
Provenance Policies for Subjective Filtering of the Aggregated Linked Data

Tomáš Knap
Department of Software Engineering

Charles University in Prague
Prague, Czech Republic

Email: tomas.knap@mff.cuni.cz

Abstract—As part of LOD2.eu project and OpenData.cz
initiative, we are developing an ODCleanStore framework
(1) enabling management of governmental linked data and
(2) providing web applications with a possibility to consume
cleaned and integrated governmental linked data; the provided
data is accompanied with data provenance and a quality
score based on a set of policies designed by the governmental
domain experts. Nevertheless, these (objective) policies fail to
express subjective quality of the data as perceived by various
data consumers and different situations at their hand. In
this paper, we describe how consumers can define their own
situation-specific policies based on the idea of filtering certain
data sources due to certain aspects in the data provenance
records associated with these sources. In particular, we describe
how these policies can be (1) constructed by data consumers
and (2) applied as part of the data consumption process in
ODCleanStore. We are persuaded that provenance policies are
an important mechanism to address the subjective dimension
of data quality.

Keywords-provenance; provenance policies; linked data; linked
open data; data aggregation; data quality

I. INTRODUCTION

Allover the world, governments are connecting to the
uprising trend of publishing governmental data as open
data [6]; open data is original non-aggregated machine
readable data which is freely available to everyone, anytime,
and for whatever purpose. As a result, citizens paying the
government are able to see and analyze the performance of
the government by observing the raw data or using third-
party applications visualizing the data; companies can use
the data to run their business.

Cannot we do more than just opening the data to simplify
the data exploration and creation of applications on top of
open data? If global identifiers were used in the form of
HTTP URLs for the data exposed as open data, data could be
published on these URLs and data consumers could then use
the current Web infrastructure to obtain relevant information
about any resource by simply inserting the HTTP URL of the
resource to the browser. Furthermore, if the open data was
represented as RDF (Resource Description Framework) [15]
triples or quads (quads are RDF triples with a forth field
representing the context – named graph [11] – to which the
triple belongs), we could link data (e.g., the public contract)
to other data (e.g., the supplier or price) and, thus, create

a huge web of interconnected data. The idea described is
precisely the idea of linked data [9].

The advent of linked data [9] accelerates the evolution of
the Web into an exponentially growing information space
(see the linked open data cloud [1]), where the unprece-
dented volume of data will offer information consumers
a level of information integration and aggregation agility
that has up to now not been possible. Consumers can now
“mashup” and readily integrate information for use in a
myriad of alternative end uses. Indiscriminate addition of
information can, however, come with inherent problems,
such as the provision of poor quality, inaccurate, irrelevant
or fraudulent information. All will come with an associate
cost of the data integration which will ultimately affect data
consumer’s benefit and linked data applications usage and
uptake.

To overcome these issues, as part of the OpenData.cz
initiative [4] and LOD2 project [2], we are developing the
ODCleanStore framework [3] (1) enabling management of
linked data – RDF data cleansing, linking, transforming,
and quality assessing – and (2) providing consumers with
a possibility to consume cleaned and integrated RDF data
supplemented with data quality and provenance metadata.

The overall picture of ODCleanStore is depicted in Fig-
ure 1; data filtering module is depicted in red in Figure 1
to denote that it is not part of the current ODCleanStore
state of the art and is discussed as one of the contributions
further in this paper. ODCleanStore processes RDF data
feeds and stores it to the staging database; feeds can be
uploaded to the staging area by any third-party application
registered to ODCleanStore. The RDF data feed is a set
of named graphs including the RDF data graph (the main
named graph of the feed) and graphs holding descriptive
and provenance metadata. Based on the pipeline identifier
within the feed’s descriptive metadata, ODCleanStore engine
launches the particular data processing pipeline containing
an execution of the sequence of data transformers (data
processing units), which may normalize the data, deduplicate
the data against the raw data mart or link the data to the
data in the raw data mart, assess the quality of the data,
or execute an arbitrary data transformation. After executing
all the transformers on the given pipeline, the data feed is
stored to the raw data mart together with any auxiliary data

95Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. ODCleanStore Framework with Provenance Data Filtering Component

created during the pipeline execution, such as links to other
resources or metadata about the feed’s quality.

Consumers can query the raw data mart (using the output
web service). In further text, we highlight two types of
queries: uri queries and keyword queries. Suppose that the
set Qq contains quads from the raw data mart relevant to
the consumer’s query q; for an uri query q, Qq contains
the quads (x, ∗, ∗, ∗),(∗, ∗, x, ∗), where x is the URI in
the consumer’s query or URI being owl:sameAs with
the URI in the consumer’s query; for a keyword query q
with a sequence of keywords kw, Qq contains the quads
(∗, ∗, l, ∗), where the literal l contains the keywords kw.
Sample keyword query may be: “Give me all you know
about the Ministry of Finance of the Czech Republic”.

Since the same resource can be described by various
sources, using different schemas (vocabularies), data in-
tegration is necessary to provide the data consumer with
an integrated view on the data. Data integration consists
of three phases [10] – schema mapping (the detection
of equivalent schema elements in different data graphs),
duplicate detection (detection of equivalent resources) and
data fusion (fusion the descriptions of equivalent resources).

Data integration module in ODCleanStore addresses all
the integration phases – it takes into account the mappings
between different schemas stored in the raw data mart
and links deduplicating resources generated by the proper
transformers on the data processing pipelines and then fuses
the data. When fusing data about the same resource from
multiple sources (data graphs), data conflicts may arise and
should be solved. Thus, as part of the data fusion phase, data
integration module in ODCleanStore applies certain conflict

handling strategies which resolve, ignore, or avoid the data
conflicts in the resulting RDF data. Provided the conflict
handling strategy is to resolve the conflicts, consumer can
also specify the conflict resolution policies driving the data
fusion.

Furthermore, the resulting RDF data outputted by the data
integration module in a form of quads is supplemented with
a quality score influenced by the quality of the feed the
data originates from (which is quantified on the transforming
pipeline by the quality assessment transformer), the score of
the data publisher (e.g., a domain http://wikipedia.org), and
by the applied conflict resolution policies [16].

Thus, the ODCleanStore framework is able to addressed
the objective part of the data quality by employing quality
assessment transformer. Nevertheless, the information qual-
ity must be always considered w.r.t the specific (subjective)
requirements of the consumer [8, 17, 20] for his particular
task at hand. For example, the consumer might want to prefer
data from the Czech Business Register when looking for data
about companies, or use only sources verified by his boss.

These needs are partially supported – the resulting data is
accompanied also with data provenance of the data graphs
(sources) the data originates from, providing the necessary
contextualization for the information consumer to analyze
the (subjective) quality of the information [12, 13, 19].
However, the manual examination of such provenance and
manual filtering of the resulting data based on its provenance
is rather tedious work for information consumers.

Therefore, in this paper, we describe the concept of
provenance policies which will enable the data consumer to
express his subjective preferences for certain data sources

96Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

http://wikipedia.org

based on the provenance data associated with these sources;
such policies must be taken into account automatically
during the query execution - as a result, only data from
certain sources appear in the result on the consumer’s query
q. We describe in the paper the format of the provenance
policies and how they are applied during the query execution
as part of the data filtering module in ODCleanStore to refine
the data being provided to data consumers.

II. DATA PROVENANCE

We use in this paper the definition of provenance, which
is based on the definition introduced by W3C Provenance
Group [7] and takes some aspects from the “provenance as
annotations” approach [19]: “Provenance of a resource r is
a record that contains resources, agents, or processes (and
their properties contextualizing them) involved in producing
and delivering or otherwise influencing the resource r. ”

W3C Provenance Group is defining the core provenance
terms for tracking provenance on the Web; in [12], we
described a W3P provenance model for the Web.

In further text, provenance graph is the named graph
gp ∈ G (set of triples belonging to that graph) containing
provenance information about the data graph g ∈ G; data
feed inserted to the staging area always contains the data
graph g and may contain provenance graph gp.

<http://source.com/1> a prov:Entity ;
dc:creator <http://purl.org/knap#me> ;
dc:created "2011-11-18"ˆˆxsd:date ;
dc:source <http://source.com/2> ;
p:hadPrimarySource <...> .

Listing 1. Sample Provenance Graph
Listing 1 depicts the sample provenance graph

holding provenance data about the data graph
<http://source.com/1>. As you can see, the
provenance graph holds (1) the creator of the source, (2)
the creation time, and (3) the primary sources from which
that source was obtained (e.g., extracted); in Listing 1, the
prefix dc: stands for http://purl.org/dc/terms/,
p: stands for http://www.w3.org/ns/prov#.

III. PROVENANCE POLICIES

We define a provenance policy p ∈ P as a tuple
(cond,weight), where cond ∈ C, C is a set of all valid
GroupGraphPatterns in the SPARQL language [5];
function w(p), w : P → [−1, 1] \ {0} quantifies the weight
of the policy p, w(p) ∈ (0, 1] determines a positive policy
and w(p) ∈ [−1, 0) determines a negative policy p.

A provenance policy p = (cond, weight) ∈ P can be
successfully applied to the provenance named graph gp if
and only if a SPARQL query “ASK FROM NAMED gp

WHERE {cond}” returns true. The successful application
is expressed as a(p, gp) = true; otherwise, if the policy
was not successfully applied, a(p, gp) = false; a : P ×
G → {true, false}. If a(p, gp) = true, then the policy

p changes the provenance score of the graph g according
to weight. Positive policy always increases the provenance
score, negative policy decreases.

The condition cond ∈ C of a policy p = (cond,
weight) ∈ P may use the variable odcs:graph
which is replaced by the particular data graph g being
processed before the query is sent to the underlying
SPARQL engine; full URL for the odcs prefix is:
http://ld.opendata.cz/infrastructure/odcleanstore/. Suppose
a condition cond = {odcs:graph dc:creator
<http://purl.org/knap#me>}; such condition
is matching all the graphs gp containing the triple
with the subject being the URI of the graph
g, the predicate dc:creator and the object
<http://purl.org/knap#me>, i.e., all graphs
created by the agent <http://purl.org/knap#me>.

We define a function sprov : G × P(P) → (0, 1]
quantifying the provenance score of the graph g based on
the weights of the policies Pa = {p ∈ P | a(p, gp) = true}
successfully applied to gp as:

sprov(g, Pa) = min{
∏

p∈Pa
(1 + w(p))

C
, 1}

The constant C ∈ N defines the upper boundary for the
influence of the positive policies; if

∏
p∈Pa

(1+w(p)) > C,
the provenance score sprov(g, Pa) is equivalent to the case
when

∏
p∈Pa

(1 + w(p)) = C. The constant C should be
set based on the average proportion of positive and negative
policies and the average absolute number of positive policies
applied to the graphs. Furthermore, the default provenance
score of any graph to which no policy was successfully
applied should be equal to 1/C.

IV. APPLYING PROVENANCE POLICIES

The application of provenance policies is part of the data
filtering component depicted in Figure 1. The data filtering
component is executed during query execution after fetching
the quads, Qq , relevant for the uri or keyword query q from
the raw data mart. An output of the data filtering component
is the collection of quads, Q̃q ⊆ Qq , which is created as
defined further in Algorithm 1; such output is used as the
input to the data integration component in Figure 1. The
quality score computed in the data integration module of
ODCleanStore [16] also takes into account the provenance
score sprov computed for the graphs involved in Q̃q .

The inputs to Algorithm 1 are (1) the quads, Qq , being
fetched as a result of the consumers query q, (2) policies,
Pc ⊂ P , defined by the consumer c executing the query,
(3) constraints, Fq ⊂ F , customizing the behavior of
the algorithm for the given query q, and (4) the desired
threshold, κ ∈ [0, C], for the provenance score. The output is
the refined set of quads, Q̃q , |Qq| ≥ |Q̃q|, belonging to data
graphs g having the provenance score above the threshold
κ. The algorithm can enforce the following constraints F on

97Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

http://ld.opendata.cz/infrastructure/odcleanstore/

Algorithm 1 Provenance Policies Application
Input: Qq , Pc ⊆ P , Fq ⊆ F , κ
Output: Q̃q = applyProvPolicies(Qq , Pc, Fq , κ)

1: Q̃q ← ∅
2: Gq ← {g | ∃(∗, ∗, ∗, g) ∈ Qq}
3: for all graphs g ∈ Gq do
4: Pa ← ∅, flagResult← true
5: for all policies p ∈ Pc do
6: if a(p, gp) then
7: Pa ← Pa ∪ {p}
8: end if
9: end for

10: for all flags f ∈ F do
11: flagResult← flagResult ∧ eval(Pa, f)
12: end for
13: if flagResult then
14: if sprov(g, Pa ≥ κpp then
15: Q̃q ← Q̃q ∪ {(*,*,*,g)}
16: end if
17: end if
18: end for
19: return Q̃q

the provenance graphs of the data graphs whose triples are
included in Q̃x:
• NoNeg - Negative policy shall not be successfully

applied to the provenance graph.
• ExistsPos - A positive policy shall be successfully

applied to the provenance graph.
• PosMajority - Number of positive policies successfully

applied to the provenance graph shall prevail over the
number of negative policies.

• PolMandatory - At least one policy shall be successfully
applied to the provenance graph.

In Lines 3 – 18 of Algorithm 1, the provenance poli-
cies are successively applied to the graphs g ∈ Gq =
{g | ∃(∗, ∗, ∗, g) ∈ Qq}. In Lines 5 – 9, the set Pa of
successfully applied policies is constructed; based on that,
in Lines 10 – 12, the function eval, eval : P(P) × F →
{true, false}, progressively checks the satisfaction of all
the constraints Fq w.r.t. to the set of polices Pa and directly
influences the construction of Q̃q . The function eval(Pa, f)
is defined as follows for the set of successfully applied
policies Pa ⊂ Pc ⊂ P and the constraint f ∈ F :

eval(Pa, NoNeg) =

{
true {@p ∈ Pa : w(p) < 0}
false {otherwise}

eval(Pa, ExistsPos) =

{
true {∃p ∈ Pa : w(p) > 0}
false {otherwise}

eval(Pa, PosMajority) =

{
true

{
|{p|w(p) > 0}| > |Pa|

2

}
false {otherwise}

eval(Pa, PolMandatory) =

{
true {|Pa| > 0}
false {otherwise}

In Lines 14 – 16, if all the flags Fq are satisfied for the
given Pa, the algorithm tests whether the condition on the
threshold κ ∈ [0, C] of the provenance score is satisfied;
if yes, the quads of the data graph g are added to Q̃q in
Line 15. Otherwise, the quads associated with the processed
graph g are not included in Q̃q .

The time complexity of Algorithm 1 is O(|Qq| +
|Gq||Pc|O(a(p, gp))), where O(|Qq|) yields from loading
the quads to the memory and O(a(p, gp)) is the time
complexity of applying a single policy p ∈ Pc to the
provenance graph gp. Space complexity is at least O(|Qq|),
because the quads has to be loaded to the memory, but
depends also on the SPARQL queries being executed as part
of the policy application.

V. RELATED WORK

Researchers have developed and investigated various pol-
icy languages to describe trust, quality, and security re-
quirements on the Web, such as [8, 14]; a variety of
access control mechanisms generally based on policies and
rules have been developed, such as [18]. In linked data
framework WIQA (Web Information Quality Assessment
Framework) [8], users can specify policies in the form of
RDF graph patterns using the WIQA-PL policy language;
they can filter the information in their local storage according
to the selected policy, and get justifications for ”why” a given
information satisfies a set of policies. WIQA-PL and our
policy language are both based on the SPARQL language;
the grammar for WIQA-PL is not aligned with the latest
SPARQL specification. A WIQA-PL policy enables to define
which information is filtered positive; ODCleanStore sup-
ports both positive and negative filtering. WIQA does sup-
port the provision of justifications by extending the SPARQL
language with the construct EXPL; in ODCleanStore, justi-
fications are represented by the list of policies being applied
to the resulting data.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described the concept of provenance
policies – motivation for provenance policies, how these
policies can be constructed, and how they can be applied
as part of the data filtering component in ODCleanStore
when the query is prepared for the data consumer. We
are persuaded that provenance policies are an important
mechanism to address the subjective dimension of data
quality on the Web.

98Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Future work involves the evaluation of the provenance
policies’ usability. To that end, we will develop a linked
data browser [9] using the ODCleanStore’s output web
service’s results and supporting data consumers with simple
user interface to (1) manage provenance policies and (2)
select iteratively relevant provenance policies which should
be applied to the data resulting from the given query. Future
work also involves examining the reasoning possibilities
within provenance graphs, which affects the efficiency of
provenance policies application.

VII. ACKNOWLEDGMENTS

The work presented in this article has been funded in part
by GAUK 3110, project of the internal grant agency of the
Charles University.

REFERENCES

[1] Linked Open Data Cloud. http://richard.cyganiak.de/2007/10/
lod/ (Online, retrieved: January, 2013).

[2] LOD2 Project. http://lod2.eu (Online, retrieved: January,
2013).

[3] ODCleanStore. http://sourceforge.net/p/odcleanstore (Online,
retrieved: January, 2013).

[4] OpenData.cz Initiative. http://opendata.cz (Online, retrieved:
January, 2013).

[5] SPARQL Query Language - Group Graph Pattern. http://
www.w3.org/TR/rdf-sparql-query/#rGroupGraphPattern (On-
line, retrieved: January, 2013).

[6] The Open Data Handbook. http://opendatahandbook.org/en/
(Online, retrieved: January, 2013).

[7] W3C Provenance Working Group. http://www.w3.org/2011/
prov (Online, retrieved: January, 2013).

[8] C. Bizer and R. Cyganiak. Quality-driven Information Fil-
tering Using the WIQA Policy Framework. Web Semantics,
7(1):1–10, 2009.

[9] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The
Story So Far. International Journal on Semantic Web and
Information Systems, 5(3):1–22, 2009.

[10] J. Bleiholder and F. Naumann. Data fusion. ACM Comput.
Surv., 41(1):1:1–1:41, Jan. 2009.

[11] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named
graphs, Provenance and Trust. In WWW ’05: Proceedings of
the 14th international conference on World Wide Web, pages
613–622, New York, NY, USA, 2005. ACM.

[12] A. Freitas, T. Knap, S. O’Riain, and E. Curry. W3P: Building
an OPM based provenance model for the Web. Future
Generation Comp. Syst., 27(6):766–774, 2011.

[13] O. Hartig. Provenance Information in the Web of Data.
In Linked Data on the Web (LDOW 2009), http://events.
linkeddata.org/ ldow2009/papers/ ldow2009 paper18.pdf ,
April 2009.

[14] L. Kagal, T. Finin, and A. Joshi. A Policy Based Approach to
Security for the Semantic Web. In The SemanticWeb - ISWC
2003, Florida, USA, pages 402–418, 2003.

[15] G. Klyne and J. J. Carroll, editors. Resource Description
Framework (RDF): Concepts and Abstract Syntax. W3C
Recommendation. World Wide Web Consortium, Feb. 2004.

[16] T. Knap, J. Michelfeit, and M. Necaský. Linked Open Data
Aggregation: Conflict Resolution and Aggregate Quality. In
COMPSAC Workshops, Izmir, Turkey, pages 106–111, 2012.

[17] S. A. Knight and J. Burn. Developing a Framework for
Assessing Information Quality on the World Wide Web.
Informing Science Journal, 8:159–172, 2005.

[18] K. Lawrence and C. Kaler. WS-Trust Specification. Tech-
nical report, 2007, http://docs.oasis-open.org/ws-sx/ws-trust/
200512.

[19] L. Moreau. The Foundations for Provenance on the Web.
Found. Trends Web Sci., 2(2–3):99–241, Feb. 2010.

[20] F. Naumann and C. Rolker. Assessment Methods for Infor-
mation Quality Criteria. In Proceedings of the International
Conference on Information Quality, pages 148–162, 2000.

99Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

http://richard.cyganiak.de/2007/10/lod/
http://richard.cyganiak.de/2007/10/lod/
http://lod2.eu
http://sourceforge.net/p/odcleanstore
http://opendata.cz
http://www.w3.org/TR/rdf-sparql-query/#rGroupGraphPattern
http://www.w3.org/TR/rdf-sparql-query/#rGroupGraphPattern
http://opendatahandbook.org/en/
http://www.w3.org/2011/prov
http://www.w3.org/2011/prov
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper18.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper18.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://docs.oasis-open.org/ws-sx/ws-trust/200512

	Introduction
	Data Provenance
	Provenance Policies
	Applying Provenance Policies
	Related Work
	Conclusions and Future Work
	Acknowledgments
	Bibliography
	References

