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Abstract—Query engines for managing RDF repositories
based on relational technology represent an alternative to
query engines based on triple-stores. The paper presents
adaptation of object-relational technology for managing RDF
data. The architecture of query engine for RDF databases is
proposed: i) mapping of RDF graph model to object-relational
representation is described, and ii) internal structures and
methods used for the implementation of query engine are
discussed. While following the architecture of object-relational
systems we adapt it for the specific operations defined on RDF
data.
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I. I NTRODUCTION

Linked Open Data(abbr. LOD) repositories storing RDF
files represent primary means to publish data on the Internet.
They serve recently to disseminate large amounts of data
in the areas of Life-science, Biology, Chemistry, Medicine,
Geography and Media as well as about the institutions such
as Governments. It is estimated that the data sets on the
above stated areas include more than 31 Giga triples [15].

The first and most common approach to storage and
manipulation of RDF data is the use of triple-storage system
which is based on few relational tables and a collection of
indexes built on these tables. Examples of such triple-store
based systems are 3store [13] and Bigdata [3]. SPARQL
queries are converted into some form of relational calculus
expressions which are further converted to access paths
implemented by indexes.

The second approach that is also common due to avail-
ability of relational and object-relational systems is theuse
of ordinary RDBMS by converting triples into relational or
object-relational tables with three or four columns. SPARQL
queries are converted into relational queries. Indexes canbe
created as needed and RDBMS uses its optimizer to create
fast plans for SPARQL queries. Example of DBMS using
such approach is Virtuoso [29].

Both of the above stated approaches to querying RDF
repositories treats complete repository as one single database
(or table of triples) on top of which indexes are created,
either that we use standard object-relational indexes or
special indexes that depend on a concrete system.

In this paper we present architecture of a database system
for storing RDF triples as classes, properties and concrete
objects. RDF triples are converted to specific kind of entities
when they are loaded into the database. We follow therefore
conceptualrepresentation of RDF triples that uses RDFS
types or least general types (classes) covering all properties
of individual concrete triples, in the case RDFS types are not
used. Class extensions now represent collections of concrete
objects.

The problems that appear with querying collections of
highly structured entities are in a way common to object-
oriented database systems [2], object-relational systems[19],
[28], XML databases [5] and RDF databases [20]. Among
the most important problems that are characteristic for
querying complex entities organized in collections are: ac-
cessing components of complex entities using path expres-
sions [8], [17], restructuring and creating complex entities
[28], [21], and querying complex conceptual schemata [23].

A practical solution to the problems of querying col-
lections of complex objects is presented. Query process-
ing is rooted in relational and object-relational technology.
The existing techniques have been adapted and simplified
to obtain database system tuned to process collections of
complex objects structured by means of RDF data modeling
constructs.

In the following section we present design decisions for
architecture of query processing system for querying RDF
databases. The architecture of query processing system is
based on previous work on querying system for internet data
sources [25], [23] and on formal definition of the structural
part of object-oriented model [24].

Firstly, the storage manager and underlying data model
is presented. Further, mapping between RDF and internal
model of a database system is described. We overview
the architecture of query processor including parsing, type
checking, query optimization and query evaluation. Finally,
bulk loader for RDF is described. Section III gives a short
overview of related work and Section IV presents conclu-
sions and further work.

II. A RCHITECTURE OF QUERY PROCESSOR

Our work focuses on the design of robust and flexible
query execution system for querying and integration of RDF
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data. The design of query execution system is rooted in
the existing work on relational and object-relational query
execution systems [11], [10], [9], [14], [6].

A. Storage manager

Every object has an identifier denoted asobject iden-
tifier or oid. Objects can have functional or multi-valued
attributes. The term “attribute” corresponds to what is also
called object component or data member. The range of
the functional attribute can be an atomic value:number,
string or object (oid). Multi-valued attribute is an array
of atomic values. The data model of is formally presented
in [24].

From a programmer’s perspective, an object is a reference
to the associative (hash) array and an attribute is a hash
entry which can be either a typed scalar or a reference to
an array of typed scalars. Storage manager differentiates
between two kinds of objects: class objects and individual
objects (instances). Each class object is associated to the
set of its sub-classes and its instances. The storage manager
implementation is based on the hierarchical and network data
models: class, its instances and sub-classes are linked in a
ring realized by a double linked list.

1) Types: We distinguish between two sorts of types:
atomic typesand tuple-structured types. Atomic types are:
number, string and object. Type object is oid
of the root class object. Its instances are all oids. Tuple-
structured types have attributes that are either functional or
multi-valued (implemented as refs to arrays). The range of
functional and multi-valued attributes can only be atomic
types.

As suggested by the above description, types together
with the corresponding identifiers formclass objects. The
structure of database can then be viewed uniformly as
partially ordered set of objects: class objects and instances
(individual objects) are interrelated by the inheritance (isa)
and instantiation relationship.

2) Record manager:The record storage manager is based
on the Berkeley DB storage system providing access to dif-
ferent storage structures such as for instance hash-based in-
dex or B+ tree. Record manager implements a data store for
records representing individual and class objects. Records
are treated as arrays of bytes, the structure of which is
known at the object level. Each record has a record identifier
(abbr. rid) implemented as system generated identifier which
is used as the key for the hash-based index in Berkeley DB.
Therefore, records are stored as oid/value pairs where the
values are packed in the sequences of bytes. Record manager
includes the methods for the work with object identifiers,
routines for reading and writing records, methods for the
realization of the hierarchical database model, and accessto
main memory indexes that are associated to the class object.

3) Object manager: The object manager serves as a
cache of objects loaded from Web as well as for storing

intermediate results during query processing. Persistentob-
jects are objects that are tied to the database via object
manager. Each object has an identifier which is implemented
by means of record identifier from the subordinate level.
External identifiers which are unique within the datafile can
be assigned to objects when they are created. Object cache
is realized using LRU (least recently used) strategy for the
selection of objects to be removed from cache. The size
of object cache can be set as the system parameter via the
configuration record of a datafile as well as at run-time.

Object manager handles relationships between instances
and class records (objects) in a similar manner as in early
network and hierarchical database storage systems. Each
class is realized as a list including all instances as well as
sub-classes. Ground objects are added at the beginning of
the list and the class objects are added at the end of the list.

The implementation of objects is based on associative
arrays (or mappings) which map object identifier to the value
of the specified attribute. The module includes simple and
uniform routines for the manipulation of the instance objects
and class objects. The routines can create and delete objects,
set and retrieve (get) the values of object attributes, relate
objects to inheritance hierarchy and update operations. Two
different get and set methods are implemented for reading
and updating single and multivalued attributes.

Objects can be accessed either directly using object iden-
tifiers, or through scan operator (iterator). When accessed
using object identifiers, objects are manipulated through the
main memory pointers to objects in cache. User is respon-
sible that object is accessed each time before it is used.
Routines for update operation mark the object “changed”
when components are altered, unchanged objects do not
need to be treated thereafter. When objects are accessed
using scans they are obtained by means of iterator. The
following scan operators are provided: sequential scan over
class extension and sequential scan over all class instances
of a class, and hash or B-Tree index scan on class extension
as well as the scan over all class instances.

B. Parser

This module includes the implementation of a parser for
the algebra expressions. The algebra expressions are checked
for syntactical errors and then translated into query trees.

Lexical analysis is implemented using a simple lexer
which converts a query into a sequence of tokens including
operation codes and constants. Parsing and translation are
realized by a top-down examination of the query expressions
based on methods for LL(1) grammars.

The query expressions are represented during the query
compilation and execution as query trees. Aquery treeis a
graph (dag) which vertices are query nodes. The vertices are
linked with respect to the parse tree. Two types of nodes are
used for the representation of queries: thequery nodesare
tree nodes representing set operations (e.g. operation join),
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and theparameter nodesare tree nodes for the representation
of parameter expressions (eg. join parameter expression).
The vertices represent all model operations: arithmetic op-
erations, logical operations, comparison operations, schema
manipulation operations as well as variables.

The basic skeleton of the query tree is constructed during
the parsing process. The variables and the names of the data
sources and spans are stored in symbol tablesymtab. The
query nodes represent the operations, spans linking rules,
and access methods. The data for the different phases of
query processing is stored in the same tree nodes. Each
particular module (e.g. query optimization) manipulates its
own view of query nodes.

1) Representing predicates:The parameters of the set
operations select, project and join are abstracted using
parameter nodes. Parameter node is an abstraction of param-
eter expression. It stores information about the query sub-
tree corresponding to the parameter expression: it includes
references to the root of expression sub-tree, reference to
the variables, and references to the data sources of variables.
The parameter nodes play vital role for the representation
of rules as well as for the rule matching procedure. After
a parameter expression is represented by means of a tree
and tied to the query tree, a method for the evaluation of
parameter node can compute the output from given inputs
by means of a tree representing parameter expression.

Symbol tablesymtab is used for handling query vari-
ables during parsing and type-checking, and for preparing
rules for matching. A symbol name appearing in the query
expression can be either the name of data source, query
variable or the name of a span. The entry of symbol table
includes the name of symbol and the reference to the query
node representing data source, variable or span.

2) Path expressions:Path expressions of RDF query
language SPARQL [27] calledproperty pathsare more
expressive than the path expressions of classical relational
and object-relational systems.

The path expressions that have to be implemented are ex-
pressions on properties that are based on regular expressions.
Query processing system treats complex path expressions
as predicates of relational system. For each objects of a
collection complex path expression is evaluated separately.

C. Query optimizer

The design of the query optimizer is based in many
aspects on the design of System R [1] and on the work
of Graefe [10], [12]. The query optimizer performs a global
optimization at master site.

The query expressions are in the query optimizer repre-
sented by query trees [14]. The inner vertices of the query
tree represent operations comprising the query. The leaves
of the query tree represent access paths. The logical equiva-
lences among the query expressions are presented by means
of transformation rules [7]. The internal representation of
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Figure 1. Mesh with access paths

the transformation rules is also based on the query tree
representation.

The query optimization subsystem is composed of the fol-
lowing main modules. The query tree manipulation module
includes routines for manipulation of query trees, application
of rules on the nodes of query trees, and property functions
by which the physical and logical properties of the query
tree nodes are determined.

The cost function is realized by a separate module. The
extensions of the cost functions used for the relational query
optimizer are defined. The optimization module comprises
the algorithms for the optimization of query expressions.
The algorithms which are studied are the exhaustive search
and an algorithm based on dynamic programming.

The core of the module is data structuremesh for the
representation of sets of queries. Common sub-expressions
of queries are shared ie. each query is represented inmesh
only once. Queries are organized into equivalence classes.
Let us first present the data structure Mesh.

1) Mesh: mesh stores query expressions as query trees
organized as a directed acyclic graph (dag). The query trees
share common parts hence there is only one representation
of a query expression inmesh. Further, the query trees
are organized into equivalence classes including logically
equivalent queries.mesh has three entry points.

First, queries can be accessed using the unique identifiers
which are created when query is entered inmesh. The
mapping is realized between query trees (roots of) and the
entries inmesh holding the queries.

Second, queries inmesh can be accessed through the
equivalence classes which again have unique identification
generated on the creation of the equivalence class from
the first query expression. The inverse relationship from
the query trees (roots of) to the equivalence classes is also
defined.

Third, queries can be accessed using the normalized query
expressions (character strings) as the hash index targeting
roots of corresponding query trees.

In spite of various access methods tomesh, queries are
defined free of the cover data structures. Each query node
includes solely a reference to the equivalence class to which
it belongs.
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2) Optimization algorithm:The algorithm for query opti-
mization is based on dynamic programming. The optimiza-
tion is performed top-down: the procedure starts in the root,
descends recursively to sub-trees, computes all logically
equivalent queries, places them in the equivalence class,
picks the next query from equivalence class and starts at
the beginning until all alternatives are considered.

From the point of view of the actual computation of
optimal query tree, this query optimization algorithm works
bottom-up: the leaves of the query tree are optimized first
progressing then upwards toward the root of the query tree.

We use the variant of dynamic programming algorithm
called memoisationwhich stores the optimal results of
the sub-queries and uses them in the computation of the
composed queries. Memoisation is realized in a very simple
manner. Every time a query is to be optimized we first
check Mesh if the optimal query already exists for a given
equivalence class of input query.

At this point we can see the use of Mesh forplan caching.
If we do not clean Mesh after the execution of a given query
that the optimization of the subsequent queries can make use
of the existing optimized queries in Mesh. The optimization
time is reduced significantly.

Let us now present some aspects of the complexity of
query optimization algorithm. The equivalence class com-
prises a sorted list of queries that are the candidates for
the optimization. The cost function is used to order the
list. The search space can be reduced by selecting only the
most promising queries. This type of optimization is called
a heuristic beam search. The algorithm is sub-optimal since
heuristic function based on cost estimation is not admissible
or monotonic.

The practical experiences show that the presented algo-
rithm based on dynamic programming is fast enough for the
optimization of complex bushy trees with up to 10 classes.

3) Rules:Thequery transformation rulesare used for the
transformation of query trees into logically equivalent query
trees that have different structure and potentially a faster
evaluation method. The logical optimization rules are in Qios
specified in a language that follows strictly the syntax and
the semantics of the Qios query expressions.

A rule is composed of theinput patternand theoutput
pattern. The input and output patterns are connected by
means of common variables and common data sources. The
links among the variables define the meaning of the rule.
The input and output patterns, ie. query expressions, are
”terminated” using special operators calledspans. A span is
a virtual operation which can match any algebra operation.
The rule (i/o) patterns can then be seen, from the perspective
of parse trees, as the upper parts of query trees with the
abstract leaves.

The query transformation rules are from the external form
(augumented query expressions) transformed into the repre-
sentation which is based on the query tree representation of
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Figure 2. Query transformation

query expressions. The input and output patterns of the rule
are represented by the input and output query trees. These
are connected by the links relating variables, data sources
and parameters of the input and output patterns of rule as
presented in Figure 2.

Given a query tree and a rule, the matching procedure
can be viewed as an attempt to cover the root of query tree
with the input rule pattern ie. query tree. If matching is
successful, types of the output pattern of rule are checked
in order to verify correctness of query expression. If type
checking procedure succeeds the output pattern of the rule
is duplicated generating in this way a logically equivalet
query of different structure.

D. Query evaluation system

The query evaluation module is based on the iterator-tree
representation of the query evaluation plans. The physical
query execution plan is computed from the optimized query
trees by adding to the existing query nodes information
about physical operation that will implement given logical
operation (query node). The query nodes already contain
information about the statistics, index selection, and cost
estimation.

The main strategy which was used in the implementation
of query execution is to select reasonably fast access meth-
ods on-the-fly without considering alternatives. Simple rules
are used for index selection. Firstly, if selection or join is
based on equality of attributes than hash-based index is gen-
erated. Secondly, if selection or join involves range predicate
we use B-tree index. The selection of query execution plan
is implemented by the procedure which computes physical
operations for all logical operations (query nodes) forming
the physical query tree in a bottom-up manner.

The physical algebra operations implemented are sequen-
tial scan, nested-loop join, hash-based index, and index-
based nested-loop join. The hash-based access methods al-
low the efficient evaluation of the queries including equality
and index-based plan serves for the evaluation of range
queries. The procedures for the selection of physical opera-
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tions are integrated in the routines that open scan operator
for query nodes (logical operators).

After the selection of the physical operations the same
skeleton of the query tree is employed as the iterator tree for
the evaluation of physical query. The query evaluation can be
seen as the tree structured pipeline where sub-nodes need to
provide the next tuple for the evaluation of the current query
node [10], [12]. The result of the logical query optimization
are bushy query trees. The results of the inner sub-trees have
to be materialized in order to avoid repeating evaluation.

E. RDF loader

RDF loader can read RDF files from Internet or locally.
Loader is implemented using RDF::Trine module. Docu-
ment is loaded into internal data model triple at a time.
Schema must be loaded first to construct classes and types
of the repository. Further, concrete triples are loaded to
construct objects which must be instances of previously
loaded classes.

There are many examples of RDF data repositories on the
Internet that do not include schema part. For this purpose,
RDF loader can compute on-the-fly the least general type
(class) covering all instance of a given kind. Algorithm for
RDF schema discovery is simple since we build objects on
the basis of common object identifier that gathers triples
with the same domain.

Currently we do not implement complete RDFS. More
study is needed to be able to adequately model properties
as objects i.e. instances of classes that can be specialised.

III. R ELATED WORK

3store is designed to handle up to 100M serialized triples.
They use three layered model; RDF representation can be
syntactical, model-based in the form of triples and stored in
MySql database system. Two tables are used for indexing
resources and literals. Index value (hash) serves as unique
identifier of resources and literals. These unique identifiers
are then used for table representing triples. SPARQL queries
are translated into relational calculus that can be directly
transformed to SQL.

Bigdata is a triple-store that uses three main relations
to store RDF database: Lexicon, Statements (triples) and
StatementTypes. Exhaustive set of indexes is created for
relation Statements which represents triples. RDF query is
based on statement patterns. Bigdata defines a perfect access
path for each type of access pattern. System includes also
a form of reasoning with triples as well as reasoning on
the basis of RDFS statements. Furthermore, the system is
scalable to several 100 machines.

Virtuoso is a relational system including functionalities
for relational and object-relational data management, XML
and RDF data management, Web services deployment, text
content management services, full-text indexing as well as
Web document server and Linked-data server. RDF data is

stored in a table including triples which can be indexed
using object-relational system. SPARQL is implemented by
translating queries into SQL—equivalent queries can be
expressed directly in SQL.

Let us now present the work related to the implementa-
tion of the presented query execution system. Firstly, the
implementation is closely related to the implementation of
Query Algebra originally proposed by Shaw and Zdonik
in [26] and implemented by Mitchell [18]. In particular,
we have used a similar representation of query expressions
by means of query trees. Furthermore, the representation
of query expressions in Qios is optimized by using single
operation nodes and query trees during all phases of query
processing.

The design of the query execution system was based
on the design of Exodus optimizer generator [9] and its
descendant Volcano [12]. The data structure MESH used in
Exodus query optimizator generator is improved by adding
additional access paths. The data structure can be accessed
through: unique identifier, normalized query expression, and
equivalence class. The algorithm for query optimization is
rooted in Graefe’s work on Volcano optimizer algorithm
[12]. This algorithm uses top-down search guided by the
possible ”moves” that are associated to a query node. The
algorithm uses memoisation to avoid repeated optimization
of the same query. The search is restricted by the cost limit
which is a parameter in optimization.

IV. CONCLUSIONS

The paper presents the architecture of query engine used
for querying RDF databases. While the architecture is based
on relational and object-relational technology there are many
specific components and techniques which are implemented
to reflect RDF data model and the nature of RDF databases.

Firstly, since RDF model uses triples for modeling con-
ceptual schemata and instances the data model of storage
system maintains a single set of object identifiers. Object
values are tuples including concrete values while class values
include class identifies and represent types. Classes are in
many ways treated as ordinary objects reflecting the graph
data model of RDF. Secondly, path expressions of RDF
data model are more expressive than path expressions of
object-relational data model [27]. For this reason treatment
of predicates of selection and join operations must be
considered much more carefully. Finally, algebra of query
processing system have to include operations for grouping
and restructuring to be able to support complete functionality
of SPARQL.
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