
Finding Nearest Neighbors for Multi-Dimensional Data

Yong Shi, Marcus Judd
Department of Computer Science

Kennesaw State University
1000 Chastain Road

Kennesaw, GA 30144
yshi5@kennesaw.edu, mjudd3@kennesaw.edu

Abstract–Nearest Neighbor Search problem is an
important research topic in data mining field. In this
paper, we discuss our continuous work on finding
nearest neighbors in multi-dimensional data based on our
previous research work. The research work presented in
this paper improves our original algorithm by analyzing
the distribution of data points on each dimension.

Keywords–Similarity Search, Multi-query, Data Point
Weight

I. I NTRODUCTION

As one of the important research topics in the data mining
field, the nearest neighbor search problem has been studied and
various approaches have been proposed in different research
scenarios [2], [8], [10], [11], [13], [16]. For example, [11]
proposes a scheme for nearest neighbor search by hashing data
points from a data set, so that for data points close to each
other, the probability of collision is much higher than those
that are far from each other. The authors also conducted ex-
periments to demonstrate the accuracy and scalability of their
algorithm. [13] presents a multi-step algorithm that produces
the minimum number of candidates for nearest neighbor search
problem. The algorithm works well for the efficiency require-
ments of complex high-dimensional and adaptable distance
functions. [16] provides a detailed analysis of partitioning
and clustering techniques for nearest neighbor search problem.
The paper also discusses an alternative organization based on
approximations to make the unavoidable sequential scan as
fast as possible.

II. RELATED WORK

Traditional approaches apply similarity functions such as
Euclidean distance to calculate the distance between two data
points in a given data set. Such approaches often have a
problem called “curse of dimensionality”, since when dimen-
sionality goes higher, the distance between two data points be-
comes less meaningful [9], [6], [16], [7]. There are approaches
designed for partial similarities analysis [12], [4], [3], but
most of them have the problem of lack of flexibility because
they require fixed subset of dimensions or fixed number of
dimensions as a part of the algorithm input .

In [14], we discuss the fact that in reality, we need to
find nearest neighbors to multiple query points with different
level of importance. We define the distance between a data

point and a set of query points, taking into consideration how
important each query point is, and how dimensions should
be dynamically chosen for each data point. We apply our
algorithm to find nearest neighbors in different subspaces of
the original data space.

Fig. 1: A 2-dimensional data set with multiple query points
where data points have different densities

III. PROBLEM DEFINITION

In this paper, we propose to enhance the process of the
algorithm discussed in [14] by analyzing the data point distri-
bution.

For example, figure 1 shows a 2-dimensional data set along
with multiple query points. The hollow dots represent the data
points. The solid squareqp1, the solid four-point starqp2, and
the solid ellipseqp3 represent different query points. Among
the data points represented by the hollow dots, the data point
dp1 is far from other data points, and the data pointdp2 is
close to many data points. For many real-world applications,
query points are close to dense data point area, as shown in
figure 1, whereqp1, qp2 and qp3 are all much closer todp2

than todp1. For applications of this kind, a data point closer to
other data points (such asdp2) has a higher chance to be one
of the K nearest neighbors of multiple query points, compared
to dp1. Based on this observation, we propose to enhance the
algorithm in [14] by assigning a weight to each query point
which represents how many neighbors it has.

In this paper we will use DS to represent the data set in our
approach. DS contains data points in multi-dimensional data
space. The size of DS is n and DS has d dimensions:D1,
D2, ... Dd. Each data point in DS is a d-dimensional vector:
Xi = [xi1, xi2, ..., xid] (i=1,2,...,n). The identity ofXi is i. We
consider the case that there are multiple query points. Those

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Fig. 2: Dimensions sorted byWil

query points will be in the same data space as data points in
DS are:Qj = [qj1, qj2, ..., qjd]. Suppose the set of the query
points isQ: Q = {Q1, Q2, ..., Qm}, with the size ofQ being
m. Both DS andQ are normalized. Each query pointQj has
a weightWQj that represents the importance of the distance
to Qj .

As we discussed previously, we analyze the data distribution
and assign a weightWi to each data pointXi in DS, i=1,2,...,n.
The value of weight shows the density of the areaXi is in.
The more neighborsXi has, higher valueWi should have.

We first calculate the weight ofXi on each dimension. For
dimensionDl, l=1,2,...,d, we calculate

Wil = |{1 ≤ j ≤ n||Xil −Xjl| < α, i 6= j}| (1)

whereα is a distance threshold that determines if two data
points are close to each other. IfXi is close to many data
points onDl, Wil will have a large value; otherwise,Wil will
have a small value.

Once we have the weight ofXi on each dimension, we
can calculate the total weightWi of Xi in the d-dimensional
data space. There are several ways to achieve that. The first
solution is to calculate the average of the weights on all the
dimensions:

Wi =

d∑
l=1

Wil

d
(2)

The second solution is to select the maximum weight from
all the dimensions:

Wi =
d

max
l=1

Wil (3)

Neither of the solutions works well. If we calculate the
weight as the average of all the weights, those dimensions
on whichXi is not close to many neighbors will weaken the
weight ofXi. If we calculate the weight as the maximum value
of all the weights, we disregard a lot of useful information
from most of the dimensions. To avoid the disadvantages of
both solutions, we design the weightWi of Xi as follows:
first we sort the dimensions based on the value ofWil in the

descending order, shown in figure 2. Next we find the first
sharp downward part as the cut point in the second half of the
ordered list. All the dimensions before the the cut point are
those on whichXi has many neighbors. If there is no sharp
point at all in the ordered list, we simply set the cut point as
the middle position in the list.

Suppose there are h dimensions before the cut point. We
calculateWi as

Wi =

h∑
p=1

Wip

h
(4)

Wi is the average of the weights from dimensions on which
Wil is high. This definition ofWi collects the information of
all the dimensions on whichXi has many neighbors.

Thus the final set of the weights for the data points is

W = {W1,W2, ...,Wd} (5)

whereWi i=1,2,...,d is defined in formula (4).
In the next step, we define∆ij = [δij1, δij2, ..., δijd]

as the array of differences betweenXi (i=1,2,...,n) andQj

(j=1,2,...,m) on all the dimensions (D1,D2,...,Dd). δijl is
calculated as:

δijl = WQj ∗ |xil − qjl|. (6)

IV. A LGORITHM

In our algorithm, we try to find K nearest neighbors for Q,
given a data set DS, a query set Q and the value of K.

We calculate K nearest neighbors for Q on each dimension.
The first step is to calculateδijl based on equation (6). We
next sort the data points based onδijl on each dimensionDl,
l=1,2,...,d, for each query pointQj , j=1,2,...,m. We then define
KSjl as the set which contains theids of the first K data points
in the sorted list. LetKS′l = KS1l ∪ KS2l ∪ ...∪ KSml. We
defineKSl as the set which contains theids of K data points
which appear most frequently inKS′l .

The next step is to calculate the weight for each data
point Xi as we discussed in equation (4). To compute the
distance between a data point and the query set, we define

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Algorithm WMQKNN (DS: data set, Q: query point set,
D: dimensions, K: number of data points required,ω:
threshold for calculation of query point closeness)
Begin

For eachXi ∈ DS and each query pointQj ∈ Q, calculate
∆ij = [δij1, δij2, ..., δijd] in which δijl = |xil − qjl|;

Sort the data points in DS based onδijl for each query
point Qj and each dimensionDl ;

GenerateKSjl which contains the first Kids in the sorted
list;

GenerateKS′l as union ofKSjl j=1,2,...,m;
GenerateKSl which contains Kids from KS′l with the

highest frequencies;
CalculateWi for each data pointXi;
For each data pointXi, generateBi = [bi1, bi2, ..., bid] in

which bil = 1, if i ∈ KSl; bil = 0, if i /∈ KSl;
GenerateGS as union ofKSl, l=1, 2, ..., d;
For each data pointXi, where i ∈ GS, calculate

WMSD(Xi, Q);
Sort GS based onWMSD(Xi, Q);
Let set WMQKS contain the first Kids ∈ GS;
Return WMQKS.

End.

Fig. 3: Proc: Algorithm WMQKNN

a binary arrayBi for each data pointXi, i=1, 2, ... n:
Bi = [bi1, bi2, ..., bid] in which bil = 1, if i ∈ KSl; bil

= 0, if i /∈ KSl. Once we obtainBi, we calculate the
Weighted-multi-query-distanceXi to Q asWMSD(Xi, Q) =
Wi ∗

∑d
l=1 δil∗bil

(
∑d

l=1 bil)2
, whereδil is the difference betweenXi and

the average position (ql =
∑m

j=1(WQj∗qjl)∑m
j=1(WQj)

) of Q on Dl, bil is

either 1 (i ∈ KSl) or 0 (i /∈ KSl).
From the definition of WMSD(Xi, Q) we can see that only

those dimensions on whichXi is close enough toQ are chosen
for calculation. We present the WMQKNN algorithm in figure
3.

In this approach, we keep track of the information of all
data points and all query points which occupiesO(n + m)
space. We sort the differences between data points andQj on
each dimension. The time required isO(dnmlogn).

V. EXPERIMENTS

In this section we present the experimental results on
both synthetic and real data sets, which are run on Intel(R)
Pentium(R) 4 with CPU of 3.39GHz and Ram of 0.99 GB.

A. Experiments on synthetic data sets

We design a synthetic data generator to produce data sets
with different size and dimensionality. The sizes of the data
sets vary from 20,000, 30,000... to 80,000, with the gap
of 10,000 between each two adjacent data set sizes. The
dimensions of the data sets vary from 10, ... to 80, with the
gap of 10 between each two adjacent numbers of dimensions.
The value of query set size m varies from 1,2,...,10. The value
of K varies from 3,4,...,10.

We conducted various experiments on synthetic data sets.
Here we present experiments to demonstrate the performance
difference using different way of calculating the weightWi

for eachXi, i=1,2,...,n.

Figure 4 shows the change of algorithm accuracy when
the data size increases from 20000 to 80000 using theWi

defined in formula (2). We can see that when there are more
data points, more irrelevant information is involved in the
calculation.

Fig. 4: The change of accuracy when data size increases using
formula (2)

Figure 5 shows the change of algorithm accuracy when the
data size increases from 20000 to 80000 using theWi defined
in formula (3). The performance is better than the one in figure
4, because we use maximum instead of average. However, we
lose a lot of information of most dimensions.

Fig. 5: The change of accuracy when data size increases using
formula (3)

Figure 6 shows the change of algorithm accuracy when the
data size increases from 20000 to 80000 using theWi defined
in formula (4). The performance is the best compared the
previous two, because we only consider the dimensions where
the data points have a lot of neighbors.

Fig. 6: The change of accuracy when data size increases using
formula (4)

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

B. Experiments on real data set

We next present the experimental results of WMQKNN
on real data sets.The real data sets were obtained from UCI
Machine Learning Repository [1]. We compare the testing
result of these data sets with other algorithms such as IGrid[5]
and Frequent K-n-match algorithm [15].

The first data set is Yeast data set. It contains 1484 instances
in a 8-dimensional data space. There are 10 clusters in the
data set. The second data set is Wine Recognition data
set. It contains the results of a chemical analysis of wines
grown in the same region in Italy but derived from three
different cultivars. It contains 178 instances. Each instance
has 13 features which means the data set is defined in a 13
dimensional data space. Three clusters are defined with the
sizes of 59, 71 and 48. The third data set is Ecoli data set for
Protein Localization Sites. There are 336 instances, each of
which having 7 features. 8 clusters are contained in the data
set.

To generate query points, for each real data set, we ran-
domly select data points as the candidates, and perform our
algorithm using K as 6. Query point sets of various sizes
are randomly selected, and for each query point, 15 data
points are retrieved as the nearest neighbors. If a retrieved data
point has the same class with the query point it is associated
with, we call it a successful retrieval. Otherwise, we call
the data point an unsuccessful retrieval. We calculate how
many successful retrievals we have among the results from
performing WMQKNN on these query points, and evaluate
the accuracy rate. The average accuracy rate of WMQKNN
algorithm is 92.6%, which is higher than the accuracy rate of
IGrid (87.9%), and that of Freq. K-n-match algorithm, which
is 90.8%.

VI. CONCLUSION AND DISCUSSION

In this paper, we present our continuous work on finding
nearest neighbors for multiple queries. We first analyze the
data distribution on each dimension, and calculate the weight
of each data point. We discussed various solutions of calculat-
ing the total weight of a data point, analyze the disadvantages
of two solutions, and choose the one that calculates the average
of the weight on selected dimensions. We then apply the
weight to calculate the distance between a data point and the
query point sets step by step.

We conduct experiments to test our approach on different
data sets. We first generate synthetic data sets and demonstrate
how the algorithm accuracy changes with the data size using
different solutions. We then test our approach on real data sets
and compare the experimental results with existing algorithms.

For the future work, we will improve our algorithm by
amplifying the effect of data point weight as well as dimension
weight. We will modify the way to calculate the distance
between a data point and a query point set to improve the
performance of our approach.

REFERENCES

[1] UCI Machine Learning Archive. University of California, Irvine,
Department of Information and Computer Science. http://kdd.ics.uci.edu.
(Retrived: 01/13/2013).

[2] E. Achtert, C. B̈ohm, P. Kr̈oger, P. Kunath, A. Pryakhin, and M. Renz.
Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In
SIGMOD ’06, pages 515–526, New York, NY, USA, 2006. ACM.

[3] C. C. Aggarwal. Towards meaningful high-dimensional nearest neighbor
search by human-computer interaction. InProceedings of the 18th
International Conference on Data Engineering, 26 February - 1 March
2002, San Jose, CA, pages 593–604. IEEE Computer Society, 2002.

[4] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising
behavior of distance metrics in high dimensional spaces. InProceedings
of the 8th International Conference on Database Theory, ICDT ’01,
pages 420–434, London, UK, UK, 2001. Springer-Verlag.

[5] C. C. Aggarwal and P. S. Yu. The IGrid index: reversing the dimen-
sionality curse for similarity indexing in high dimensional space. In
Knowledge Discovery and Data Mining, pages 119–129, 2000.

[6] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree : An index
structure for high-dimensional data. InVLDB’96, pages 28–39, Bombay,
India, 1996.

[7] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest
neighbor” meaningful? InInternational Conference on Database Theory
99, pages 217–235, Jerusalem, Israel, 1999.

[8] B. Cui, H. T. Shen, J. Shen, and K.-L. Tan. Exploring bit-difference for
approximate knn search in high-dimensional databases. InProceedings
of the 16th Australasian database conference - Volume 39, ADC ’05,
pages 165–174, Darlinghurst, Australia, Australia, 2005. Australian
Computer Society, Inc.

[9] D. A. White and R. Jain. Similarity Indexing with the SS-tree. In
Proceedings of the 12th Intl. Conf. on Data Engineering, pages 516–
523, New Orleans, Louisiana, February 1996.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and
classification via rank aggregation. InProceedings of the 2003 ACM
SIGMOD international conference on Management of data, SIGMOD
’03, pages 301–312, New York, NY, USA, 2003. ACM.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. InThe VLDB Journal, pages 518–529, 1999.

[12] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest
neighbor in high dimensional spaces? InThe VLDB Journal, pages
506–515, 2000.

[13] T. Seidl and K. H.-P. Optimal multi-step k-nearest neighbor search.
In Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD
1998), Seattle, Washington, pages 154–165, New York,NY,USA, 1998.
ACM.

[14] Y. Shi and B. Graham. A similarity search approach to solving the
multi-query problems. InProceedings of the 2012 IEEE/ACIS 11th
International Conference on Computer and Information Science, ICIS
’12, pages 237–242, Washington, DC, USA, 2012. IEEE Computer
Society.

[15] A. K. H. Tung, R. Zhang, N. Koudas, and B. C. Ooi. Similarity
search: a matching based approach. InVLDB ’06: Proceedings of the
32nd international conference on Very large data bases, pages 631–642.
VLDB Endowment, 2006.

[16] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces. InProc. 24th Int. Conf. Very Large Data Bases, VLDB, pages
194–205, 24–27 1998.

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

