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Abstract-Nearest Neighbor Search problem is an point and a set of query points, taking into consideration how
important research topic in data mining field. In this important each query point is, and how dimensions should
paper, we discuss our continuous work on finding be dynamically chosen for each data point. We apply our
nearest neighbors in multi-dimensional data based on our algorithm to find nearest neighbors in different subspaces of
previous research work. The research work presented in the original data space.

this paper improves our original algorithm by analyzing
the distribution of data points on each dimension
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As one of the important research topics in the data mining ° qp's e
field, the nearest neighbor search problem has been studied and OO @
various approaches have been proposed in different research °

scenarios [2], [8], [10], [11], [13], [16]. For example, [11]

proposes a scheme for nearest neighbor search by hashing dita 1: A 2-dimensional data set with multiple query points
points from a data set, so that for data points close to each where data points have different densities

other, the probability of collision is much higher than those

that are far from each other. The authors also conducted ex-

periments to demonstrate the accuracy and scalability of their IIl. PROBLEM DEEINITION

algorithm. [13] presents a multi-step algorithm that producesIn this paper, we propose to enhance the process of the
the minimum number of candidates for nearest neighbor sear '

problem. The algorithm works well for the efficiency require‘-ﬁggghm discussed in [14] by analyzing the data point distri-

. X : .. but
ments of complex high-dimensional and adaptable dlstancL(-%:Or example, figure 1 shows a 2-dimensional data set along
ith multiple query points. The hollow dots represent the data

functions. [16] provides a detailed analysis of partitionin
and clustering techniques for nearest neighbor search probI(P%I. ts. The solid squargy; , the solid four-point stagps, and
the solid ellipsegp; represent different query points. Among

The paper also discusses an alternative organization base
?pproxmatlo_ns to make the unavoidable sequential scant e data points represented by the hollow dots, the data point
ast as possible. . ; .
dpy is far from other data points, and the data paipt is
close to many data points. For many real-world applications,
query points are close to dense data point area, as shown ir
Traditional approaches apply similarity functions such dRyure 1, wheregp:, gp» and gps are all much closer talp,
Euclidean distance to calculate the distance between two dgian todp,. For applications of this kind, a data point closer to
points in a given data set. Such approaches often havether data points (such a,) has a higher chance to be one
problem called “curse of dimensionality”, since when dimerof the K nearest neighbors of multiple query points, compared
sionality goes higher, the distance between two data points kgp,. Based on this observation, we propose to enhance the
comes less meaningful [9], [6], [16], [7]. There are approachagorithm in [14] by assigning a weight to each query point
designed for partial similarities analysis [12], [4], [3], butwhich represents how many neighbors it has.
most of them have the problem of lack of flexibility because In this paper we will use DS to represent the data set in our
they require fixed subset of dimensions or fixed number ghproach. DS contains data points in multi-dimensional data
dimensions as a part of the algorithm input . space. The size of DS is n and DS has d dimensidhs:
In [14], we discuss the fact that in reality, we need t®,, ... D,. Each data point in DS is a d-dimensional vector:
find nearest neighbors to multiple query points with different, — [Ti1, iz, ..., 4] (51,2,...,n). The identity of(; is i. We
level of importance. We define the distance between a da@nsider the case that there are multiple query points. Those

Il. RELATED WORK
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Fig. 2: Dimensions sorted bi/;;

query points will be in the same data space as data pointsdiescending order, shown in figure 2. Next we find the first
DS are:Q; = [gj1, 452, ---» ¢;a]- Suppose the set of the querysharp downward part as the cut point in the second half of the
points is@: Q = {Q1,Qa2, ..., @m }, With the size of@ being ordered list. All the dimensions before the the cut point are
m. Both DS andQ are normalized. Each query poi@; has those on whichX; has many neighbors. If there is no sharp
a weightWQ); that represents the importance of the distangmint at all in the ordered list, we simply set the cut point as
to Q;. the middle position in the list.

As we discussed previously, we analyze the data distributionSuppose there are h dimensions before the cut point. We
and assign a weigh¥’; to each data poink; in DS, i=1,2,...,n. calculateW; as
The value of weight shows the density of the atéais in. .
The more neighbor; has, higher valuéV; should have. S Wiy

We first calculate the weight oX; on each dimension. For W, — P! (@)
dimensionD;, 1=1,2,...,d, we calculate ¢ h

W; is the average of the weights from dimensions on which
W =|{1<j <nl|| Xy — Xl <a,i#j} (1) wy, is high. This definition ofi¥; collects the information of
e{l the dimensions on whiclX; has many neighbors.
Thus the final set of the weights for the data points is

whereq is a distance threshold that determines if two da
points are close to each other. X; is close to many data
points onD;, W;; will have a large value; otherwis&l;; will

have a small value. W = {W1, W, ..., Wa} (5)
Once we have the weight ok; on each dimension, we whereW; i=1,2,...,d is defined in formula (4).
can calculate the total weighit; of X; in the d-dimensional  In the next step, we definé\;; = [5;1,0ij2; ., dijd]

data space. There are several ways to achieve that. The #istthe array of differences betweéfy (i=1,2,...,n) andQ;
solution is to calculate the average of the weights on all thie=1,2,...,m) on all the dimensionsD{,Ds,....Dg). &iji iS

dimensions: calculated as:
d diji = WQj * [xi — qjl. (6)
Z Wil J J J
=1
Wi=— (2) IV. ALGORITHM
The second solution is to select the maximum weight from [N our algorithm, we try to find K nearest neighbors for Q,
all the dimensions: given a data set DS, a query set Q and the value of K.
We calculate K nearest neighbors for Q on each dimension.
W, = mix Wi 3) The first step is to calculaté;;; based on equation (6). We
=1

next sort the data points based &p on each dimensiol;,

Neither of the solutions works well. If we calculate thd=1,2,...,d, for each query poid};, j=1,2,...,m. We then define
weight as the average of all the weights, those dimensioASS;; as the set which contains thés of the first K data points
on which X; is not close to many neighbors will weaken thén the sorted list. LetX'S; = K.S1; U KSy U ..U KS,,;. We
weight of X;. If we calculate the weight as the maximum valuéefine K'S; as the set which contains tliés of K data points
of all the weights, we disregard a lot of useful informationvhich appear most frequently i S;.
from most of the dimensions. To avoid the disadvantages ofThe next step is to calculate the weight for each data
both solutions, we design the weight; of X; as follows: point X; as we discussed in equation (4). To compute the
first we sort the dimensions based on the valuéigf in the distance between a data point and the query set, we define
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Algorithm WMQKNN ( DS: data set, Q: query point set,

D: dimensions, K: number of data points requiredy:
threshold for calculation of query point closenelss
Begin

For eachX; € DS and each query poi@; € @, calculate
Aij = [(51‘]‘1,61'3'27 ...7(51’]‘5[] in which 6ijl = |wil — qﬂl;

Sort the data points in DS based éyy; for each query
point Q; and each dimensiof; ;

GenerateK S;; which contains the first Kds in the sorted
list;

GenerateK S; as union ofK S;; j=1,2,...,m;

GenerateK S; which contains Kids from K.S] with the
highest frequencies;

CalculatelV; for each data poini;;

For each data poink;, generateB; = [bi1, bia, ..., bid] N
which by =1, if 2 € KSp; by =0, if ¢ KS;

Generate5S as union ofK.S;, I=1, 2, ..., d;

For each data pointX;, where i € GS, calculate
WMSD(X;,Q);

Sort GS based oWV M SD(X;, Q);

Let set WMQKS contain the first Kds € GS;
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Figure 4 shows the change of algorithm accuracy when
the data size increases from 20000 to 80000 usinglthe
defined in formula (2). We can see that when there are more
data points, more irrelevant information is involved in the
calculation.
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Fig. 4: The change of accuracy when data size increases using

Return WMQKS. formula (2)
End.
Figure 5 shows the change of algorithm accuracy when the
. . data size increases from 20000 to 80000 usingithelefined
Fig. 3: Proc: Algorithm WMQKNN . . v L
g foc: Agorrim Q in formula (3). The performance is better than the one in figure
a binary arrayB; for each data pointX;, i=1, 2, ... n: 4, because we use maximum instead of average. However, we
B; = [bi1,ba,...,big] in which by = 1, if i € KS; b; lose alot of information of most dimensions.
=0, if i ¢ KS;. Once we obtainB;, we calculate the 100
Weighted-multi-query-distanc¥; to Q asW M SD(X;,Q) = 9% ‘-\‘\__‘\A
d 5D, . .
W, * =19t \wheres, is the difference betweel; and 50 T—
(i, ba) Sm o wo ) - 70 —
.. i i %1 B =

the average positiorg{ = 7323;:1(14/22]_; )yof Q on Dy, by is 7 23
either 1 { € KS;) or 0 (i ¢ K.5)). R

From the definition of WMSDX;, Q) we can see that only * 2
those dimensions on whick; is close enough t@ are chosen 20
for calculation. We present the WMQKNN algorithm in figure 12
3 . 20000 30000 40000 50000 60000 70000 80000

In this approach, we keep track of the information of all Data size

data points and all query points which occup®@$n + m)
space. We sort the differences between data pointsznoh
each dimension. The time required@§dnmlogn).

Fig. 5: The change of accuracy when data size increases using
formula (3)

Figure 6 shows the change of algorithm accuracy when the
V. EXPERIMENTS data size increases from 20000 to 80000 usingthealefined
In this section we present the experimental results &n formula (4). The performance is the best compared the
both synthetic and real data sets, which are run on Intel(Rjevious two, because we only consider the dimensions where
Pentium(R) 4 with CPU of 3.39GHz and Ram of 0.99 GB. the data points have a lot of neighbors.

100

A. Experiments on synthetic data sets g | T = o ——
We design a synthetic data generator to produce data sets ig

with different size and dimensionality. The sizes of the data g 4,

sets vary from 20,000, 30,000... to 80,000, with the gap § w0

of 10,000 between each two adjacent data set sizes. The § %

dimensions of the data sets vary from 10, ... to 80, with the o

gap of 10 between each two adjacent numbers of dimensions. ig

The value of query set size m varies from 1,2,...,10. The value 0 ‘ . ‘ : . . ‘

Of K Varies from 3,4,_",10_ 20000 30000 40000 50000 60000 70000 80000

Data size

We conducted various experiments on synthetic data sets.
Here we present experiments to demonstrate the performandgig. 6: The change of accuracy when data size increases using

difference using different way of calculating the weight; formula (4)
for eachX;, i=1,2,...,n.
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B. Experiments on real data set [2] E. Achtert, C. Bhm, P. Kbger, P. Kunath, A. Pryakhin, and M. Renz.

. Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In
We next present the experimental results of WMQKNN  gicmop 06 pages 515526, New York, NY, USA, 2006. ACM.

on real data sets.The real data sets were obtained from U] C. C. Aggarwal. Towards meaningful high-dimensional nearest neighbor
Machine Learning Repository [1] We compare the testing search _by human-computer interaction. H?fmceedmgs of the 18th
. . . International Conference on Data Engineering, 26 February - 1 March
result of these data sets with other algorithms such as IGrid[5] 5002, san Jose, C/pages 593-604. IEEE Computer Society, 2002.
and Frequent K-n-match algorithm [15]. [4] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising
The first data set is Yeast data set. It contains 1484 instances Pehavior of distance metrics in high dimensional space®rdceedings
. . . . of the 8th International Conference on Database ThedBDT '01,
in a 8-dimensional data space. There are 10 clusters in the pages 420434, London, UK, UK, 2001. Springer-Verlag.
data set. The second data set is Wine Recognition dafg C. C. Aggarwal and P. S. Yu. The IGrid index: reversing the dimen-
set. It contains the results of a chemical analysis of wines sionality curse for similarity indexing in high dimensional space. In
. . . . Knowledge Discovery and Data Miningages 119-129, 2000.
grown in the same region in ltaly but derived from three[6] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree : An index
different cultivars. It contains 178 instances. Each instance structure for high-dimensional data. W.DB'96, pages 28-39, Bombay,
has 13 features which means the data set is defined in a 13 India, 1996. _ _ _

. . . . F]?é K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest
dimensional data space. Three clusters are defined with the 6ignhor meaningful? linternational Conference on Database Theory
sizes of 59, 71 and 48. The third data set is Ecoli data set for 99, pages 217-235, Jerusalem, Israel, 1999.

Protein Localization Sites. There are 336 instances, each §f B: Cul H. T.Shen, J. Shen, and K.-L. Tan. Exploring bit-difference for

. . . . approximate knn search in high-dimensional databaseBrdoeedings
which having 7 features. 8 clusters are contained in the data . the 16th Australasian database conference - VolumeARSC 05,
set. pages 165-174, Darlinghurst, Australia, Australia, 2005. Australian

To generate query points, for each real data set, we rap- Computer Society, Inc. -

d | lect dat ints as the candidates. and perform Oﬁ} D. A. White and R. Jain. Similarity Indexing with the SS-tree. In
Omy se ec_ ata po ) ’ p : Proceedings of the 12th Intl. Conf. on Data Engineeripgges 516—

algorithm using K as 6. Query point sets of various sizes 523, New Orleans, Louisiana, February 1996.

are randomly selected, and for each query point, 15 datél o fagm R Kl_g“gh?”%;é;‘gknum;:bcifgg!ﬁggSéfpgﬁé'ﬂégggrggand

. . . . T 1 Vi on. |
points are retrieved as the nearest ne|ghbor§. If.a .retneved_ data giGmoD international conference on Management of dHGMOD
point has the same class with the query point it is associated '03, pages 301-312, New York, NY, USA, 2003. ACM.
with, we call it a successful retrieval. Otherwise, we calfll A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
the data point an unsuccessful retrieval. We calculate h dimensions via hashing. Ifhe VLDB Journalpages 518-529, 1999.

p b : ] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest
many successful retrievals we have among the results from neighbor in high dimensional spaces? The VLDB Journal pages

performing WMQKNN on these query points, and evaluate_ 506-515, 2000. , _ _
] T. Seidl and K. H.-P. Optimal multi-step k-nearest neighbor search.

the accuracy rate. The average accuracy rate of WMQKNN™ | proc ACM SIGMOD Int. Conf. on Management of Data (SIGMOD
algorithm is 92.6¢, which is higher than the accuracy rate of  1998), Seattle, Washingtopages 154—165, New York,NY,USA, 1998.

. . ; i ACM.
|Grid (87'%)’ and that of Freq. K-n match algorlthm, WhICh[14 Y. Shi and B. Graham. A similarity search approach to solving the

; ]
is 90.8%. multi-query problems. InProceedings of the 2012 IEEE/ACIS 11th
International Conference on Computer and Information SciehCéS
VI. CONCLUSION AND DISCUSSION ’12, pages 237—242, Washington, DC, USA, 2012. IEEE Computer
Society.
In this paper, we present our continuous work on findings] A. K. H. Tung, R. Zhang, N. Koudas, and B. C. Ooi. Similarity
nearest neighbors for multiple queries. We first analyze the Search: a matching based approach.viDB '06: Proceedings of the
TR . . . 32nd international conference on Very large data bapeges 631-642.
data dlstrlbutlon_ on each_ dlmen3|0n,_and caICL_JIate the weight v\ pg Endowment, 2006.
of each data point. We discussed various solutions of calculgB] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and
ing the total weight of a data point, analyze the disadvantages performance study for similarity-search methods in high-dimensional
9 . 9 P y 9 spaces. IrProc. 24th Int. Conf. Very Large Data Bases, VLOiges
of two solutions, and choose the one that calculates the average 194 505 24-27 199s.
of the weight on selected dimensions. We then apply the
weight to calculate the distance between a data point and the
guery point sets step by step.
We conduct experiments to test our approach on different
data sets. We first generate synthetic data sets and demonstrate
how the algorithm accuracy changes with the data size using
different solutions. We then test our approach on real data sets
and compare the experimental results with existing algorithms.
For the future work, we will improve our algorithm by
amplifying the effect of data point weight as well as dimension
weight. We will modify the way to calculate the distance
between a data point and a query point set to improve the
performance of our approach.
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