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Abstract— Over the past generation, the process of discovering 

interesting association rules in data mining and knowledge 

discovery has become a cornerstone of contemporary decision 

support environments. While most of the existing algorithms 

do indeed focus on discovering high interestingness and 

accuracy relationships between items in the databases, they 

tend to have limited scalability and performance. In this paper, 

we discuss a Parallel Genetic Algorithm Model (PGAM) that 

has been designed as a scalable and high performance 

association rules engine. Experimental results demonstrate 

that the model offers the potential to optimize both scalability 

and performance in association rules mining. 

Keywords - Data mining; FP-Growth; Multi-objective 

evolutionary algorithms; scalability; performance; Parallel GA. 

I.  INTRODUCTION  

Data mining and knowledge discovery in 
databases have been popular targets for researchers 
over the past 15-20 years, with papers published on a 
wide variety of related topics. One of the most 
important tasks in the data mining domain is the 
association rule mining that aims to find the 
relationships between the items that frequently appear 
in the databases' transactions, and additionally, to 
extract rules of the form IF Condition THEN 
Predication. The IF clause is called the rule condition 
that checks if the values of some attributes are true 
and the THEN clause is called the rule prediction that 
predicts a value for some goal attribute. In general 
terms, an association rule is a relation between 
attributes of the form if X then Y, Where X ∩Y = Φ. 

It is known that the association rule mining is NP-hard 
problem because the search space is exponential with 
the number of itemset. 

In 1993, the association rule problem was first introduced 
by Agrawal et al. [1]. They developed the Apriori algorithm 
which is the most famous algorithm to solve the association 
rule problem [2]. This algorithm is based on the support 
(frequency of the rule in the transactions) and confidence 
(truth of the rule in the transactions) of the rule. Most of the 
existing association rules algorithms built upon Apriori-
based algorithm, as the Apriori algorithm was well 
understood and very famous. On the positive side, the 
improvements of the Apriori algorithm were very impressive 

in terms of measuring the quality of the generated rules by 
using a coherent set of multiple measures such as 
interestingness, comprehensibility, confidence, etc. 
Unfortunately, such algorithms still make the problem more 
complex and often provided limited scalability as they are 
ill-suited to handle massive databases with huge number of 
attributes and a lot of distinct values for each attribute. 

Other approaches are based on Frequent Pattern Growth 
(FP-Growth) Algorithm [13] to extract association rules. The 
FP-growth is used to extract the frequent itmesets from the 
databases in two steps as follows: 1) Build a compact data 
structure called FP-tree using two passes over the databases 
and 2) Extract frequent itemsets from the FP-tree by the 
traversal through the FP tree. After detecting the frequent 
itemsets, then we can use a user defined parameter called 
confidence to generate the appropriate association rules. 
While the FP-Growth algorithm [13] needs only two passes 
over the datasets, a large amount of memory space is needed 
because the algorithm generate conditional FP-trees 
recursively.  

For this reason, several parallel algorithms have been 
proposed in the literature to handle the association rule 
problem in massive data stores [18]. Scalability on these 
parallel algorithms was/is indeed acceptable as the partition 
of large databases and transactions often handles massive 
data stores. Of course, everything comes at a price and, in the 
case of parallel algorithms; runtime performance remains a 
big concern. Specifically, such algorithms often provided 
poor runtime performance due to the high synchronization 
and communication overhead and disk I/O cost.  

The current paper discusses a parallel genetic-based 
algorithm to discover association rules called PGAM. The 
motivation of our design is to provide a high runtime 
performance and scalable engine for the association rule 
mining problem. Physically, the architecture is constructed 
as a federation of largely independent sibling servers, each 
responsible for a segment of the original transactions. 
Locally, each server stores, and processes its transactions to 
extract the association rules using the genetic algorithm that 
is very well suited to perform global search with less time 
complexity compared to other algorithms used in data 
mining problems. A parallel service layer transparently 
provides global merging and communication services as 
required. Specifically, the Parallel Genetic Algorithm Model 
(PGAM) described in this paper is capable of efficiently 
solving the association rule problems. Experimental 
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evaluation demonstrates that the combination of a shared 
nothing architecture and heavily optimized local genetic 
algorithm processing may indeed provide the cost effective 
scalability/performance pairing that is missing in existing 
association rule algorithms. 

The paper is organized as follows. In Section 2, we 
briefly review recent work in the area. Basic preliminary 
material is then outlined in Section 3. We present the details 
of the parallel model in Section 4, including the genetic 
algorithm that ties the model together. In Section 5, we 
discuss the shared nothing architecture and show how the 
local servers are integrated into a single logical system. 
Experimental results are then provided in Section 6, with 
final conclusions in Section 7. 

 

II. RELATED WORK  

Association rule mining (ARM) is an important core data 
mining technique to discover patterns/rules among items in a 
large database of variable-length transactions. The goal of 
ARM is to identify groups of items that most often occur 
together. It is widely used in market-basket transaction data 
analysis, graph mining applications like substructure 
discovery in chemical compounds, pattern finding in web 
browsing, word occurrence analysis in text documents, and 
so on. Contemporary association rule mining (ARM) 
research began with the definition introduced by Agrawal et 
al. [1], an important data mining technique to discover rules 
among items in massive databases of large number of 
transactions. Moreover, Agrawal et al. developed the Apriori 
algorithm to solve the association rule mining problem. This 
algorithm focuses on the frequent itemsets generation sub-
problem and subsequently the generation of the rules with 
minimum confidence.  Subsequently, a number of 
researchers presented algorithms that are improvements to 
Apriori algorithm [10], [21]. FP-growth is another famous 
technique to extract the frequent itemset using minimum 
support and confidence [13]. More recent work in this area 
has tended to focus on the quality of the generated rule by 
considering more measures (mutli-objective algorithms) 
[10]. In general, scalability and performance were not 
addressed in the well known Apriori and FP-growth 
algorithms and their improvements.  

Apart from the Apriori and FP-growth algorithms, a 
significant number of publications focused on generating the 
association rules using genetic algorithm [5]. Genetic 
algorithm was first developed by John Holland in 1975. It is 
based on the idea of survival of the fittest and the greedy 
approach and performs very well global search with less 
time. The GA works as follows: 

1. An initial population is created. A Population is a 
group of individuals (Chromosomes) and represents 
a candidate solution. A Chromosome is a string of 
genes.  

2. Select chromosomes with higher fitness. 
3. Crossover between the selected chromosomes to 

produce new offspring with better higher fitness 
4. Mutate the new chromosomes if needed. 
5. Terminate when an optimum solution is found. 

 
Ghosh et al. [11] proposed an algorithm to extract 

frequent itemsets using genetic algorithms. Dou [7] also 
developed an algorithm to find the maximal frequent 
itemsets using GA and some defined parameters such as 
individual identity, individual fitness, upgrade index and 
upgrade genes that are used in GA. The authors in [15] 
developed an algorithm for extracting the association rules 
using GA and without the specification of the user-defined 
minimum support and confidence. Finally, Hong [14] 
developed a two-phases GA algorithms to extract the 
association rules. 

With respect to parallel algorithm for the ARM, a 
number of algorithms were developed based on the 
parallelization of the Apriori and FP-growth algorithms [3], 
[12], [16], [19]. Each attempted to effectively exploit the 
parallel hardware and architecture. Especially, the set of 
transactions (Databases) is partitioned into a number of 
subgroups and attempts to utilize the resources of the parallel 
system efficiently. In other words, each partition is assigned 
to an independent processor that makes the decision to 
process and terminate the algorithm. A few other parallel 
algorithms should be mentioned here. The Hori-Vertical 
algorithm [18] is a parallel algorithm where no node will be 
idle because a lot of new independent tasks that can be taken 
to process. The author in [18] proposed a new database 
partitioning that is based on dividing the database vertically 
and horizontally into equivalent parts. Eclat[20] makes 
vertical database partitioning and is another parallel 
algorithm to solve the ARM. Limine et al. [4] proposed the 
”Workload Management Distributed Frequent itemsets 
mining” (WMDF) algorithm that is based on the horizontal 
database partitioning and it makes load balancing between 
system nodes. Parallelizations of the well-known sequential 
algorithms are discussed with many other parallel algorithms 
surveyed in [20]. 

III. PRELIMINARY MATERIALS 

We can formally state the task of mining association rules 
over market basket as follows: let I={I1, I2,  …, In} be the 
set of items/products and T={T1, T2, …, Tn} be the set of 
transactions in the database. Each of the transaction Ti has a 
unique ID and contains a subset of the items in I, called 
itemset. An association rule is an implication among itemsets 
of the form, X�Y, where X U Y ⊆ I and X∩Y = Ø [1][2]. 
An itemset can be a single item (e.g. mineral water) or a set 
of items (e.g. sugar, milk, red tea). The quality of the 
association rules can be measured by using two important 
basic measures, support(S) and confidence(C) [17]. 
Support(S) of an association rule is the percentage of 
transactions in the database that contain the itemset X∪Y. 
Confidence (C) of an association rule is the 
percentage/fraction of the number of transactions that 
contain X∪Y to the total number of records that contain X. 
Confidence factor of X�Y can be defined as:  

Conf(X����Y) = Support (X∪∪∪∪Y)/ Support (X)         (1) 
Most of the association rule algorithms generate the 

frequent itemsets –itemsets that are greater than a minimum 
support—and then generate association rules that have 
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confidence greater than minimum confidence. However, 
more metrics such as Comprehensibility and Interestingness 
can be used to have more interesting association rules [10]. 
Comprehensibility is measured by the number of attributes 
involved in IF part (condition) of the rule with respect to the 
THEN (prediction) part of the rule because the rule is more 
comprehensible if the conditions is less than the prediction. 
Comprehensibility of an association rule (X�Y) is measured 
as: 

Comp (X����Y) = log(1+|Y|)+log(1+|XUY|)     (2) 
where |Y| and |XUY| are the number of attributes in the 

consequent side and the total rule, respectively. 
Interestingness measures how much interesting the rule is 

[10]. The interestingness of an association rule (X�Y) is 
measured as: 

Inter(X����Y) = [Support (XUY)/Support(X)]x                    
[Support (XUY)/Support(Y)x[1 – Support(XUY)/|D|]   (3) 

Where |D| is the total number of records/transactions in 
the database. Using several measures, the association rule 
problem can be considered as a multi-objective problem. 

Fig. 1(a) and (b) depict a small grocery sales 
database consisting of five products I = {M, R, S, T, W} and 
six transactions table that illustrates the purchase of items by 
customers. 

 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
  
    (b) 

Figure 1. (a) products/items database (b) Database transactions. 

 
Fig. 2(a) shows all frequent itemsets containing at least 

three products and minimum support 50%. Fig. 2(b) 
illustrates sample association rules with four metrics 
(Support, Confidence, Comprehensibility and 
Interestingness). 

In this paper, we choose to deal with the association rule 
mining as a multi-objective problem rather than one 
objective problem and to adopt the multi-objective 
evolutionary algorithm for mining association rules [8], [9]  
with emphasize on genetic algorithms. Genetic algorithm is 
an iterative procedure that is appropriate for situations such  

 
 
 

Itemsets Support 

R 100% 

W, RW 83% 

M, S, T, MR, RS, RT, MRW 67% 

MT, SW, TW, MRT, MTW, 
RSW, RTW, MRTW 

50% 

(a) 

(b) 
Figure 2. (a) Frequent Itemsets with minimum support 50% (b) Sample 

association rules with three metrics 

 
as large and complex search space and optimization 
problems. In order to use the genetic algorithm, the 
following points must be addressed [5]: 

1. Encoding/decoding schemes of chromosomes (bit 
string, real-value string, etc.)  

2. Population size: how many chromosomes are in 
population. Good population size is about 30-40. 

3. Fitness value: the chromosomes must be ranked 
according to their fitness values (e.g. support, 
confidence, comprehensibility, etc. measures can be 
used to calculate the fitness value of an association 
rule). 

4. Selection: select the chromosomes for next 
generation by using one of the selection scheme 
(Roulette wheel, Boltzman, Tournament , Rank, 
etc.).Note that it is important to use the elitism 
technique to make sure that the best chromosomes 
(association rules) that were generated at some 
intermediate generations will be kept as candidate 
solutions. 

5. Crossover: single point crossover, two point 
crossover, multi-point crossover, uniform 
crossover, and arithmetic crossover. 

6. Mutation:  This to change the new chromosome 
(offspring) to prevent the algorithm from getting 
stuck.  For binary encoding, the algorithm changes 
bits from 1 to 0 or vice versa. 

 

IV.  MINING ASSOCIATION RULES 

The association rule engine described in this paper is a 
fully parallelized model. That being said, it is physically 
constructed as series of backend servers, each operates 
independently to extract the association rules from the 
database transactions that are housed in each of the nodes. 
This federated approach allows us to design and build a 
parallel association rule model by concentrating on the 

Products/items Abbreviation 

Milk M 

Rice R 

Sugar S 

Tea T 

Water W 

Transaction Items/products 

1 MRTW 

2 RSW 

3 MRTW 

4 MRSW 

5 MRSTW 

6 RST 

Association 

rules 

Support Confi-

dence 

Comprehen-

sibility 

Interest 

-ingness 

M�R 67% 1 2.58 0.59 

MR�T 50% 0.75 3 0.51 

W�RS 50% 0.75 3 0.51 

R�W 83% 0.83 2.58 0.71 
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optimization of the single node servers, rather than complex 
load redistribution policies. The end result is a parallel 
association rule engine that can directly exploit techniques 
developed for single node servers. In other words, the current 
engine can run on a single node, providing good 
performance that one would expect from a fully optimized 
association rules mining system. We therefore begin our 
discussion of the current model by looking at the partitioning 
of the transactions in the database and the execution model 
of the sibling (backend) servers. In Section 5, we will return 
to the question of how to efficiently integrate the individual 
nodes. 

 
A. Transaction Database Partitioning 

We start by looking at the partitioning of the transaction 
databases (e.g. market-basket problem) across all p backend 
nodes. Given that our aim is to balance the processing times 
for mining association rules across all p processors, a good 
partitioning mechanism is a necessity. We note that our focus 
in this paper is the database (set of transactions) of the 
market-basket problem with fix positions of products/items. 
The set of transactions are stored as bit strings where each 
string represents a transaction. Table 1 illustrates how the 
database (set of transactions) looks like. 

 
Table I. Set of transactions (database of market-basket) 

 Products/Items 

T
ra

n
sa

ct
io

n
s 

 A B C D E F G H … 

T1 0 1 1 0 1 0 0 0 … 

T2 1 1 1 0 1 0 0 1 … 

T3 1 0 0 0 1 0 1 0 … 

…          

 
The stripping technique is described below. 

1. Sort the original transactions according to the number 
of items per transaction. 

2. Stripe the transactions across all processors in a round 
robin fashion such that successive transactions are sent to the 
next processor in the sequence. For a network with p 
processors, a database of n transactions and n mod p != 0, a 
subset of processors receives one additional transaction. 

The main goal behind this striping technique is that it 
dramatically increases the likelihood that the execution time 
required to extract the association rules will be 
proportionally distributed across the processors in the multi-
computer architecture. 

 
B. Multi-objective Genetic Algorithm 

Recall that each backend node operates independently to 
extract the association rules from the transactions that are 
housed in each of the backend nodes. Specifically, each 
backend node executes independently an optimized multi-
objective genetic algorithm to extract the association rules 
for its own transactions database.  In our current work, we 
tried to solve the multi-objective association rule problem 
with the pareto based [22] genetic algorithm because it is 
always difficult to find out a single solution for multi-

objective problem. Vilferdo Pareto suggested the non-
dominance approach to solve multi-objective problems. His 
approach says " A solution, say a, is said to be dominated by 
another solution, say b, if and only if the solution b is better 
or equal with respect to all the corresponding objectives of 
the solution a, and b is strictly better in at least one 
objective". We start by discussing the characteristics of the 
pareto genetic algorithm used in to extract the multi-
objective association rules. 

The first task in the genetic algorithm is to define what 
the chromosomes represent (e.g. association rules, frequent 
itemsets and how (e.g. encoding/decoding). Since we 
decided to use the Pareto based genetic algorithm in ARM, 
then the chromosomes will be representing the possible 
association rules. Two famous approaches (Pittsburg or 
Michigan) can be used to encode the chromosomes [6]. 
Pittsburg is very suitable for classification rule mining, while 
Michigan is more suitable for association rule mining and 
encodes each part (antecedent and consequent) of the rule 
separately. More interestingly, Ghosh et al. [10] developed a 
better scheme for encoding/decoding the rules to/from binary 
chromosomes. According to Gosh [10], each item or product 
in the association rule is represented in two bits. If these two 
bits are 00 the product/item (No need to store the 
product/item value because the positions of values are fixed) 
value according to its position appears in the antecedent and 
if it is 11 then the value of the product appears in the 
consequent. The other two combinations, 01 and 10 indicate 
that the absence of the product's value in the rule. In our 
work, a chromosome represents a possible rule and is 
represented in binary format as follow: Given six products 
(ABCDEF), the rule AC � BE will look like 00 11 00 01 11 
00. Note that we need k extra bits, where k is the number of 
items in the database. Note that chromosome data represents 
a possible association rule that consists whether or not a 
product/item exists in the association rule (no need to store 
the actual value of product/item because the positions of 
products are fixed). 

The fitness value for each chromosome is calculated by 
using a set of three complementary metrics, (1) Confidence 
(2) Comprehensibility and (3) Interestingness, to filter out 
the interesting rules.  More specifically, an objective fitness 
function combines these metrics to calculate the fitness value 
of the chromosomes (possible rules) as the arithmetic 
weighted average confidence, comprehensibility and 
interestingness. The fitness function f(x) is defined as follow: 

f(x)= (W1 * Confidence + W2 * Comprehensibility + 
W3*Interestingness) /W1+W2+W3     (4) 

Where W1, W2, W3 are user defined weights each of the 
metric and W1+W2+W3 = 100. The weights of the metrics, 
used to calculate the fitness value, are defined by the user 
defined parameters (W1, W2 and W3). In other words, the 
user defined parameters are chosen according to the user’s 
interestingness for each one of the metrics. 

As mentioned in equations 1 and 3 that the support of the 
antecedent part, consequent part and the rule are essential in 
order to calculate the rule's metrics, as well as, the rule's 
fitness value. For this reason, we adopted the FP-tree 
structure [13] to compress a larger database and to avoid the 
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extensively scanning of the raw data set on disk multiple 
times, as might be done with a naive implementation. If two 
transactions share a common prefix, then the shared parts 
will be merged as long as the count is updated properly. 
There is a better chance that more prefix strings can be 
shared because the FP-Tree is created by ordering the items 
by their decreasing support. In our work, the FP
called SupTree that consists of set of nodes, each of which is 
defined as N(value, counter, parentNode, childNode). 
node contains an item value, counter, pointer to the 
node and pointers to its children. 

The FP-tree is constructed in two passes over the data
set. In the first pass, scan the data-set and find the support for 
each item and then sort the items in decreasing order based 
on their support. In the second pass, Algorithm 1 illustrates 
the construction of the in-memory tree (SupTree).

The FP-tree (SupTree) usually has a smaller size than the 
uncompressed data because typically many transactions 
share items and prefixes and it can fit in the main memory. 
Moreover, the order of the items by decreasing support 
minimizes the size of the FP-tree. However, if every 
transaction has a unique set of values, then the size
tree is at least as the original database and even higher 
because of the need to store the pointers between the nodes 
and the counters. 

 

Algorithm 1 (SupTree construction)  
Input: Set of Transaction Table with fix positions of values
Output: FP-Tree Structure called SupTree
1: An array A of size n, where n is the total number of items 
in the dataset, is created to store the items in decreasing 
order with their support. E.g. A[0].item contains the item 
with the highest support (A[0].support). 
2: Create the root of the SupTree and label it as null.  
3: For each transaction in the database [t|T]
value and T is the remaining list,  
 3.1: Call Insert_Tree ([t|T], SupTree)
4: Function Insert_Tree([t|T], SupTree)

4.1: If SupTree.root has a child N and N.value = 
t.value Then 

        4.1.1: increment the counter of N by 1,and 
update Aelse 

        4.1.2: create a new node N(value, counter, 
parentNode,               

childNode) and do the following: 
N.Value = t.value, N.counter = 1;

N.parentNode = SupTree.root.childNode; 
update array A (the parent node of N is 
linked to SupTree) 

 4.2: If T is not empty 
  4.2.1: Call Insert_Tree(T, N)

  
For example, Table 2 shows a sample data

transactions and 6 items are exist. First, items in the 
transactions are sorted in decreasing order by their support. 
For our example, the order is (f; a; c; b; d; e)

extensively scanning of the raw data set on disk multiple 
s might be done with a naive implementation. If two 

transactions share a common prefix, then the shared parts 
will be merged as long as the count is updated properly. 
There is a better chance that more prefix strings can be 

eated by ordering the items 
by their decreasing support. In our work, the FP-Tree is 
called SupTree that consists of set of nodes, each of which is 

N(value, counter, parentNode, childNode). A 
node contains an item value, counter, pointer to the parent 

tree is constructed in two passes over the data-
set and find the support for 

each item and then sort the items in decreasing order based 
pass, Algorithm 1 illustrates 

memory tree (SupTree). 
tree (SupTree) usually has a smaller size than the 

uncompressed data because typically many transactions 
share items and prefixes and it can fit in the main memory. 

over, the order of the items by decreasing support 
tree. However, if every 

transaction has a unique set of values, then the size of the 
tree is at least as the original database and even higher 

pointers between the nodes 

 
with fix positions of values 

Tree Structure called SupTree 
1: An array A of size n, where n is the total number of items 

dataset, is created to store the items in decreasing 
order with their support. E.g. A[0].item contains the item 

 
2: Create the root of the SupTree and label it as null.   
3: For each transaction in the database [t|T] wher the is first 

3.1: Call Insert_Tree ([t|T], SupTree) 
Function Insert_Tree([t|T], SupTree) 

SupTree.root has a child N and N.value = 

4.1.1: increment the counter of N by 1,and 

4.1.2: create a new node N(value, counter, 

childNode) and do the following:  
N.Value = t.value, N.counter = 1; 
N.parentNode = SupTree.root.childNode; 

(the parent node of N is 

4.2.1: Call Insert_Tree(T, N) 

For example, Table 2 shows a sample data-set where 18 
transactions and 6 items are exist. First, items in the 
transactions are sorted in decreasing order by their support. 

a; c; b; d; e) as shown in 

Table 3. Fig. 3 illustrates the FP
corresponding to the data of Table 2. 

 

Table II. Sample data-set (18 transactions with 6 items)

TID Items TID 

T1 B, C, D, 
F 

T7 

T2 A,D ,F, 
E 

T8 

T3 A, B, C, 
F 

T9 

T4 A, C T10 

T5 B, F T11 

T6 B, C, D T12 

Table III. Support for each item

F A C 

13 11 10

 
Figure 3. FP-Tree (SupTree) 

 
In our paper, the FP-tree and the in

will be used to calculate the support of any combinations of 
items/values without scanning the raw data set multiple 
times. Recall that each chromosome represents a possi
rule and the position of values/items are fixed so that they 
are not mentioned within the chromosomes. Algorithm 2 
shows how the FP-Tree (SupTree) and array (A) are used in 
very efficient way to calculate the support for any 
combination of items/values
combination of items will be ordered by using the same 
order of items in array A. We use a top
the support of the combination. The idea in Algorithm A is 
to eliminate all sub-trees that will not contribute in
support of the combination (search only sub
contain the combination of items). For example, given a 
combination ABC, the algorithm will search only sub
rooted at F and A first, then C then B and discard other sub
trees. 

After representing the chromosomes and the fitness 
values, various genetic operators (selection, crossover, 
mutation, etc.) can be applied to them.  Equations 1, 2, 3 and 
4 with the FP-tree structure can be used in order to rank the 
chromosomes according to their fi

illustrates the FP-tree (SupTree) 
corresponding to the data of Table 2.  

 
 

set (18 transactions with 6 items) 

Items TID Items 

B, D T13 A, B,C, F 

A, C, F T14 A, B, C, 
D, F 

F T15 A, B, C, 
D, E 

E, F T16 A,F 

A, B, C, F T17 A,D,F 

C, F T18 A,F 

 
Table III. Support for each item 

 B D E 

10 9 7 3 

 

 

Tree (SupTree) after reading the transactions 

tree and the in-memory array (A) 
will be used to calculate the support of any combinations of 
items/values without scanning the raw data set multiple 
times. Recall that each chromosome represents a possible 
rule and the position of values/items are fixed so that they 
are not mentioned within the chromosomes. Algorithm 2 

Tree (SupTree) and array (A) are used in 
very efficient way to calculate the support for any 
combination of items/values/attributes. In short, the 
combination of items will be ordered by using the same 
order of items in array A. We use a top-down process to find 
the support of the combination. The idea in Algorithm A is 

trees that will not contribute in the 
support of the combination (search only sub-trees that may 
contain the combination of items). For example, given a 
combination ABC, the algorithm will search only sub-trees 
rooted at F and A first, then C then B and discard other sub-

esenting the chromosomes and the fitness 
values, various genetic operators (selection, crossover, 
mutation, etc.) can be applied to them.  Equations 1, 2, 3 and 

tree structure can be used in order to rank the 
chromosomes according to their fitness values. After 
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ranking the chromosomes, selection operator is used to 
select the best chromosomes to be in the next population. 
There are many selection techniques, but, in our paper the 
chromosomes are selected, for next generation, by the 
roulette wheel selection scheme. In case of ARM, we need 
to store the best rules found from the database. However, if 
we follow the standard genetic operators (selection, 
crossover, mutation) only, then the final population may not 
contain better rules that were generated at some 
intermediates generations. For this reason, we use the 
elitism technique to replicate the chromosomes ranked as 1 
into the next population. If better chromosomes are 
generated by the standard genetic algorithm operations 
(selection, crossover and mutation), then replace the 
dominated chromosomes by the new generated one. 
 

Algorithm 2 Support Calculation 

Input: FP-Tree (SupTree) and array A and a list of items W 
Output: Support of W 
1: Order the items of W to be in the same order of items in 
array A.  
2: Call function Find-Support(SupTree, W) 
3: Function Find-Support (SupTree, W) 

3.1: set Pos = A[W[0]].postion; Pos is the position 

of W[0] in Array A (e.g. W[0] = A and Pos = 1) 

 3.2 For i = 0 and i<= Pos do 
  For each child T in SupTree.children() 

   If (T.value() == A[i]) 
    If(A[i] == W[0]) 

     If(W.size() == 1) 

then  

           return 

T.counter; 

         Else W=W[1…n] 

        call function Find-  

Support(T, W)  

      endif 

    Else  
 Call function 

Find-Support (T, W)       
Endif 

  endfor endfor 
 
Due to the large number of items/products in the market-

basket problem, thereby multi-point crossover operator is 
needed. In short, random positions (crossover points) in the 
strings (chromosomes) will be chosen and all bits before the 
first point will be copied from the first parent and all bits 
after that point and before the next point will be copied from 
the second parent, and so on until all crossover points are 
covered. After the crossover is performed, mutation takes 
place to prevent falling of all solutions in population into a 
local optimum of the problem. For binary encoding, the 
mutation procedure changes few randomly chosen bits from 
1 to 0 and vice versa. The mutation usually occurs with a 
very low probability. 

 

V. PARALLEL GENETIC ALGORITHM MODEL 

(PGAM)  

 
The model in this paper has been designed as a parallel 

model to extract association rules. The data is partitioned and 
distributed to all nodes that are operated independently. The 
database partition is considered as a preprocessing step. In 
terms of the parallel model, it can be described at a high 
level as follows. The frontend node serves as an access point 
for all user defined parameters (mutation probabilities, 
number of association rules required). Parameters reception 
and management is performed at this point. The frontend 
distributes the required parameters to all backend nodes, 
collect final results from all backend servers, and prepare the 
final result as per the user requirements. In turn, the backend 
nodes are fully responsible for extracting the association 
rules form their local data. In addition, each node houses a 
Parallel Service Interface (PSI) component that allows it to 
identify its neighborhoods and when and how have to 
communicate with them. Fig. 4 illustrates the primary 
components, including the linkage between the sibling 
servers that are designed according to the ring topology. 

With respect to the PSI, we choose to use the open source 
OpenMPI communication libraries because MPI minimizes 
the complexity of data transmission and communication 
within the parallel server. Therefore, utilizing the MPI 
libraries, the server can be constructed as a single MPI-based 
application. Specifically, the parallel server consists of a set 
of nodes (e.g. frontend and backend) that are executed 
simultaneously and subsequently communicate to each other. 
Standard precise and reliable operations (send, receive, 
gather, scatter, broadcast) can then be executed. 

As mentioned above, the original set of transactions 
(datasets) is partitioned and distributed to each one of the 
backend nodes in round robin fashion. Once the original data 
(available in the frontend node) is distributed and received 
by the backend servers, the frontend node broadcasts the user 
parameters (number of association rules required, number of 
attributes in the antecedent, number of generations, etc.) and 
any pre-defined values (crossover and mutation probabilities, 
size of population, etc.) to all backend nodes. Because of the 
distribution technique of the original data and replication of 
the parameters on each of the backend nodes, our parallel 
mode is said to be load balanced parallel model for mining 
association rules. At this stage, we are ready to extract the 
association rules. For this, of course, we require the genetic 
algorithm along with the FP-Tree services described in 
Section 4. Algorithm 3 provides a high level description of 
mining association rules on the backend server instances. In 
short, identical parameters are sent to each node, where the 
local server uses these parameters to extract association rules 
on its local set of transactions. After the execution of all 
functions and before sending the local results to the frontend, 
a Parallel Fitness Calculation is performed across the parallel 
machine. The PSI provides this functionality. Specifically, 
each node P send the final population R to all other nodes 
(ring topology) in order to calculate the fitness values of the 
chromosomes with respect to all transactions found in the 
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original dataset. For example, if P is the current node and N 
backend nodes exist, then send R to (P+1)%N, (P+2)%N, … 
, (P+N-1)%N. At the end of this step, each node contains a 
local population with respect to the local data but the fitness 
values of the local chromosomes are according to all 
transactions found in all nodes. Finally, the local population 
results are returned to the frontend buffers where necessary 
processing takes place such as merging and ranking of all 
chromosomes and then return the appropriate association 
rules as per the user parameters. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 Algorithm 3 Backend Association Rules Engine 

Input: A set of parameters received from the frontend and 
the local set of transactions. 
Output: Population with a set of possible association rules 
sent to the frontend node. 
1: Receive the user’s parameters (uP) and any required pre-
defined parameters from the front end (vP) 
2: Load the local transaction and create the FP-Tree 
(SupTree) and array A by calling Algorithm 1. 
3: Generate N chromosomes randomly; each chromosome 
represents a possible rule 
4: Decode the chromosomes to get the values of the 
different items. 
5: Using Algorithm 2, find the support of the antecedent 
side, consequent side and the rule. 
6: Using equation 1, 2 and 3, find the confidence, 
comprehensibility and interestingness 
7: Rank the chromosomes by calculating their fitness values 
(use equation 4).  
8: Copy the chromosomes ranked as 1 into a separate 
population, if better chromosomes are generated from the 

following steps then remove the dominated chromosomes 
from this population. 
9: Using the roulette wheel scheme along with the fitness 
values, select the chromosomes for next generation and 
replace the chromosomes of old population. 
10:  Perform multi-point crossover and mutation on these 
new chromosomes. 
11:  if the required number of generations is not completed, 
then go to Step 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12: Do a Parallel Fitness Calculation by sending the final 
stored population (R) to all other backend nodes in the 
parallel model (using ring topology design as shown in Fig. 
4).  
13. Return result R to the frontend (collect R with MPI 
Allgather()). 
 

VI. EXPERIMENTAL RESULTS 

In terms of the environment, parallel evaluation was 
conducted on an 8-node (16 processors), Gigabit Ethernet 
Linux cluster, with each 2.6 GhZ ProLiant board housing 2 
GB of memory. For the test database, we used the Synthetic 
transactional database generated by IBM Quest Market-
Basket Data Generator to synthesize a transaction database. 
Specifically, we used 1000 unique items to create 10 Million 
records, each of which has average transaction length of 10. 
Default values of the genetic parameters are: Population Size 
= 40, crossover probability = 0.8, mutation probability = 
0.02, the values of user-defined weights are chosen to be 
equal W1=0.33, W2=0.33 and W3=0.33 [11]. In the future, 

User API  

Parameters  

User API  

Parameters  

End User End User 

Disk (set of 
transactions) External Interface 

Parameters Reception 
User Authentication and sessions 

Frontend 
Server  

Data Distribution 
Parameters Distribution  

Results Collection 

Backend Servers 

Parallel Service Interface (PSI)  

Node n: 
Local 

Association 

Rule Engine 

 

Node 

1:Local 
Association 

Rule Engine 

 

Node 
2:Local 

Association 
Rule Engine 

 

Node 
3:Local 

Association 

Rule Engine 

0
0
0   

 

PSI PSI 
PSI PSI 

Figure 4: The core architecture of the parallel Association rule engine. 
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the default values along with the user defined parameters 
will be changed to evaluate their affects to our algorithm.  

We begin by looking at the performance of the proposed 
parallel genetic algorithm to extract association rules 
described in this paper. We have directly compared our 
model with some of the previous parallel association rules 
algorithms (Elcat, WMDF, HorVertical) using different 
number of sibling servers (1, 2, 4 and 8 nodes) in the system 
and minimum support of 0.5%, if needed. Note that the 
current server has only 8 nodes but our algorithm is designed 
to work on any parallel server regardless the number of 
nodes. Fig. 5 shows that the performance of our Parallel 
Genetic Algorithm Model (PGAM) to extract Association 
rules does indeed outperform previous parallel association 
rules algorithms. With respect to our algorithm, the running 
time consider the time to build and maintain the FP-Tree, 
communication time, receive results in the front end node 
and prepare the final list of association rules. This result is 
due to many reasons. First, our model is based on the 
Evolutionary Generic Algorithm that is very suitable to such 
problem (Association rules). Second, finding the support is 
going to be very fast by adopting the concept of FP-Tree. 
Third, the encoding/decoding schemes of chromosomes 
allow us to find the association rules directly without the idea 
of frequent itemsets. Fourth, the data portioning ensures the 
load balanced and that all nodes are contributing equally in 
extracting the association rules. Finally, our approach scans 
the database only once while the Eclat algorithm scans the 
database three times and the WMDF algorithm scans the 
database a lot of Times. Note that HoriVertical scans the 
database only once but it is not based on evolutionary 
algorithm. 

In production environments, it is quite likely that 
association rule algorithms will be accessing databases (set 
of transactions) that are larger than the ones that can be 
conveniently tested in academic settings. As a result, it is 
important to provide some understanding of performance as 
set of transactions (databases) grow. Our scalability 
assessment begins with a look at performance patterns as the 
number of transactions increases from 10 million to 40 
million records. In this experiment, we use 8 nodes to extract 
the association rules as the number of transactions vary. Fig. 
6 shows the execution time as a function of number of 
transactions (database size). As can be seen in the figure, the 
running time is increased by a factor of 1.3 as the number of 
records in the database increases by a factor of two. The 
result is expected because the size of the FP-Tree would be 
almost the same as the number of transactions increases. 
Consequently, our Parallel Genetic Algorithm Model to 
extract association rules is very scalable in that an increase in 
the number of transactions is associated with nearly the same 
execution time. Note that other algorithms (Elcat, WMDF, 
HorVertical) focus on the parallel runtime performance to 
extract association rules therefore we did not compare our 
algorithm in terms of scalability with their algorithms.  

Due to the current capacity of the nodes’ memories and 
processors, we could not make experiments with larger data 
sets. But in theory the algorithm is designed to support large 
and big real-world data sets. In the future, we will upgrade 

the capacity of memory and processor in each one of the 
nodes to perform experiments with larger datasets. 

 
Figure 5. performance of our model (PGAM) versus other parallel 

algorithms 

 

 
Figure 6. Running time as a function of the number of records 

 
The parallel speedup graph illustrated in Fig. 7 depicts a 

speedup of approximately 7 (about 88% of optimal). The 
difference between observed speedup and optimal speedup is 
due to the Parallel Fitness Calculation used to calculate the 
fitness values of all chromosomes found in the parallel 
nodes. 

 
Figure 7. Parallel Speedup 
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VII.  CONCLUSION 

A great deal of association rules and frequent 
itemsets research has been published over the past 15-20 
years. For the most part, however, researchers tend to focus 
on Apriori and FP-Growth algorithms and data structures 
for single node servers. Given the size of the underlying 
market-basket databases, coupled with the availability of 
modestly priced hardware and the advantages of genetic 
algorithm -- it was proved to perform global search with less 
time complexity and also very well suited for NP-hard 
problem such as ARM--, there exists great opportunity for 
the exploitation of cluster-based data mining servers by 
using GA. In this paper, we have discussed a Parallel 
Genetic Algorithm Model (PGAM) for association rules. 
Constructed as a federation of heavily optimized sibling 
servers, the current model demonstrates the potential to 
provide both high performance and scalability. 
Experimental evaluation in both multi-node scenarios 
suggests that the current model does indeed have the 
potential to achieve this objective. 
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