v´i }

238Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

III. IMPLEMENTATION AND EVALUATION

A. The C2D Framework

We have implemented all above concepts into the C2D
(standing for Complex Changes in Data evolution)
framework. C2D has been developed in Java, on top of
Berkeley DB XML [3], an embedded XML database used
to manage the evoXML representation of evo-graphs. In
C2D, changes applied on the snap-graph are fed into a
process that populates the evo-graph. A snap change is
always applied on the current snap-graph (represented in
XML in C2D), which is actually produced as a reduction
[16] of the evo-graph for the time instance T=now. This
flow is depicted in Fig. 3. The top layer in Fig. 3 is the
view layer, where changes are launched. The purpose of
the logical model layer is to guide the translation processes
between the view layer and the storage representation
layer, where changes actually take place.

Change operations on the evo-graph are implemented
as XML update operations on the corresponding evoXML.
Expressing evo-graph operations with the XQuery Update
language is straightforward. For example the
addDataNode (&17, &19, “type”, “non insulin
dependent”) operation is expressed with the following
XQuery Update insert expression on the evoXML.
insert node <type evo:id=“19”>non insulin dependent </type>

into

/evo:evoXML/evo:DataRoot/Diabetes/categories/cat[evo:id=“17”]

B. Experimental setting

Our goal was to examine how our approach depends
on a number of factors that characterize the data. We first
examined the space efficiency of evoXML for various
configurations, regarding: the structure of the initial XML
tree, the type of snap changes, and the selectivity of the
elements. We also examined the performance of the
reduction process with respect to the size of the evoXML
file. Note that the comparison with other versioning
approaches [4], [6], [7] was not pursued, as these works do
not consider the role of changes as first class citizens in
storing and querying evolving data.

Experiments were performed over synthetic XML data,
on a PC with Intel Core 2 CPU 2.26 GHz, and 4.00 GB of
RAM. The initial XML file was generated with [19] and
contained about 10

5
 elements, over which 10

4
 snap

changes were sequentially applied as XQuery Update
statements. A new version was assumed after every 1000
changes; therefore 10 successive versions have been
created for each setting. We recorded the size (in terms of
the number of XML elements) of each “snap” version, and
the size of the evoXML file at the same instance.
Furthermore, we examined the performance of the
reduction process for the current snapshot (T=now), and
the initial snapshot (T=start).

Regarding the structure of the initial data, we used two
XML files with the same number of elements: (a) one
corresponding to a snap-graph with a “deep” tree structure
(denoted s1) with five levels and elements having a fan-out
of 10, and (b) a file with a “broad” tree structure (denoted
s2) with only two levels and elements with a fan-out of

Figure 3. C2D framework overview.

about 330 elements. We have applied three sets of snap
changes: (a) equal percentage for all changes except clone
(denoted t1), (b) 80% update and 20% create and remove
(denoted t2), and (c) equal percentage for all changes
including clone (denoted t3). Finally, concerning elements
selectivity, changes have been applied either on all
elements (denoted n1) or on a fixed set of pre-selected
elements so that each element is affected by 5 changes on
average per version (denoted n2).

We have examined the following combinations of the
above parameters: (t1n1), (t3n1), (t2n1), and (t2n2) for each of
s1, s2. t1n1 captures the typical case when random changes
are uniformly applied on all elements. t3n1 is similar to
t1n1, but it also includes clone. We have separately
examined the clone operation, as it may arbitrarily result in
the addition of a large amount of data. t2n1 captures the
case where most (80%) change operations are update on
random leaf elements, and only 20% are create or remove.
Finally, t2n2 is like the previous case except that changes
are concentrated on a pre-selected fixed set of elements.

Intuitively, we expect that the size of the evoXML
depends on the number of snap changes performed. We
also expect that it depends on the average fan-out of the
snap-graph, while it remains insensitive to its average
height. This is due to the way that each snap change
operation is implemented on the evo-graph. Next, we
present and discuss the results.

C. Results and Discussion

In Fig. 4 (a) and (b) we present the evoXML sizes per
version. Subsequently, we discuss how this size is affected
by the aforementioned configurations parameters.

File structure. For all configurations, better space
efficiency is achieved for s1. For smaller fan-outs (s1), the
evoXML has a smoother increase in size than for large
fan-outs (s2). A snap change occurring on an element adds
evo:ref elements for all of its children (i.e. fan-out) that are
still valid in the new version. Hence, the increase in the
evoXML size is relative to the average fan-out.

Type of changes. t2 outperforms t1 and t3. The majority
of changes in t2 are update, which have a smaller impact
on the evoXML size. Again, the key point is the number of
new elements that each change adds. Observe from
TABLE II. that all changes add at least two new elements;

239Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

(a) (b) (c) (d)

Figure 4. evoXML size (a), (b), accumulative snapshot size (c) and current snapshot reduction time (d) per version for various configurations.

one evolved data element and one change element. update
adds only these two elements, whereas create and add
insert one additional element for the new child, plus
evo:ref elements for its siblings. remove results in inserting
evo:ref elements in the evoXML for all the siblings of the
removed element. Finally, clone adds a variable number of
elements according to the height and average fan-out of
the subtree that is cloned. On the other hand, the
percentage of create and remove in t1 is higher. In t3, the
use of clone further increases the file size by creating a
deep copy of the subtree of the elements on which it is
applied.

Selectivity of elements.Applying changes randomly on
all elements (n1) seems to have a smoother impact on the
increase of the file size (e.g., compare t2n1 and t2n2 for
each of s1, s2). This is due to the fact that changes are
uniformly distributed over all the elements. On the other
hand, the increase is higher when changes are targeting a
fixed set of elements (n2). Changes in t2n2 are sequentially
applied on the same elements, i.e., create is applied on the
same elements, increasing the number of their children and
thus the number of evo:ref elements to be inserted when a
subsequent create occurs on the same element.

Overall, the evoXML size depends almost linearly on
the number of the snap changes applied, given that the
average fan-out is constant. Moreover, the increase rate of
the evoXML size is proportional to the average fan-out of
its elements. This is more evident in t2n2 for s1, where the
average fan-out of the elements sustaining changes
increases significantly per version, resulting in a boost in
the evoXML size, whereas in s2 the fan out increase rate is
much smoother.

In Fig. 4 (c) we present the accumulative size of the
snapshots produced per version. This approach can be
considered as an alternative to evoXML. For space
reasons, we only depict the series for s2, as s1 shows a
similar trend. The accumulative size of all snapshots per
version is significantly bigger than the evoXML size, for
all runs over s1. The same holds for all configurations of
s2, except for t3n1 where many evo:ref elements are added
in the evoXML file. Note that the overlap of the series is
due to the small variance in the accumulative snapshot size
between configurations.

Regarding the performance of our reduction algorithm,
we have measured the time the reduction process takes for

producing the current and the initial snapshots. The results
for the current snapshot for s2 are shown in Fig. 4 (d),
where the mark signs are the recorded time values, and the
series are the trends for each configuration. A safe
conclusion is that the reduction time depends mostly on
the evoXML size. For small file sizes, the reduction
performs the same for all versions. In addition, the
increase rates in time are similar for both the current and
the initial snapshot, for both s1 and s2. Therefore, the time
instance parameter of the reduction process does not affect
the reduction performance.

Concluding, both space and time efficiency are mostly
affected by the average fan-out, which deteriorates as more
changes are applied. That is mainly because of the evo:ref
elements that are added for all children of an element that
“evolves”. Still, our approach is much more efficient than
retaining separately every different version. Future
optimizations will take into consideration the above and
will aim to encode evo:ref elements and to the overall
compression of the file.

IV. RELATED WORK

Numerous approaches have been proposed for the
management of evolving semistructured data. One of the
early works [6] proposes DOEM, an extension of OEM
capable of representing changes, such as Create Node, Add
Arc, Remove Arc and Update Node, as annotations on the
nodes and the edges of the OEM graph. In [10], the
authors employ a diff algorithm for detecting changes
between two versions of an XML document and storing
them either as edit scripts or deltas. For each new version,
they calculate the deltas with the previous and retain only
the last version and the sequence of deltas. A similar
approach is introduced in [7], where instead of deltas
calculation, a referenced-based identification of each
object is used across different versions. New versions hold
only the elements that are different from the previous
version whereas a reference is used for pointing to the
unchanged elements of past versions. In [9] the authors
propose MXML, an extension of XML that uses context
information to express time and models multifaceted
documents. Recently, there are works that deal with
change modeling [15] and detection [13] in semantic data,
in which the aforementioned problems are applied to
ontologies and RDF.

100

120

140

160

180

200

220

240

260

0 1 2 3 4 5 6 7 8 9 10

evoXML size / version (s1)

t3, n1

t2, n2

t1, n1

t2, n1

el
em

en
ts

(t
h

o
u

sa
n

d
s)

100

600

1.100

1.600

2.100

2.600

0 1 2 3 4 5 6 7 8 9 10

evoXML size / version (s2)

t3, n1
t2, n2
t1, n1
t2, n1

el
em

en
ts

(t
h

o
u

sa
n

d
s)

0

200

400

600

800

1.000

1.200

1.400

0 1 2 3 4 5 6 7 8 9 10

acc. snapshot size / version

(s2)

t3,n1

t2, n2

t1,n1

t2,n1

el
em

en
ts

(t
h

o
u

sa
n

d
s)

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10

reduction time / version (s2)

t3, n1
t2, n2
t1, n1
t2, n1

se
co

n
d

s

240Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Most approaches employ temporal extensions for the
lifespan of different versions of documents. In [1], [6], the
authors enrich data elements with temporal attributes and
extend query syntax with conditions on the time validity of
the data. In [14], the authors model an XML document as
a directed graph, and attach transaction time information at
the edges of the graph. Techniques for evaluating temporal
queries on semistructured data are presented in [8], [18]. In
[8] the authors propose a temporal query language for
adding valid time support in XQuery. In [18] the notion of
a temporally grouped data model is employed for
uniformly representing and querying successive versions
of a document. In [11], the authors extend this technique
for publishing the history of a relational database in XML
and employ a set of schema modification operators
(SMOs) for representing the mappings between successive
schema versions. In [1] the problem of archiving curated
databases is addressed. The authors develop an archiving
technique for scientific data that uses timestamps for each
version, whereas all versions are merged into one
hierarchy. This is in contrast with approaches that store a
sequence of deltas and apply a large number of deltas for
retrieving backwards the history of an element. Lastly, [5]
deals with provenance in curated databases. All user
actions for constructing a target database are recorded as
sequences of insert, delete, copy and paste operations
stored as provenance links from current data towards
previous versions of the target database or external source
databases.

Compared to the above approaches, our model
introduces a change-based perspective for evolving data,
in which changes are not derived by data versions but are
modeled as first class citizens together with data. In our
view, changes are not described through diffs or
transformations with edit scripts between document
versions, but are complex objects operating on data, and
exhibit structural, semantic, and temporal properties.
Change-centric modeling of evolving semistructured data
can provide additional information about what, why, and
how data has evolved over time.

V. CONCLUSIONS

In this paper, we showed how a data model called evo-
graph can be used to progressively capture the structure of
changes and the history of data. We believe that capturing
structured changes within a data model enables a range of
very useful queries on the provenance of data, and on the
semantics of data evolution. We defined basic and
complex changes over snap-graph, and described the
process of building evo-graph step by step, as changes
occur on the current snap-graph. We outlined C2D, a
framework based on XML technologies that implements
the ideas presented in this paper. We evaluated C2D using
synthetic XML data for its space and time efficiency, and
discussed the results.

ACKNOWLEDGMENT

This research has been co-financed by the European
Union (European Social Fund - ESF) and Greek national

funds through the Operational Program "Education and
Lifelong Learning" of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thales.
Investing in knowledge society through the European
Social Fund.

REFERENCES

[1] T. Amagasa, M. Yoshikawa, S. Uemura, “A Data Model
for Temporal XML Documents”, In DEXA 2000.

[2] P. Amornsinlaphachai , N. Rossiter and M. A. Ali,
“Translating XML Update Language into SQL”, Journal of
Computing and Information Technology, 2006, 2, 91–110.

[3] Berkeley DB XML. http://www.oracle.com/technetwork/
database/berkeleydb/overview/index.html. 19 June 2012.

[4] P. Buneman, S. Khanna, K. Tajima, W.C. Tan, ”Archiving
Scientific Data”, ACM Transactions on Database Systems,
Vol. 20, pp 1-39, 2004.

[5] P. Buneman, A. P. Chapman, J. Cheney, “Provenance
Management in Curated Databases”, In SIGMOD’06.

[6] S. Chawathe, S. Abiteboul, J. Widom, “Managing
Historical Semistructured Data”, Journal of Theory and
Practice of Object Systems, Vol. 24(4), pp.1-20, 1999.

[7] S-Y. Chien, V. J. Tsotras, C. Zaniolo, “Efficient
Management of Multiversion Documents by Object
Referencing”, In VLDB 2001.

[8] D. Gao, R. T. Snodgrass, “Temporal Slicing in the
Evaluation of XML Queries”, In VLDB 2003.

[9] M. Gergatsoulis, Y. Stavrakas, “Representing Changes in
XML Documents using Dimensions”, In 1st International
XML Database Symposium, (XSym 2003).

[10] A. Marian, S. Abiteboul, G. Cobena, L. Mignet, “Change-
Centric Management of Versions in an XML Warehouse”,
In VLDB 2001.

[11] H.J. Moon, C. Curino, A. Deutsch, C.Y. Hou, C. Zaniolo,
“Managing and querying transaction-time databases under
schema evolution”, In VLDB 2008.

[12] National research council - Committee on Frontiers at the
Interface of Computing and Biology. Catalyzing Inquiry at
the Interface of Computing and Biology. Edited by J. C.
Wooley, H. S. Lin., National Academies Press, 2005.

[13] V. Papavassiliou, G. Flouris, I. Fundulaki, D. Kotzinos, V.
Christophides, “On Detecting High-Level Changes in
RDF/S KBs”, In ISWC 2009.

[14] F. Rizzolo, A. A. Vaisman, “Temporal XML: modeling,
indexing, and query processing”, In VLDB J. 17(5): 1179-
1212 (2008).

[15] F. Rizzolo, Y. Velegrakis, J. Mylopoulos, S. Bykau,
“Modeling Concept Evolution: a Historical Perspective”, In
ER 2009.

[16] Y. Stavrakas, G. Papastefanatos, “Supporting Complex
Changes in Evolving Interrelated Web Databanks”, In In
CoopIS 2010.

[17] Y. Stavrakas, G. Papastefanatos, “Using Structured
Changes for Elucidating Data Evolution”, In DaLi’11 (with
ICDE 2011).

[18] F. Wang, C. Zaniolo, “Temporal Queries in XML
Document Archives and Web Warehouses”, In TIME 2003.

[19] Xmlgener: Synthetic XML data generator.
http://code.google.com/p/xmlgener/.

[20] XQuery Update Facility 1.0.
http://www.w3.org/TR/xquery-update-10/, W3C
Recommendation, 17 March 2011.

241Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

http://www.oracle.com/technetwork/database/berkeleydb/overview/
http://www.oracle.com/technetwork/database/berkeleydb/overview/
http://code.google.com/p/xmlgener/

