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Abstract— Provenance that records the derivation history of 

data is useful for a wide variety of applications, including those 

where an audit trail needs to be provided, where the trust-level 

attributed to the sources contribute to determining the trust-

level in results etc. There have been different efforts for 

representing provenance information, the most notable being 

the Open Provenance Model (OPM). OPM defines structures 

for representing the provenance information as a graph with 

nodes and edges, and also specifies inference queries that can 

be expressed in Datalog/SQL. However, the requirements of a 

query language for provenance information go much beyond 

those that can be expressed using only inference queries. In our 

work, we build on OPM and propose two classes of algebraic 

constructs for querying provenance information: content-

based operators that operate on the content of nodes and 

edges, and structure-based operators that operate on the graph 

structure of the provenance graph. An user can express a 

query as a workflow by composing these content-based and 

structure-based operators. Our operators are powerful, and an 

user can express a wide variety of interesting queries on the 

provenance data, that go much beyond simple inference 

queries as expressible using Datalog/SQL. As part of our 

evaluation, we show different queries and how they can be 

expressed using our constructs. 

Keywords-Provenance; graph; data model; query language; 

algebraic operators 

I.  INTRODUCTION 

Provenance (also referred to as lineage, parentage, 
pedigree, genealogy, or filiation) describes the steps by 
which data was derived. Provenance has been found useful 
for a wide variety of scenarios, where one needs to determine 
the attribution of a data item. For instance, a doctor may 
need to find the sources from which a data item was obtained 
to determine whether the item is clinically valid; in data 
gathering and analysis, the sources from which individual 
data items are obtained is used for later verification. 

In [6], the authors describe two different granularities of 
provenance. In workflow provenance, which is coarse-
grained, each process in the workflow manipulates a set of 
data items producing another set of data items; the 
granularity for provenance recording and querying is at the 
level of data items. In data provenance, which is fine-
grained, the queries deal with identifying which pieces of a 
data item contributed to form a piece of another data item. A 
well-studied example of data provenance is in the context of 
SQL queries, where users may want to find why a particular 
row is in the result (or in some cases, why it is not in the 
result) [4, 7, 9, 10, 13, 18, 24]. Our focus in this work is on 
workflow provenance as studied in [1, 5, 15, 16, 22]. In [12] 

as well as in [14], the authors describe a single system that 
supports both data and workflow provenance.  

Initial works on provenance were tightly integrated with 
the application they dealt with, such as scientific workflows 
[1, 5, 8, 15]. OPM provenance model [20] was developed to 
serve as an application-independent model for representing 
provenance. OPM represents the provenance information of 
an application as a graph, where nodes represent artifacts 
(data items), processes (that manipulate data items), and 
agents (that control processes), and edges represent causal 
dependencies. A simple fictitious example of milk powder 
production, distribution and export is shown in Fig. 1. It 
shows collection of milk, production of milk powder, 
distribution at restaurants and at retail stores, exporting, and 
candy manufacturing and distribution. As in OPM, an ellipse 
is used to represent an artifact, and a rectangle is used to 
represent processes. The causal dependencies are shown in a 
simplified manner than OPM for easier understanding. 

While OPM explains how provenance information can be 
represented, the manipulation of provenance information is 
limited to inference queries, such as determine all the items 
that are directly or indirectly produced by a particular data 
item. An example based on the example application shown 
in Fig. 1 is to determine the candy bars that are affected by a 
particular set of milk powder. These queries can be 
represented in Datalog or using SQL [17]. 

However, limiting ourselves to such inference queries as 
provided by OPM is insufficient for a variety of applications, 
and several interesting queries cannot be expressed. Two 
example queries that cannot be expressed using inference 
queries as provided by OPM are described below. 

Query1 (shortest path): Suppose there is a time duration 
associated with processes in Fig. 1, that shows the time it 
takes for the process from start to finish. If a particular set of 
milk powder is found to be contaminated, we may want to 
find the earliest set of products in domestic market that are 
produced by this contaminated set of milk powder. This 
requires shortest path type of queries. 

Query 2 (sub-graph matching): Suppose there is a pattern 
that the user is looking for, which can be specified as a graph 
(and using regular expressions to describe paths). A user may 
want to find the occurrences of this pattern in the provenance 
graph. An example with regards to Fig. 1 is finding cases of 
milk powder produced in Michigan being used for candy 
manufacturing in France and sold in French retail stores. 

There is considerable work in the graph database 
community on graph query languages and graph algebras, 
such as [11]. However, these are too generic and often not 
practical for provenance data. Furthermore, these languages 
focus mainly on sub-graph isomorphism, and cannot express
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Figure 1.  An example application illustrating provenance data. Of the 500 pounds of milk powder produced, 200 pounds are used for local sales, and 300 

pounds are exported. Of this, 200 pounds exported to France are used to manufacture candy bars, which are then sold at retail stores. 

queries such as shortest path. Recently, OPQL [16], a query 
language for provenance data was developed to support user 
friendly languages for manipulating provenance; their query 
language is motivated by [11]. An OPQL query is translated 
into an SQL query for processing; this implies that OPQL 
cannot express wide range of queries such as shortest path 
queries, which cannot be expressed in Datalog/SQL. 

In this paper, we propose generic algebraic operators for 
querying provenance. We classify our operators into two 
categories: content based operators that query the content 
information, and structure based operators that query the 
graph structure of provenance. A user can express a query as 
a workflow that integrates these two categories of operators 
seamlessly. This provides a powerful framework that can be 
used for answering a wide variety of useful provenance 
queries, including shortest path and sub-graph matching. 

Our contributions in this paper are as follows: 
1) We define a set of algebraic operators for querying the 

content of nodes and edges in provenance graph, as well 
as the structure of the provenance graph. Our operators 
are powerful, yet simple, and we believe they will form 
the basis for any future provenance query languages. 

2) A user can express a query as a workflow that integrates 
both content-based and structure-based operators. This 

provides a powerful framework that can express a wide 
variety of useful provenance queries, much beyond what 
can be expressed using Datalog/SQL based languages. 

3) We evaluate the expressiveness of our query model. We 
consider our own example application (Fig. 1), and 
show how different queries can be expressed. We also 
consider some queries from the third provenance 
challenge [23], and study how these queries can be 
expressed using our query model. 

 
Outline: The outline for the rest of the paper is as 

follows. In Section 2, we outline the OPM data model [20] 
that we use for representing the provenance data; we 
simplify the OPM data model so that readers who are not 
aware of the OPM data model are not carried away by the 
details, and can focus on the query model. In Section 3, we 
describe the algebraic constructs that we define. We divide 
this section into three parts; we first describe the content 
based constructs, we then describe the structure graph based 
constructs, finally we describe how a user can express a 
query by integrating these constructs. In Section 4, we 
describe our evaluation, where we examine different queries 
and how they can be expressed in our model. Section 5 
discusses related work, and Section 6 concludes this paper. 
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II. REPRESENTATION OF PROVENANCE INFORMATION 

Let us first examine in some detail as to how the 
provenance information is represented. Graph based data 
models have been used for provenance in the past, including 
for OPM [20], and also other works such as [13]. OPM 
describes three kinds of nodes: artifacts, which represent a 
state of an object at a particular time instant and is 
immutable; processes, which represent an action or a series 
of actions performed on artifacts and producing new 
artifacts; agents, which represent contextual entities that act 
as a catalyst for a process. In OPM, an artifact is represented 
as an ellipse, a process as a rectangle and an agent as an 
octagon. In our running example in Fig. 1, the 500 pounds of 
milk powder is an artifact, quality inspection is a process. 
Any artifact, process or agent may have annotations, which 
are additional information associated with these entities. The 
annotations are represented as a set of property-value pairs. 
Example annotations that can be added to the example 
shown in Fig. 1 include: range of serial numbers of the milk 
powder cans produced; time it takes for the process that 
processes milk and produces milk powder. 

OPM also describes five kinds of edges (edges are called 
dependencies in OPM): used representing processes that 
used an artifact; wasGeneratedBy representing artifacts that 
were generated by a process; wasControlledBy representing 
processes that were controlled by an agent; wasDerivedFrom 
representing artifacts that were derived from an artifact (used 
for a dataflow view of provenance); wasTriggeredBy 
representing processes that were trigged by a process (used 
for a process oriented view of provenance). In Fig. 1, the 
process “Processed by Verndale” used 100 gallons of milk; 
500 pounds of milk powder wasGeneratedBy the process 
“Processed by Verndale”. The process “Sell at Tesco Retail 
Stores” wasTriggeredBy the process “Rebrand as Tesco Milk 
Powder”. In our data model, we do not explicitly indicate the 
type of the edge; the type of an edge can be immediately 
inferred based on the nodes that the edge connects. 

OPM also describes multi-step inferences and multi-step 
edges, which are based on transitive closure kind of 
operators (widely used in the context of directed graphs). For 
instance, the process “Sell at Tesco Retail Stores” has a 
multi-step wasTriggeredBy dependency on the process 
“Export milk powder to UK”. Also two automatic 
completion rules are described in OPM. 

Our work focuses on query language constructs for 
provenance. In this paper, we continue to use the same types 
of nodes and edges as described in OPM. However, we 
simplify the model and do not distinguish between the 
different types of edges (as mentioned above, the type of an 
edge can be inferred based on the types of nodes that the 
edge connects). 

III. ALGEBRAIC CONSTRUCTS 

In this section, we define our query language constructs. 
We divide our query language constructs into two categories: 
content based constructs that work on the annotations 
associated with the nodes and edges, and structure based 
constructs that work on the graph structure of the provenance 

graph. We will then describe how these two sets of 
constructs can be integrated to form a powerful query model, 
that can express a wide variety of interesting queries. 

A. Constructs for Querying Content 

The content-based query constructs are used to select 
nodes or edges based on the annotations associated with 
them. In short, these constructs operate on a set of entities 
(which can be nodes or edges), and produce a set of entities 
as a result; the graph structure of provenance such as edges 
or paths between two nodes is not used by these constructs. 

Some of the operations that are expressible using content 
based query constructs are listed below. See that our content 
based query constructs are similar to those in relational 
algebra, and we borrow notations from relational algebra to 
represent the different query constructs. 

 
1. Select a set of entities based on a selection condition 

(used to select nodes and edges based on annotations). 
This is expressed as �(�, �), where S is a set of entities, 
and c is the condition. The result of selection is �� ⊆ �; 
each entity in S’ satisfies the condition specified in c. 
 
Example 1 (Select nodes based on a filtering condition): 
In Fig. 1, select all processes that are involved with 
“selling at a retail store”. The result of this would 
include: selling of milk powder at Tesco retail stores, 
selling of milk powder at Target retail stores, and selling 
of candy at Franprix retail stores. 
 
Suppose the process “Selling at Tesco Retail” is as 
follows (other processes have similar representation): 
process-id = PTESUK101 
annotation: 
 process type: Sell 
 description: Sell at Retail Store 
 duration of process: Jan 10, 2011 – Jan 25, 2011 
 details of store: Tesco Retail, Cardiff 
Then the selection condition can be represented as 
annotation.description LIKE “Sell at Retail Store”. Note 
that the above is very similar to the select operator in 
relational algebra; we need to use path expressions 
similar to XPath (XML path language) as annotations 
can be arbitrarily nested. 

 
2. Project properties, such as ids or annotations from a set 

of nodes. This is similar to the project operator in 
relational algebra, and is denoted as 	
��
�(�), where S 
is the set of entities and aList is the set of properties of 
these entities that are to be projected. The result is a set 
of entities corresponding to the aList that is projected. 
Because annotations can be arbitrarily nested, we use a 
path expression to indicate annotations to be projected. 
 
Example 2 (projection of process-id): Find all the 
process-ids from the set of processes shown in Fig. 1. 
 

3. Set operations such as union, intersection, difference, 
cross product of two sets of nodes. 
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4. Aggregate operations such as min, max, sum, count, 
average on a set of entities. 

 
Example 3 (aggregation): How many processes are 
involved with “selling at a retail store”. This involves 
first selecting processes that are involved with “selling 
at a retail store” (Example 1), and then counting the 
number of processes that are the result of the selection. 

B. Constructs for Querying Structure 

The constructs for querying structure use the graph 
structure of the provenance graph as the basis of 
querying. Remember that the provenance graph consists 
of a set of nodes and edges, with each edge connecting 
two nodes (as shown in Fig. 1). Let us first examine a 
set of basic functions that are used to further define 
additional operators. The basic functions include: 
 

1. from(e): returns the node from where the edge e starts. 
2. to(e): returns the node where an edge e ends. 
3. from

-1
(n): returns the edges that start from node n. 

4. to
-1

 (n): returns the edges that end in node n. 
5. next(n): returns all the nodes such that there is an edge 

from node n to it. 
6. prev(n): returns all the nodes, such that there is an edge 

from that node to n. 
 
Example 4: In Fig. 1, let QIMich denote the node 

depicting the quality inspection process that took place in 
Michigan. The query next(QIMich) produces four nodes: 
export 100 pounds to UK, export 200 pounds to France, sell 
100 pounds to Target, sell 100 pounds to McDonalds. 

 
We can write quite complex queries using the above 

functions. For instance, to find all nodes that have a path of 
length 2 from QIMich, we can combine next operators; first, 
a next operator finds all the nodes reachable from QIMich by 
a path of length 1; use the next operator again to find paths 
of length 1 from these nodes (implying a path of length 2 
from QIMich). These can be expressed in Datalog (requires a 
join). Assume the relation nextTable(d, s) indicates that node 
d is a node in next(s). The relation pathOfLen2 defines the 
nodes that are at a path of length two from the node QIMich. 

 
pathOfLen2(y) :- nextTable(x, QIMich), nextTable(y, x). 
 
In our work, instead of defining such operators, we 

define a very powerful general selection operator on the 
structure graph of provenance, that takes a structure graph as 
input, and produces another structure graph as output. Let 
G(N, E) denote a provenance graph with N as the set of 
nodes and E as the set of edges. Let fn be a selection 
condition on the nodes, and fe be a selection condition on 
edges. The selection operator, denoted as ��, is defined as: 

 
��(�, ��, ��) = �� = (��, ��) , where 

�� ⊆ �, is the set of nodes that satisfy the condition in fn,  
�� ⊆ �, is the set of edges that satisfy the condition in fe, 

and the nodes connected by an edge in E’ are both in N’. 

See that the selection operator takes a provenance graph 
G as input, along with fn and fe; the result of the selection is 
another graph G’, which is a sub-graph of the original graph. 
We require that edges chosen must only be those such that 
the nodes connected by an edge must be in N’. The reason 
for this is that we need to select both the nodes connected by 
an edge for that edge to be selected. There are no restrictions 
on how to specify the conditions fn and fe. This allows 
complex conditions to be specified, much beyond what can 
be expressed in Datalog/SQL. At the same time, our operator 
maintains a lot of useful properties including the elegance of 
a simple algebraic operator with clear semantics. Several 
queries, including reachability, shortest path, sub-graph 
matching etc can be expressed using this general selection 
operator. A few example queries that can be expressed using 
this general selection operator are given below. 

 
Example 5 (descendant): Given a structure graph G = (N, 

E) (graph G has N nodes and E edges), and a set of N’ nodes, 
return the structure graph including the nodes in both N’ and 
N, the nodes reachable in G starting from any node in N’, and 
include the edges between these nodes. Expressing this as a 
general selection operator, fn selects the nodes: 
(�	 ∩ 	��) ∪ ��	|�	 ∈ �, ∃	�	

∈ �′, !ℎ#$#	%�	&	'&!ℎ	�$()	�	!(	�	%�	�} 
fe selects edges on a path in G starting from a node in N’. 

For instance in Fig. 1, we can find all the descendants of 
the process: “Processed at Verndale, MI” if we want to 
determine what are all the processes and artifacts that were 
directly or indirectly caused by this process. The result of 
this selection will be the entire graph except for the first node 
“100 gallons of milk from MI farmers” and the edge starting 
from this node. One can define similarly an ancestor operator 
with appropriate conditions for fn and fe. 

 
Example 6 (in-betweener): Given structure graph G = (N, 

E) (graph G has N nodes and E edges), and a set of N’ nodes, 
return the structure graph including the nodes in both N’ and 
N, all the nodes that are on a path between two such nodes, 
and all the edges on these paths. 

This can be expressed as a general selection operator 
where fn selects the nodes: (�	 ∩ 	��) ∪ ��	|�	 ∈ �, ∃	&, +	 ∈
��, �	%�	&	�(,#	(�	&	'&!ℎ	�$()	&	!(	+	%�	�} 
fe selects edges on a path in G between two nodes in N’. 

For instance in Fig. 1, we can find the graph in between 
the nodes “Proceessed at Verndale, MI”, “Sell at Tesco 
Retail”, and “Sell at Franprix Retail”. Another example of 
the in-betweener operator is shown in Fig. 3. 

 
Example 7 (path matching): For this, we first define a 

labeling function, that maps nodes and edges to labels. The 
path matching operator works on the graph after the labeling 
and selects all paths in the original graph that match the path 
pattern. For this, the selection condition fe selects the edges: 

�#	|∃', '	%�	&	'&!ℎ	%�	�	&�!#$	-&+#-%�., '	)&!�ℎ#�	!ℎ#	 
'&!ℎ	'&!!#$�, &�,	#	%�	&�	#,.#	%�	'} 

fn selects the nodes such that each edge e that is selected 
either starts from the node or ends in the node. 

An example of path matching is shown in Fig. 2. 
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Figure 2.  Illustrating path matching. Given a provenance structure graph, 

first the labeling is applied, and the result of matching the path pattern 

SX*CX*D is shown. 

We call the different selection operators, each with its 
own definition of fn and fe as a variation of the general 
selection operator �� . The shortest path operator is such a 

variation, where fe selects the edges that are in the shortest 
path given two nodes, and fn selects the nodes that are along 
the shortest path between the nodes. Sub-graph isomorphism 
as in [11] is another variation, as the result is a sub-graph of 
the original provenance structure graph; another variation is 
an operator that returns a sub-graph pruning away nodes 
whose in-degree/out-degree are above/below a threshold.  

We define union and intersection of provenance graphs; 
union of two provenance structure graphs returns a new 
graph that includes all the nodes in these graphs, and all the 
edges in these graphs; intersection of two provenance 
structure graphs returns a new graph that includes only the 
nodes present in both these graphs and the edges that are 
present in both these graphs. 

Even though the general selection operator is powerful, 
there are queries that require new nodes or edges that cannot 
be expressed using our selection operator (because the 
selection operator only returns a sub-graph of the original 
graph). An operator, called the abstraction operator allows 
introducing new edges in some situations (such as transitive 
closure). This operator takes a provenance structure graph G 
= (N, E) and a set N’ of nodes as input, and produces a graph 
which includes all the nodes in �	 ∩ �′. If there is an edge 
between 2 nodes in �	 ∩ �′ in G, that edge is kept. If there is 
a path between 2 nodes in �	 ∩ �′ in G, and no intermediate 
node of this path is in �	 ∩ �′, then a new edge is added to 
the resulting structure graph (Fig. 3). 

 

 
Figure 3.  Example showing in-betweener operator (expressed using the 

general selection operator), and abstraction; both these operators consider 

the nodes {N1, N3} as input. 

C. Integrated Query Model 

In the previous two sections, we examined different 
operators for querying the content of provenance entities and 
for querying the structure of provenance graph. We need to 
integrate these two operator sets to be able to express a wide 
range of interesting queries. For this, we define one more 
operator that takes a structure graph and projects the set of 
provenance entities (nodes and edges in the graph). This 
projection operator is denoted as 	�(�); it returns the set of 

nodes and edges in G. Different content-based constructs can 
be applied on this set of provenance entities. Also note that 
the basic structure functions (from, to, next etc) can be used 
to select entities from a structure graph. 

In addition, any implementation of our query model will 
provide a pre-defined set of variations of the general 
selection operator. For instance, an implementation may 
provide descendant, ancestor and shortest-path variations of 
the general selection operator. Furthermore, for any operator, 
multiple physical level implementation alternatives can be 
provided. 

Let us look at a fictitious, but complete example based on 
the provenance structure graph shown in Fig. 1. Assume that 
a certain batch of milk powder is found to be contaminated, 
and we need to find all candy bars that are affected (so that 
they can be recalled). Suppose we also want to find the total 
financial loss (the total worth of the affected candy bars). 

 

 
Figure 4.   (a) computes the candy bars that are affected; (b) computes the 

total financial loss 

Fig. 4 shows how this query can be answered. From the 
structure graph, G, the 	�(�) operator first computes the set 

of entities in G; then the content-based selection operator 
selects the artifacts that represent the contaminated milk-
powder. Now the general selection operator ��- descendant 

selects the sub-graph of G that represent descendants of the 
contaminated milk-powder entities. We apply 	�(�) to get 

all the entities in this graph; then the content-based selection 
operator selects all artifacts that are candy bars. To find the 
total financial loss, we project (content-based projection) the 
price and qty of each of the selected candy bar entities from 
above, and perform aggregation to find the total loss. 
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IV. EVALUATION 

For our evaluation, we consider two more examples from 
our milk powder example in Fig. 1. We will further consider 
some example queries from the Third Provenance Challenge 
[19], and describe how they can be expressed. 

 
Query 1: From Fig. 1, determine how a problematic set 

of milk powder was produced, transported and processed to 
make an affected brand of candy.  

Fig. 5 (a) shows Query 1. An alternate option (to using 
two content-based selection operators) is to use one selection 
operator with predicates combined using OR. Fig. 5 (b) 
shows Query 2 using shortest-path operator. 

 

 

Figure 5.  (a) Query 1 (b) Query 2 using shortest-path operator 

Query 2: From Fig. 1, determine the earliest products 
produced from known contaminated milk powder. 

 
The Third Provenance Challenge [23] provided 

provenance information about data from the Pan-STARRS 
project, that continuously scans the visible sky once a week 
and builds a time-series of data. The aims of the project 
include: help detect moving objects that may potentially 
impact with earth, build a massive catalog of solar system 
and stars. These are some of the queries from this data. 

 
Query 3 (from [23]): Given a particular detection which 

files contributed to it? 
This is similar to Fig. 4 (a), except that the first content-

based selection selects the detection, the general selection is 
an ancestor operator, and the second content-based selection 
selects the files. 

 
Query 4 (from [23]): The user finds a particular table 

with data that they do not expect. Was the range check 
performed on this table? 

Query 4 can be answered using the path matching 
operator as shown in Fig. 6 (a). Fig. 6 (b) shows Query 5, 
also using the path matching operator. 

 
Query 5 (from [23]): The user executes a workflow many 

times over different data sets. Find which of these executions 
halted. 

 
Figure 6.  (a) Query 4, if there are no paths selected by the path matching 

general selection operator, that means range check was not performed; if 

there is a path selected, then range check was performed (b) Partial Query 

5, showing that path matching operator can be used to find all paths 

resulting in a halted execution starting from the specified data sets. 

From our evaluation section, we can conclude that a wide 
range of queries, including shortest path queries can be 
expressed using the constructs that we defined. Further, the 
content based operators and the provenance structure graph 
based operators are combined to express several interesting 
queries that cannot be expressed using Datalog/SQL. 

V. RELATED WORK 

There has been lots of interest in provenance data 
management in the recent past. The initial works on 
provenance were tightly integrated with the application they 
considered [1, 5, 15]. The provenance community realized 
that it would be beneficial to have a uniform model for 
representing provenance and this led to the development of 
the Open Provenance Model (OPM) [20]. OPM describes 
how the provenance information can be represented in a 
general fashion; OPM also describes inference queries, such 
as the nodes that are ancestors or descendants of a node. 

Most of the previous works on provenance also had some 
query mechanism, VisTrails [15] used the VisTrails query 
language called vtPQL; Kepler [1] provides a query 
language called QLP, which works on Kepler’s proprietary 
provenance model; ZOOM [5] provides an interface for 
users to query provenance information similar to inference 
queries in OPM; Taverna [25] allows query specification 
using SPARQL query language; Karma [22] supports 
provenance queries using XPath and SQL. These works are 
tightly coupled with their underlying provenance 
representation mechanism, and hence is not general. Also, 
they are based on SQL or XPath kind of languages, and 
hence the expressiveness is limited by the expressiveness of 
these languages. 

In [21], the authors propose an algebra for their 
provenance data model called provenir, which is defined 
using OWL-DL. The algebraic operators supported are 
provenance(), for obtaining the complete provenance (which 
can be expressed using ancestor/descendant operators); 
provenance_pathway(), which returns a subset of the 
information returned by provenance(), provenance_context(), 
which uses a user specified context (can be expressed using a 
combination of content-based operators for manipulating the 
context and ancestor/descendant operators). However, there 
are several other operators that we need for provenance 
metadata processing which are not supported. In [19], the 
authors consider scoping of provenance, because the entire 
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provenance might be overwhelming for the user. The authors 
consider the scenario where the user can explicitly exclude a 
part of the provenance. In our system, such scoping can be 
expressed either by developing a variation of the general 
selection operator that excludes part of the provenance, or by 
expressing it as first computing the complete provenance 
(using ancestor/descendant operators) and then excluding the 
portions that the user wants to exclude. In [26], the authors 
use the linking of data as supported by Linked Open Data 
(LOD) cloud; such context can be used for queries and for 
the interpretation of experimental data. In our work, such 
joins across multiple graphs can be expressed by unioning 
the graphs and then performing a join, or by selecting 
nodes/edges from one graph and using that as a context to 
select a subgraph of the second graph. 

OPQL [16] introduces a query language that is directly 
defined over the Open Provenance Model (OPM). Here, the 
authors specify six types of graph patterns based on the 
patterns described in [11] and define three types of graph 
matching based on these graph patterns; the authors then 
define algebra operators for extracting sub-graphs that match 
a pattern, and for performing set operations such as union, 
intersection and difference. The implementation of OPQL 
uses SQL and hence their expressiveness is limited by what 
is expressible in SQL. Another work that considers querying 
data provenance is [13]. Here, the authors are concerned with 
data provenance; however, their query language is general 
and is applicable to workflow provenance as well. Their 
query language introduces XQuery style FOR-WHERE-
RETURN expressions, with an additional INCLUDE PATH 
clause which specifies the paths that need to be included in 
the resulting graph. However, the WHERE clause is 
restricted so that shortest path kind of queries cannot be 
expressed, though it is possible to express 
ancestor/descendant queries. For manipulating graph data 
models, [11] specifies graph patterns and studies extracting 
sub-graphs as specified in the pattern. 

The works described above [11, 13, 16] all manipulate 
graphs and return graphs as result. However, the 
expressiveness is limited to those expressible using 
Datalog/SQL; queries such as shortest paths are not 
considered. Also [11] is a query language for graphs in 
general, and not limited to provenance graph queries; some 
of the queries that may be interesting to general graphs, may 
not be interesting to provenance graphs. 

Graph querying to a limited extent is supported by 
commercial database software such as PostgreSQL 
(http://pgfoundry.org/docman/view.php/1000262/505/READ
ME.txt) and MySQL (http://openquery.com/graph/doc). 
Here, graphs are represented as first class objects (not as 
tables), and an arbitrary set of graph operations are 
supported. For instance, MySQL supports shortest path, but 
does not support sub-graph isomorphism or path pattern 
matching. Also, they come up with SQL like syntax for all 
these operations, which we believe will be cumbersome if 
we want to perform a series of operations on a graph, as in a 
query plan. In short, we believe that support for graphs 
within databases is in its infancy, and most implementations 
are supporting only an arbitrary subset of graph operations. 

In our work, we provide a mechanism to query graphs that is 
general, where the users express their query as a workflow 
(thus are not limited by a text based language like SQL), and 
one query can express a series of operations to be performed 
on the graph.  

In [2, 3], the authors consider querying of semantic 
associations from data represented using OWL. Here, the 
authors talk about given two nodes, how to determine the 
relationship between the nodes. One type of relationship 
referred to as / -pathAssociated (where there is a path 
between two nodes) can be expressed using our in-betweener 
operator, which is a type of the general selection operator. 
For other types of / -queries (relationships between nodes), 
we need to define other types of the general selection 
operator. However, note that in [2] the authors define a 
language exclusively for querying path information. 
However, for provenance data, we need more operators than 
just for querying the path information; we therefore use a 
workflow based approach, where the user specifies the query 
as a workflow consisting of any number of operators (as 
needed). One of the query constructs that we propose is a 
general selection operator for the structure graph of 
provenance; the only requirement is that this operator returns 
a sub-graph of the original graph; no restrictions are imposed 
on how the selection condition for nodes and edges are 
specified. Therefore, we are able to express a wide variety of 
queries including shortest path queries, sub-graph or path 
matching, ancestor, descendant, etc., while still maintaining a 
simple and elegant formalism of a selection operator. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, we studied algebraic constructs that can be 
used for provenance queries. Several interesting queries 
cannot be expressed using today’s graph languages, or 
provenance query languages, as they rely on translating their 
queries into SQL/Datalog. We proposed two sets of algebraic 
constructs for querying provenance: content based operators 
manipulate the content (or annotation) of the nodes in a 
provenance graph; structure based operators manipulate the 
structure of a provenance graph. One of the powerful 
algebraic operators that we propose is a general selection 
operator that selects a sub-graph of the provenance structure 
graph, based on general restrictions on nodes and edges. An 
user expresses a query in our query model as a workflow by 
integrating these algebraic constructs. Our query model can 
express a wide range of interesting queries. 

As part of future work, we are currently investigating 
optimization opportunities for the various operators and for 
provenance storage. Further, we are considering whether 
constructs that allow arbitrary addition of nodes and edges 
are useful for provenance queries, and how they can be 
supported.  
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