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Abstract—To group online XML data streams by structure,
this paper introduces an algorithm named the CXDSS-SWEH.
It is a dynamic clustering algorithm based on sliding windows
and exponential histograms. Firstly, the algorithm formalizes
an XML document into a structure synopsis named Temporal
Cluster Feature for XML Structure (TCFXS). Secondly, it allots
the TCFXS to some cluster through measuring similarities
between the TCFXS and each existing cluster. At last, updating
clusters in sliding windows are real-time modified through
criterions of false positive exponential histograms. We have
conducted a series of experiments involving real and simulative
XML data streams for validating empirical effects on clustering
quality, memory and time consumption. Our experimental
results have confirmed: (1) clustering quality of the CXDSS-
SWEH is close to the methods XCLS and SW-XSCLS; (2)
memory and time consumption of the CXDSS-SWEH are
efficient and effective, compared to the SW-XSCLS.

Keywords-XML data stream; temporal cluster feature

I. I NTRODUCTION

The eXtensible Markup Language (XML) [1] is a self-
description language used for data exchange and sharing. It
has become more prevalent on the Web after recommended
by W3C in February 1998 [8]. A lot of applications and
services produce huge amounts of online XML data streams.
Examples abound from online network monitoring to stock
market updates. To analyze this category of data, many
researchers focus on clustering XML data and propose a
number of algorithms [3]–[12]. However, existing clustering
methods mainly focus on static XML data and, generally,
need to scan data many times. Though technologies of
mining XML data have recently been extended to XML data
streams [5], [7], [10], [11]. Most of methods query XML
streams through different methods [5], [7], [10].

This paper proposes a dynamic algorithm named the
CXDSS-SWEH to cluster online XML data streams by
structure. It uses technologies of sliding windows and expo-
nential histograms. Firstly, the algorithm formalizes an XML
document into a structure synopsis named Temporal Cluster
Feature for XML Structure (TCFXS). Secondly, it allots
the TCFXS to some cluster through evaluating similarities
between the TCFXS and each existing cluster. In fact, each

existing cluster in sliding windows is a team of TCFXSs,
which must satisfy criterions of false positive exponential
histograms. At last, updating clusters in sliding windows
are real-time modified through merging, deleting and so on.
To validate empirical effects, we have conducted a series
of experiments involving real and simulative XML data and
compared with the static clustering method XCLS in the
literature [8] and the stream clustering method SW-XSCLS
in the literature [11] and accepted some promising results.

The remainder of this paper is organized as follows.
Section 2 surveys the related work. Section 3 describes the
problems and basic ideas. Section 4 presents a structure
synopsis and a method of computing similarity between two
synopses. Section 5 discusses the online clusters maintained
in sliding windows. Section 6 provides experimental data,
design, and results. Section 7 concludes the paper.

II. RELATED WORK

Existing technologies of clustering XML data mainly
focus on static data. A great lots of methods for computing
similarities between XML documents have been developed,
ranging from various tree edit distance methods [3], [9],
[12] to direct extracting document feature approaches [4],
[6], [8].

The basic idea in all of these tree edit distance algorithms
is to find the minimum cost of transforming a tree to another
tree by using edit operators. A key differentiator of most of
algorithms is the set of edit operations allowed or the struc-
ture of trees. For example, Theodore et al. [3] exploited the
tree nature of XML documents and provided techniques for
tree matching, merging and pruning. Nierman and Jagadish
[9] proposed a method of edit distance including five kinds
of operators. Zheng et al. [12] described an XED distance
to evaluate difference between documents.

Different from edit distance methods, many approaches
use other kinds of features to present XML documents, then
directly measure similarities between features. Flesca [4]
showed structure of XML documents into a time serial,
appearance of every tag into an impulse and computed
similarities between documents by the frequency domain
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of Fourier transform. Wang et al. [6] built an S-GRACE
based on structure of documents and proposed a method of
computing similarities between documents by graph match-
ing. Nayak [8] modelled structure of XML documents into a
Level Structure (LF), which can be seen as a simple ordered
labelled tree and proposed a method of directly computing
similarities between LSs.

The above methods generally need to scan and parse data
many times. But, XML data streams only are permitted to
scan or parse once. So, these static methods are not directly
suitable for XML data streams.

Recently, technologies of mining XML documents has
been successfully extended to XML data streams. But, these
methods mainly focus on query fields. Koch and Scherzinger
[5] introduced the notion of XML Stream Attribute Gram-
mars (XSAGs), which is the first scalable query language
for XML data streams. Yang et al. [10] built a SAX-based
XML data streams query evaluation system and designed an
algorithm that consumes buffers in line with the concurrency
lower bound. Mayorga et al. [7] presented a method for
building a stream synopsis to approximately query XML
streams.

Mao et al. [11] proposed a clustering stream method
named the SW-XSCLS. It extended LS features in the
literature [8] to present stream synopses, and used sliding
windows to maintain features as the CXDSS-SWEH in this
paper. However, two methods have important differences as
follows. (1) Methods of computing similarities are different.
The SW-XSCLS uses the original method in the literature
[8]. The CXDSS-SWEH proposes a new feature named
Node List and a method of computing similarities between
features. (2) Steps of combining two clusters are different.
The SW-XSCLS uses same steps as those in the literature
[2] and the CXDSS-SWEH presents a new method to save
usable memory.

III. PROBLEM STATEMENT

A. XML Data Stream

An XML data stream in query fields often is defined as a
massive, continuous sequence of tokens in XML documents.
Among, tokens, respectively, denote beginning tokens, end-
ing tokens of elements, and actual values of elements or
attributes. The paper focuses on clustering structure between
XML documents. So, an XML data stream is defined as a
massive, continuous sequence of documents, as shown in
definition 1.

Definition 1: Let S = {X1, . . . , Xi, . . .} be an XML data
stream, and{< T1, E1 >, . . . , < Ti, Ei >, . . .} be time
stamps of these documents.Ti andEi, respectively, denote
the timestamps of document beginning and ending, where
i < m, such thatTi < Tm, Ei < Em. Xt is a sequence
of tokens produced by parsing an XML document based on
SAX.

B. Clustering XML Data Streams by Structure

Important differences between data streams and traditional
data sets are that arriving data units are massive, continuous
and infinite. To adapt to these characteristics, features to
represent and analyze these data general use approximate
formats. For semi-structured XML documents, approximate
formats can be structure, content, or structure+content. The
clustering method in this paper only focuses on structure
synopses and omits all content information. It defines a
Temporal Cluster Feature for XML Structure (TCFXS) as a
structure synopsis. The detailed information about TCFXSs
will be addressed in Section 4.

A sliding window mode is a better method of solving
massive or infinite units in data streams. It only considers
and deals with nearly arriving units at any time. It empha-
sizes that importance of units in a stream will wear off with
time. To real-time maintain units in sliding windows, new
added units and overdue units must be managed timely. The
technology of exponential histograms is one of methods to
manage data synopses in sliding windows. This paper uses
the online method in the literature [2] for reference and de-
fines an Exponential Histogram of Temporal Cluster Feature
for XML Structure (EHTCFXS) to manage structure features
in sliding windows. An EHTCFXS is a team of TCFXSs
based on criterions of false positive exponential histograms.
The detailed definition and maintaining algorithm will be
addressed in Section 5.

Based on the above idea, clustering XML data streams
by structure based on sliding windows and exponential
histograms can be shown in definition 2. The definition tells
us that there are three key problems must be solved to cluster
online XML data streams, including of building TCFXSs,
measuring similarities between TCFXSs, and maintaining
EHTCFXSs in sliding windows timely.

Definition 2: Given an XML data stream in a sliding
window at time t, the clustering solution, denoted by
C = {C1, C2, . . . , Cq}, is a partition ofn XML documents,
where Ci can be represented by an EHTCFXS. Among,
EHTCFXS = {TCFXS0, . . . , TCFXSi}; n is the num-
ber of XML documents in the stream;q is the number of
clusters. The partition must satisfy two following rules: (1)
TCFXS(C1 ∪ C2 ∪ . . . ∪ Cq) = TCFXS(Xi ∪ Xi+1 ∪
. . . ∪ Xi+n−1) and (2) TCFXS(Ci) ∩ TCFXS(Cj) 6=
TCFXS(Xi).

IV. T EMPORAL CLUSTER FEATURES

A. Temporal Cluster Features

Heterogeneous XML documents are basic units of XML
documents streams. These XML documents with different
structure and contents imply complex hierarchy and seman-
tic information. To extract cluster features by structure, many
secondary information can be overlooked. This paper defines
a structure feature, called Node List, for a set of XML
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documents. A Node List is a list of pairs (node code and
level value). They, respectively, present distinct elements
in documents and the hierarchy of each element in own
document.

A distinct integer in a Node List replaces with the name
of each distinct element in XML data streams. It denotes the
first appearance order for the start event of a element in a
start events stream (only recording start events) in a sliding
window. Figure 1-(a) presents an example of a sequence
of tokens parsed through SAX and the order of these start
events, where the sequence of tokens is the first document
arriving at sliding windows. The coding method can ensure
that elements with same name in different documents use a
same integer. A global name-index list in sliding windows
will be defined and used to code names of distinct elements
in XML data streams. It consists of pairs (element name and
coding integer), as shown in Figure 1-(b). The coding integer
of an element name will be acquired by searching the global
name-index list. The corresponding integer is its coding
integer when finding the element name from the global
name-index list; otherwise existing max value plus one is
its coding integer. At same time, a pair (the element name
and the coding integer) is inserted in the name-index list as
a new node. The level values of Node Lists can be acquired
by a runtime-stack technology in the literature [13]. Figure
1-(c) gives an example to illustrate the process of acquiring
level values by a runtime-stack. The start event of each
document activates a null stack. Start events and end events
of elements, respectively, inspire pushing and popping. The
level value of an element just is the corresponding pointer
value of the element in the stack. Figure 1-(d) presents the
Node List formalized by the XML document in Figure 1-(a).

Definition 3: Given an XML data streamS =
{X1, . . . , Xn}, let (NodeList1→n, n, t) be a Tempo-
ral Cluster Feature for XML Structure (for short
TCFXS(S)), whereNodeList1→n =

∑n
i=1 NodeListi =

NodeList(X1 ∪X2 ∪ . . . ∪Xn); n is the number of XML
documents included inS; t is the time stampTn of the
newest arriving XML document inS.

Two Node Lists can be combined by property 1 on basis
of the above definition of Node Lists. The actual operating
steps include comparing ordered integers, and inserting a
new node. Figure 2 presents a schematic illustration of
combining two Node Lists. The combining result only
contains one copy of integer 1 and 2 because of they being a
same level, and contains two copies of integer 3 and 5 with
different level values. These integers in the combining Node
List still satisfy partial order. The definition 3 is a Temporal
Cluster Feature for XML Structure on basis of Node Lists.
Two TCFXSs without time overlap in an XML data stream
also are combined by property 2.

Property 1: Given two Node Lists, the result of combin-
ing them can be acquired by uniting all elements of every
Node List, such that repeating elements of same level value

and same code only keeps one copy.
Property 2: Given two TCFXSs without time overlap

TS1 and TS2, the result of jointing two TCFXSsTS3

can be acquired by combining two Node Lists, adding two
number of documents, and maximizing two time stamps as
following:
TS3.NodeList = TS1.NodeList ∪ TS2.NodeList,
TS3.n = TS1.n + TS2.n,
TS3.t = Max{TS1.t, TS2.t}.
B. Similarities between Two TCFXSs

The equation (1) is defined to compute similarities be-
tween two Node Lists. Its range is [0,1], among 1 denotes
that two Node Lists are same, otherwise 0 denotes that two
Node Lists have not any common element. The comparing
progress of two Node Lists accords with the comparing
progress of ordered integers. The progress can be described
as the following: (1) node values are basic moving units;
(2) if a node value in Node List 1 is less or equal to that
in Node List 2, the Node List 1 is moved to its next node
value and the progress continues, otherwise, the Node List 2
is moved to its next node value and the progress continues.
Two Node Lists cannot back up in the comparing progress.
So, the time complexity isO(max{N1, N2}) in the worst
state, whereN1 and N2, respectively, represent the total
number of all elements in Node List 1 and Node List 2.
As definition 3, at timet, structure synopses in a sliding
window are TCFXSs including Node Lists. So, the similarity
between two TCFXSs is equal to the similarity between
corresponding Node Lists in the two TCFXSs.

NodeSim1↔2 =
ComWeight1 + ComWeight2
ObjWeight1 + ObjWeight2

=

∑M1
i=1(1/r)Li

1 +
∑M2

j=1(1/r)Lj
2

∑N1
k=1(1/r)Lk

1 +
∑N2

k=1(1/r)Lk
2

,

(1)

WhereComWeight1 and ComWeight2, respectively, de-
note the total weight of common elements in Node List 1 and
Node List 2.ObjWeight1 and ObjWeight2, respectively,
denote the total weight of all elements in Node List 1 and
Node List 2.M1 andM2, respectively, represent the sum of
occurrences of common elements in Node List 1 and Node
List 2. N1 and N2, respectively, represent the sum of all
elements in Node List 1 and Node List 2.Li

1 is level value
of the ith common element in Node List 1.Lj

2 is the level
value of thejth common element in Node List 2.Lk

1 and
Lk

2 , respectively, represent the level value of thekth element
in Node List 1 and Node List 2.r is the increasing factor
of weight proposed by users.

V. M AINTAINING TCFXSS IN SLIDING WINDOWS

A. EHTCFXSs

Definition 4: Let an EHTCFXS be a team of
TCFXSs in sliding windows, that isEHTCFXS =
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(a) an XML document
parsed through SAX

(a) an XML document
parsed through SAX

(d) the Node List

(d) the Node List

W4F_DOC

W4F_DOC

Actor
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Name

Name

FirstName

FirstName

1

1

2

2

3

3

4

4

LastName

LastName

5

5

���

���

(b) a globle name-index list

(b)  a globle name-index list

start document
start element:W4F_DOC
start element: Actor
start element: Name
start element: FirstName
characters: David
end element:  FirstName
start element: LastName
characters: Aston
end element: LastName
end element: Name
start element:
Filmography
start element: Movie
start element: Title
characters: Matrix,The
end element: Title
start element: Year
���

end document

start document
start element:W4F_DOC
start element: Actor
start element: Name
start element: FirstName
characters: David
end element: FirstName
start element: LastName
characters: Aston
end element: LastName
end element: Name
start element:
Filmography
start element: Movie
start element: Title
characters: Matrix,The
end element: Title
start element: Year
���

end document
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Figure 1. An example of acquiring coding values and level values for an XML document
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Figure 2. Combining Node Lists

{TCFXS(S0), . . . , TCFXS(Si), . . .}. TCFXS(Si)
is the structure synopsis of theith sub-stream
Si = {Xi1 , . . . , Xin} with time stamp Ti1 , . . . , Tin ,
such asTij < Tim , wherej < m.

To real-time maintain TCFXSs in sliding windows, an
Exponential Histogram of Temporal Cluster Feature for
XML Structure (for short EHTCFXS) in definition 4 can
be seen as a cluster. The corresponding sub-stream of every
TCFXS in an EHTCFXS is appointed to a grade value,
which are denoted by superscripts such asSm

1 , Sm
2 , . . .. The

grade value is related to the total number of documents
in every sub-stream. The total number of documents in
every sub-stream and the total number of sub-streams in
each grade must adhere to four criterions of false positive
exponential histograms in the literature [2] as following: (1)
the timestamps of all XML documents inSi are less than
those inSj , wherei < j; (2) the number of documents in
any sub-streamS just is 20 = 1, 21 = 2, 22 = 4 . . ., and the
new arriving sub-streamSn only includes one document;
(3) the grade value ofSj is j , where the number of
documents inSj is 2j . The total number of sub-streams
in each grade must be[ 1ε ] or [ 1ε +1], asε is error parameter
proposed by users; (4) all documents in every sub-stream
afterS1 are not overdue, whereTCFXS(S1).t is in effect.
The first criterion is used to ensure that TCFXSs in an

EHTCFXS have not time overlap. The second criterion is an
inherent requirement of an exponential histogram. The third
criterion is used to limit the number of documents in every
sub-stream. Besides, it uses an optional parameter (defined
by users) to limit the total number of sub-streams in each
grade. The forth criterion denotes how to identify overdue
documents. When the first criterion is in effect, we only need
to detect the oldest TCFXS in an EHTCFXS for identifying
overdue documents.

B. Grouping XML Data Stream by Structure

At any time t, multi-EHTCFXSs are maintained in a
sliding window. When an XML documentXp arrives to
the sliding window, three interrelated processes are used
to decide which clusterXp will belong to. Firstly, Xp is
parsed and rebuild into aTCFXS(Xp). Secondly, sim-
ilarities between each existing cluster andTCFXS(Xp)
are computed and the largest similarity valuesimmax and
the correspondingEHTCFXSmax are selected. At last,
one of two managing methods is implemented according to
the result of comparingsimmax with the least similarity
threshold ω. TCFXS(Xp) is merged into the existing
clusterEHTCFXSmax, wheresimmax ≥ ω. Otherwise, a
new EHTCFXS only includingTCFXS(Xp) is built.

The steps of merging TCFXS(Xp) into
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EHTCFXSmax are introduced as follows: (1) build
a new 0-gradeTCFXS(S0) based on definition 3, where
S0 = {Xp}; (2) addTCFXS(S0) into the set of 0-grade
sub-streams inEHTCFXSmax. If the total number of
0-grade sub-streams is[ 1ε +2], two oldest TCFXSs in the set
are merged into a new 1-grade by property 2; (3) repeat the
step 2 for sets of the different grade sub-streams until the
total number of each grade sub-streams meet with the 3th
criterion of false positive exponential histograms described
in Section 5.1; (4) compare the total number of documents
in the sliding window with the size of the sliding window
N , and then delete overdue TCFXSs and corresponding
EHTCFXS where the total number of documents exceeds
N .

If similarities betweenTCFXS(Xp) and each existing
cluster are less than the least similarity threshold, a new
EHTCFXS only includingXp will be built. Online maintain-
ing these EHTCFXSs needs memory, so the total number of
clusters in a sliding window is limited to usable memory.
When the total number of EHTCFXSs in a sliding window
exceeds the allowed largest numberNC, some rules are used
to decrease the total number of EHTCFXSs in the sliding
window. This paper proposes a simply and direct method to
delete some EHTCFXSs according to the following rules.
One rule is that the selected EHTCFXS should include the
least number of documents; another is that the selected
EHTCFXS must include a special TCFXS which is in
0-grade sub-streams and has the oldest time stamp. The
first rule indicates the EHTCFXS is an isolated point in
streams. The second rule denotes that the EHTCFXS doesn’t
be updated lately and be close to overdue clusters. The
experiments in this paper use the second rule, reasons are
as the following: (1) deleting isolated points only increases
few memory; (2) mining isolated points is one of goals of
clustering research; (3) the technology of sliding windows
focuses on recent or current clusters, which just tallies with
the goal of the second rule.

C. Algorithm and Time Complexity

Further to the above discussions, Algorithm 1 (called
Clustering XML Data Streams by Structure based on
Sliding Windows and Exponential Histograms, for short
CXDSS-SWEH) outlines incremental updating progress of
clustering results. The Step 1 directly calls sub-algorithm
CreateTCFXS(Xt, NameIndex) to build TCFXS(Xt)
for a newest arriving XML documentXt. Given the length of
the existing global name-index isLmax and the total number
of distinct elements inXt is Nt, the time complexity of
the sub-algorithm can be approximated asO(Lmax × Nt)
according to the definition and building method introduced
in Section 4.1. The initialization of clustering (Steps 2 to
4) generates an EHTCFXS only includingTCFXS(Xt).
Therefore, the overall time of Steps 2 to 4 is constant. The
first loop of Steps 6 to 8 computes similarities between each

Algorithm 1 CXDSS-SWEH.

Input:
���

is a XML document arriving on window at time t;�   is  the least similarity threshold;���
 is the largest number of EHTCFXSs included in window;�

  is the largest number of XML documents contained in window;���	��
 ��
	�	
 �
 is a list of saving pairs of element name and number;��� � �

is a group of EHTCFXSs of representing clustering results before time t.

Output:
��� � �

is a group of EHTCFXSs  which represent clustering results at time t.

1: get TCFXS(Xt) using sub-Algorithm CreateTCFXS(
���

,
���	��
 �	
	�	
 �

);

2: if (k ==0)

3: {generate an EHTCFXS
��� � �

only containing TCFXS(
� �

) ;

4:        return 
��� � �

; }

5: else{ � � ��� � � =0;� �	 
	! =k;

6:          for(i=1; i<=k; i++)

7:    { computing similarity � � �  between 
�#"

and TCFXS(
���

) ;

8:                   if (� � � > � � �$� � � ) { � � ����� � % � � � ;
�&��� � %'�#"

;}}

9:  if (NodeSim(TCFXS(
���

),
�&� � �

) >� )

10:         {  add ( ��� ) into the set of 0-gradesub-streams in 
�&��� �

;

11:                     num=the cardinal of the set of 0-gradesub-streamsin
� ��� �

;

12:        i=1;

13:        while (num =1 /* +2)

14:          {mergetwo oldest TCFXSs in the set of (i-1)-grade into Ti ;

15:               add Ti into the set of i-gradesub-streams in 
�&��� �

;

16:            num=the cardinal of the set of i-gradesub-streamsin
�&��� �

;

17:     i=i++;  }}

18:  else {generate an EHTCFXS
�&+ , -

only containing TCFXS(
� �

) ;

19: � �	 
	! =k+1;

20:  if (� �	 
	! .$��� )

21:    {delete the  overdueEHTCFXS ;

22: � �	 
	! --; }}

23:        sum number of XML documents contained in 
��� � �	 
	! � as/�0 1 � ;

24:      if (/�0 1 � >� )

25:   {get the EHTCFXS
�&2 3 4

  containing the oldest TCFXS;

26:    delete the oldest TCFXS;

27:               if (
�#2 3 4

 == null) 

28:        {delete the 
�&2 3 4

 from 
��� � �	 
�! � ;� �� 
	! --;}}

29: return
��� � �	 
	! � ;}

existing cluster andTCFXS(Xt) and chooses the largest
valueSimmax and the corresponding EHTCFXSHmax. Its
time complexity can be involved in comparing progress of
computing similarities in Section 4.2. Given the total number
of elements in two Node Lists, respectively, isN1 andN2,
the time of Steps 6 to 8 is the same as larger value in two val-
ues, that isO(Max(N1, N2)), in the worst state. Conditional
statements of Steps 9 to 17 firstly compareSimmax with
the least similarity threshold, then decide whether building a
new cluster (Steps 18 to 22) or insertingTCFXS(Xt) into
Hmax (Step 10 to 17) according to the comparing result.
Among, the work of Steps 20 to 22 adjusts the total number
of clusters through comparing the total number of existing
clusters with the largest number of clusters allowed in a
sliding window. Step 21 takesO(k) time to scan existing
clusters and delete the cluster which is not updated newly,
where k is the number of existing clusters. Step 25 takes
constant time to acquire the total number of XML documents
in the sliding window. Overdue TCFXSs and corresponding
EHTCFXS are deleted (Steps 27 to 29), where the total
number of documents exceeds threshold valueN . Give a
cluster includingM TCFXSs, deleting overdue TCFXSs
need to scan all TCFXSs. So the total time complexity
of Steps 25 to 29 isO(M). In summary, the total time
complexity of Algorithm 1 normally can be approximated as
O(Lmax×Nt +max(N1, N2)+k +M) ≈ O(Lmax×Nt),
whereO(k), O(M), O(max(N1, N2)) ¿ O(Lmax ×Nt).
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VI. EXPERIMENTAL VALIDATIONS

A. Experimental Data Sets and Design

Our experiments involve two datasets, the XMLFiles real
dataset used to evaluate cluster quality, and the XMLSim-
ples simulated dataset used to measure memory and time
consumption. The XMLFiles dataset contains 437 XML
documents. The documents are from 23 various domains
such as Movie (74), University (22), Automobile (189),
Bibliography (16), Company (35), Hospitality message (25),
Travel (10), Order (10), Auction data (4), Appointment (2),
Document page (14), Bookstore (2), Play (20), Club (12),
Medical (2), and Nutrition (1). The number of tags varies
from 10 to 100 in these sources. The nesting level varies
from 2 to 15. The XMLSimples simulated dataset randomly
is created by an XML tool named oxygen based on some
schemas of mature industries such as civil aviation and web
application. There are 10419 documents in the dataset. Their
size varies from 1k to hundreds of k.

The experiments are run in a PC with Pentium IV 2.4GHz
and Windows XP. The static algorithm XCLS in the liter-
ature [8] and the stream-oriented clustering algorithm SW-
XSCLS in the literature [11], as comparing methods, are
implemented in same conditions and criterions. To eliminate
influence of orders of XML documents and acquire more
precise clustering results, we re-adjust orders of documents
in two datasets through a hash algorithm, and simulate
smooth XML data streams.

B. Experimental Results and Analysis

Figure 3 shows intra-cluster and inter-cluster similarities
on XMLFiles dataset for three algorithms. Intra-cluster
similarities of three methods across different number of
documents are over 0.975, and inter-cluster similarities are
less 0.07, as shown in Figure 3. In essence, the XCLS and
the SW-XSCLS use same methods to compute similarities,
so the change of clusters quality is similar. However, existing
clusters in the SW-XSCLS can include fewer documents
because of removing overdue documents in sliding windows.
So the influence of Level Structures in the SW-XSCLS is
less than that in the XCLS. Results of the SW-XSCLS are
better than that of the XCLS. The intra-cluster similarity
of the CXDSS-SWEH is less than others and the inter-
cluster similarity of the CXDSS-SWEH is larger than them,
as shown in Figure 3. The reason is that the equation of
computing similarities in the XCLS and the SW-XSCLS is
not symmetrical for some peculiar documents in real dataset
XMLFiles. For example, two documents have common num-
ber of levels, but elements in their level 3 satisfy inclusion
relation instead of equivalence relation. For these documents,
similarities computed by the XCLS and the SW-XSCLS are
1, otherwise the similarity computed by the CXDSS-SWEH
is less 1. In fact, their structure is not exactly same. So, the
computing equation in the CXDSS-SWEH is more logical
than that in the XCLS and the SW-XSCLS.
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Figure 3. Quality comparison (r = 2, ε = 2, ω = 0.8, N = 100, NC =
50)
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Figure 4. Memory consumed vs. number of XML documents (r = 2, ε =
2, ω = 0.8, NC = 130)

Though the size of sliding windows is different, as shown
in Figure 4-light and right, the memory consumption of
the same algorithm has not increased evidently. But, the
memory consumption of the CXDSS-SWEH is obviously
less than that of the SW-XSCLS. The memory consumption
often consists of two part. One part is used to maintaining
clusters, and another is used to building structure synopses.
For a smooth stream, the number of clusters in a sliding
window generally fixed on at any time. A structure cluster
with high intra-cluster similarities consumes fixed memory
to save the DTD or Schema of all XML documents in the
cluster. So, the memory consumption of maintaining clusters
is steady. The SW-XSCLS consumed more memory than the
CXDSS-SWEH in building structure synopses. As described
in Section 4.1, the progress of parsing and building Node
Lists uses runtime stacks to save memory. The progress
of parsing and building Level Structures in SW-XSCLS
is based on pruning DOM trees. When the structure of
documents is complex, lots of memory is used to save trees.

Figure 5 shows a comparison of time cost on XML-
Simples data with the SW-XSCLS and the CXDSS-SWEH.
Though sizes of sliding windows are different, the trends of
time change for two methods are similar and increase with
the number of XML documents. As described in Section 5.3,
the time complexity of the CXDSS-SWEH is proportion to
the total number of distinct elements in sliding windows.
When the number of documents increases, the total number
of distinct elements generally can increase. So time cost also
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Figure 5. Time vs. number of XML documents (r = 2, ε = 2, ω =
0.8, NC = 130)

increase with the number of documents. Structure synopses
in the SW-XSCLS also are Level Structures. Time cost of
maintaining these synopses in sliding windows increases
with the number of documents, as described in the literature
[8]. The time cost of the CXDSS-SWEH is less than that
of the SW-XSCLS with the same number of documents
and parameters user-defined, as presented in Figure 5. The
equation of computing similarities in the XCLS is not
transitive. The asymmetry would lead to twice matching
progress for acquiring common elements. In the worst state,
the time complexity of each matching progress isO(m×n):
m and n, respectively, are the total number of elements in
two Level Structures. And the time complexity of matching
progress in the CXDSS-SWEH isO(max{N1, N2}): N1

and N2, respectively, are the number of elements in two
Node Lists. From angle of time complexity, these steps just
are the key steps in whole algorithm, and will take the
most time. Hence, the time cost of the SW-XSCLS increases
extremely large as the number of XML documents increases,
whereas there is no significant difference in time cost of the
CXDSS-SWEH.

VII. C ONCLUSION AND FUTURE WORK

To group an online XML data stream by structure, this pa-
per introduces an algorithm, named CXDSS-SWEH, based
on sliding windows and exponential histograms. The method
parses XML documents through SAX, and then formalizes
their structure into synopses named TCFXS. Each cluster
in sliding windows consists of a team of TCFXSs, which
satisfy criterions of false positive exponential histograms.
To validate empirical effects, we have conducted a series of
experiments involving real and simulative XML data. Our
experimental results have confirmed: (1) clustering quality
of the CXDSS-SWEH is close to the static clustering method
XCLS and the stream clustering method SW-XSCLS; (2)
memory and time consumption of the CXDSS-SWEH are
efficient and effective, compared to the SW-XSCLS.

But, the existing cluster feature only considers structure,
and omits all semantic information. In many fields, such
as identifying online buyers, context in XML is more
important. In future work, we will improve some context
features.
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