
Algebraic Constructs for Querying Provenance

Murali Mani, Mohamad Alawa, Arunlal Kalayanasundaram
University of Michigan, Flint

303 E. Kearsley St, Flint, MI 48502

{mmani, malawa, arunlalk}@umflint.edu

Abstract— Provenance that records the derivation history of

data is useful for a wide variety of applications, including those

where an audit trail needs to be provided, where the trust-level

attributed to the sources contribute to determining the trust-

level in results etc. There have been different efforts for

representing provenance information, the most notable being

the Open Provenance Model (OPM). OPM defines structures

for representing the provenance information as a graph with

nodes and edges, and also specifies inference queries that can

be expressed in Datalog/SQL. However, the requirements of a

query language for provenance information go much beyond

those that can be expressed using only inference queries. In our

work, we build on OPM and propose two classes of algebraic

constructs for querying provenance information: content-

based operators that operate on the content of nodes and

edges, and structure-based operators that operate on the graph

structure of the provenance graph. An user can express a

query as a workflow by composing these content-based and

structure-based operators. Our operators are powerful, and an

user can express a wide variety of interesting queries on the

provenance data, that go much beyond simple inference

queries as expressible using Datalog/SQL. As part of our

evaluation, we show different queries and how they can be

expressed using our constructs.

Keywords-Provenance; graph; data model; query language;

algebraic operators

I. INTRODUCTION

Provenance (also referred to as lineage, parentage,
pedigree, genealogy, or filiation) describes the steps by
which data was derived. Provenance has been found useful
for a wide variety of scenarios, where one needs to determine
the attribution of a data item. For instance, a doctor may
need to find the sources from which a data item was obtained
to determine whether the item is clinically valid; in data
gathering and analysis, the sources from which individual
data items are obtained is used for later verification.

In [6], the authors describe two different granularities of
provenance. In workflow provenance, which is coarse-
grained, each process in the workflow manipulates a set of
data items producing another set of data items; the
granularity for provenance recording and querying is at the
level of data items. In data provenance, which is fine-
grained, the queries deal with identifying which pieces of a
data item contributed to form a piece of another data item. A
well-studied example of data provenance is in the context of
SQL queries, where users may want to find why a particular
row is in the result (or in some cases, why it is not in the
result) [4, 7, 9, 10, 13, 18, 24]. Our focus in this work is on
workflow provenance as studied in [1, 5, 15, 16, 22]. In [12]

as well as in [14], the authors describe a single system that
supports both data and workflow provenance.

Initial works on provenance were tightly integrated with
the application they dealt with, such as scientific workflows
[1, 5, 8, 15]. OPM provenance model [20] was developed to
serve as an application-independent model for representing
provenance. OPM represents the provenance information of
an application as a graph, where nodes represent artifacts
(data items), processes (that manipulate data items), and
agents (that control processes), and edges represent causal
dependencies. A simple fictitious example of milk powder
production, distribution and export is shown in Fig. 1. It
shows collection of milk, production of milk powder,
distribution at restaurants and at retail stores, exporting, and
candy manufacturing and distribution. As in OPM, an ellipse
is used to represent an artifact, and a rectangle is used to
represent processes. The causal dependencies are shown in a
simplified manner than OPM for easier understanding.

While OPM explains how provenance information can be
represented, the manipulation of provenance information is
limited to inference queries, such as determine all the items
that are directly or indirectly produced by a particular data
item. An example based on the example application shown
in Fig. 1 is to determine the candy bars that are affected by a
particular set of milk powder. These queries can be
represented in Datalog or using SQL [17].

However, limiting ourselves to such inference queries as
provided by OPM is insufficient for a variety of applications,
and several interesting queries cannot be expressed. Two
example queries that cannot be expressed using inference
queries as provided by OPM are described below.

Query1 (shortest path): Suppose there is a time duration
associated with processes in Fig. 1, that shows the time it
takes for the process from start to finish. If a particular set of
milk powder is found to be contaminated, we may want to
find the earliest set of products in domestic market that are
produced by this contaminated set of milk powder. This
requires shortest path type of queries.

Query 2 (sub-graph matching): Suppose there is a pattern
that the user is looking for, which can be specified as a graph
(and using regular expressions to describe paths). A user may
want to find the occurrences of this pattern in the provenance
graph. An example with regards to Fig. 1 is finding cases of
milk powder produced in Michigan being used for candy
manufacturing in France and sold in French retail stores.

There is considerable work in the graph database
community on graph query languages and graph algebras,
such as [11]. However, these are too generic and often not
practical for provenance data. Furthermore, these languages
focus mainly on sub-graph isomorphism, and cannot express

187Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. An example application illustrating provenance data. Of the 500 pounds of milk powder produced, 200 pounds are used for local sales, and 300

pounds are exported. Of this, 200 pounds exported to France are used to manufacture candy bars, which are then sold at retail stores.

queries such as shortest path. Recently, OPQL [16], a query
language for provenance data was developed to support user
friendly languages for manipulating provenance; their query
language is motivated by [11]. An OPQL query is translated
into an SQL query for processing; this implies that OPQL
cannot express wide range of queries such as shortest path
queries, which cannot be expressed in Datalog/SQL.

In this paper, we propose generic algebraic operators for
querying provenance. We classify our operators into two
categories: content based operators that query the content
information, and structure based operators that query the
graph structure of provenance. A user can express a query as
a workflow that integrates these two categories of operators
seamlessly. This provides a powerful framework that can be
used for answering a wide variety of useful provenance
queries, including shortest path and sub-graph matching.

Our contributions in this paper are as follows:
1) We define a set of algebraic operators for querying the

content of nodes and edges in provenance graph, as well
as the structure of the provenance graph. Our operators
are powerful, yet simple, and we believe they will form
the basis for any future provenance query languages.

2) A user can express a query as a workflow that integrates
both content-based and structure-based operators. This

provides a powerful framework that can express a wide
variety of useful provenance queries, much beyond what
can be expressed using Datalog/SQL based languages.

3) We evaluate the expressiveness of our query model. We
consider our own example application (Fig. 1), and
show how different queries can be expressed. We also
consider some queries from the third provenance
challenge [23], and study how these queries can be
expressed using our query model.

Outline: The outline for the rest of the paper is as

follows. In Section 2, we outline the OPM data model [20]
that we use for representing the provenance data; we
simplify the OPM data model so that readers who are not
aware of the OPM data model are not carried away by the
details, and can focus on the query model. In Section 3, we
describe the algebraic constructs that we define. We divide
this section into three parts; we first describe the content
based constructs, we then describe the structure graph based
constructs, finally we describe how a user can express a
query by integrating these constructs. In Section 4, we
describe our evaluation, where we examine different queries
and how they can be expressed in our model. Section 5
discusses related work, and Section 6 concludes this paper.

188Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

II. REPRESENTATION OF PROVENANCE INFORMATION

Let us first examine in some detail as to how the
provenance information is represented. Graph based data
models have been used for provenance in the past, including
for OPM [20], and also other works such as [13]. OPM
describes three kinds of nodes: artifacts, which represent a
state of an object at a particular time instant and is
immutable; processes, which represent an action or a series
of actions performed on artifacts and producing new
artifacts; agents, which represent contextual entities that act
as a catalyst for a process. In OPM, an artifact is represented
as an ellipse, a process as a rectangle and an agent as an
octagon. In our running example in Fig. 1, the 500 pounds of
milk powder is an artifact, quality inspection is a process.
Any artifact, process or agent may have annotations, which
are additional information associated with these entities. The
annotations are represented as a set of property-value pairs.
Example annotations that can be added to the example
shown in Fig. 1 include: range of serial numbers of the milk
powder cans produced; time it takes for the process that
processes milk and produces milk powder.

OPM also describes five kinds of edges (edges are called
dependencies in OPM): used representing processes that
used an artifact; wasGeneratedBy representing artifacts that
were generated by a process; wasControlledBy representing
processes that were controlled by an agent; wasDerivedFrom
representing artifacts that were derived from an artifact (used
for a dataflow view of provenance); wasTriggeredBy
representing processes that were trigged by a process (used
for a process oriented view of provenance). In Fig. 1, the
process “Processed by Verndale” used 100 gallons of milk;
500 pounds of milk powder wasGeneratedBy the process
“Processed by Verndale”. The process “Sell at Tesco Retail
Stores” wasTriggeredBy the process “Rebrand as Tesco Milk
Powder”. In our data model, we do not explicitly indicate the
type of the edge; the type of an edge can be immediately
inferred based on the nodes that the edge connects.

OPM also describes multi-step inferences and multi-step
edges, which are based on transitive closure kind of
operators (widely used in the context of directed graphs). For
instance, the process “Sell at Tesco Retail Stores” has a
multi-step wasTriggeredBy dependency on the process
“Export milk powder to UK”. Also two automatic
completion rules are described in OPM.

Our work focuses on query language constructs for
provenance. In this paper, we continue to use the same types
of nodes and edges as described in OPM. However, we
simplify the model and do not distinguish between the
different types of edges (as mentioned above, the type of an
edge can be inferred based on the types of nodes that the
edge connects).

III. ALGEBRAIC CONSTRUCTS

In this section, we define our query language constructs.
We divide our query language constructs into two categories:
content based constructs that work on the annotations
associated with the nodes and edges, and structure based
constructs that work on the graph structure of the provenance

graph. We will then describe how these two sets of
constructs can be integrated to form a powerful query model,
that can express a wide variety of interesting queries.

A. Constructs for Querying Content

The content-based query constructs are used to select
nodes or edges based on the annotations associated with
them. In short, these constructs operate on a set of entities
(which can be nodes or edges), and produce a set of entities
as a result; the graph structure of provenance such as edges
or paths between two nodes is not used by these constructs.

Some of the operations that are expressible using content
based query constructs are listed below. See that our content
based query constructs are similar to those in relational
algebra, and we borrow notations from relational algebra to
represent the different query constructs.

1. Select a set of entities based on a selection condition

(used to select nodes and edges based on annotations).
This is expressed as �(�, �), where S is a set of entities,
and c is the condition. The result of selection is �� ⊆ �;
each entity in S’ satisfies the condition specified in c.

Example 1 (Select nodes based on a filtering condition):
In Fig. 1, select all processes that are involved with
“selling at a retail store”. The result of this would
include: selling of milk powder at Tesco retail stores,
selling of milk powder at Target retail stores, and selling
of candy at Franprix retail stores.

Suppose the process “Selling at Tesco Retail” is as
follows (other processes have similar representation):
process-id = PTESUK101
annotation:
 process type: Sell
 description: Sell at Retail Store
 duration of process: Jan 10, 2011 – Jan 25, 2011
 details of store: Tesco Retail, Cardiff
Then the selection condition can be represented as
annotation.description LIKE “Sell at Retail Store”. Note
that the above is very similar to the select operator in
relational algebra; we need to use path expressions
similar to XPath (XML path language) as annotations
can be arbitrarily nested.

2. Project properties, such as ids or annotations from a set

of nodes. This is similar to the project operator in
relational algebra, and is denoted as 	
��
�(�), where S
is the set of entities and aList is the set of properties of
these entities that are to be projected. The result is a set
of entities corresponding to the aList that is projected.
Because annotations can be arbitrarily nested, we use a
path expression to indicate annotations to be projected.

Example 2 (projection of process-id): Find all the
process-ids from the set of processes shown in Fig. 1.

3. Set operations such as union, intersection, difference,
cross product of two sets of nodes.

189Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

4. Aggregate operations such as min, max, sum, count,
average on a set of entities.

Example 3 (aggregation): How many processes are
involved with “selling at a retail store”. This involves
first selecting processes that are involved with “selling
at a retail store” (Example 1), and then counting the
number of processes that are the result of the selection.

B. Constructs for Querying Structure

The constructs for querying structure use the graph
structure of the provenance graph as the basis of
querying. Remember that the provenance graph consists
of a set of nodes and edges, with each edge connecting
two nodes (as shown in Fig. 1). Let us first examine a
set of basic functions that are used to further define
additional operators. The basic functions include:

1. from(e): returns the node from where the edge e starts.
2. to(e): returns the node where an edge e ends.
3. from

-1
(n): returns the edges that start from node n.

4. to
-1

 (n): returns the edges that end in node n.
5. next(n): returns all the nodes such that there is an edge

from node n to it.
6. prev(n): returns all the nodes, such that there is an edge

from that node to n.

Example 4: In Fig. 1, let QIMich denote the node

depicting the quality inspection process that took place in
Michigan. The query next(QIMich) produces four nodes:
export 100 pounds to UK, export 200 pounds to France, sell
100 pounds to Target, sell 100 pounds to McDonalds.

We can write quite complex queries using the above

functions. For instance, to find all nodes that have a path of
length 2 from QIMich, we can combine next operators; first,
a next operator finds all the nodes reachable from QIMich by
a path of length 1; use the next operator again to find paths
of length 1 from these nodes (implying a path of length 2
from QIMich). These can be expressed in Datalog (requires a
join). Assume the relation nextTable(d, s) indicates that node
d is a node in next(s). The relation pathOfLen2 defines the
nodes that are at a path of length two from the node QIMich.

pathOfLen2(y) :- nextTable(x, QIMich), nextTable(y, x).

In our work, instead of defining such operators, we

define a very powerful general selection operator on the
structure graph of provenance, that takes a structure graph as
input, and produces another structure graph as output. Let
G(N, E) denote a provenance graph with N as the set of
nodes and E as the set of edges. Let fn be a selection
condition on the nodes, and fe be a selection condition on
edges. The selection operator, denoted as ��, is defined as:

��(�, ��, ��) = �� = (��, ��) , where

�� ⊆ �, is the set of nodes that satisfy the condition in fn,
�� ⊆ �, is the set of edges that satisfy the condition in fe,

and the nodes connected by an edge in E’ are both in N’.

See that the selection operator takes a provenance graph
G as input, along with fn and fe; the result of the selection is
another graph G’, which is a sub-graph of the original graph.
We require that edges chosen must only be those such that
the nodes connected by an edge must be in N’. The reason
for this is that we need to select both the nodes connected by
an edge for that edge to be selected. There are no restrictions
on how to specify the conditions fn and fe. This allows
complex conditions to be specified, much beyond what can
be expressed in Datalog/SQL. At the same time, our operator
maintains a lot of useful properties including the elegance of
a simple algebraic operator with clear semantics. Several
queries, including reachability, shortest path, sub-graph
matching etc can be expressed using this general selection
operator. A few example queries that can be expressed using
this general selection operator are given below.

Example 5 (descendant): Given a structure graph G = (N,

E) (graph G has N nodes and E edges), and a set of N’ nodes,
return the structure graph including the nodes in both N’ and
N, the nodes reachable in G starting from any node in N’, and
include the edges between these nodes. Expressing this as a
general selection operator, fn selects the nodes:
(�	 ∩ 	��) ∪ ��	|�	 ∈ �, ∃	�	

∈ �′, !ℎ#$#	%�	&	'&!ℎ	�$()	�	!(�	%�	�}
fe selects edges on a path in G starting from a node in N’.

For instance in Fig. 1, we can find all the descendants of
the process: “Processed at Verndale, MI” if we want to
determine what are all the processes and artifacts that were
directly or indirectly caused by this process. The result of
this selection will be the entire graph except for the first node
“100 gallons of milk from MI farmers” and the edge starting
from this node. One can define similarly an ancestor operator
with appropriate conditions for fn and fe.

Example 6 (in-betweener): Given structure graph G = (N,

E) (graph G has N nodes and E edges), and a set of N’ nodes,
return the structure graph including the nodes in both N’ and
N, all the nodes that are on a path between two such nodes,
and all the edges on these paths.

This can be expressed as a general selection operator
where fn selects the nodes: (�	 ∩ 	��) ∪ ��	|�	 ∈ �, ∃	&, +	 ∈
��, �	%�	&	�(,#	(�	&	'&!ℎ	�$()	&	!(+	%�	�}
fe selects edges on a path in G between two nodes in N’.

For instance in Fig. 1, we can find the graph in between
the nodes “Proceessed at Verndale, MI”, “Sell at Tesco
Retail”, and “Sell at Franprix Retail”. Another example of
the in-betweener operator is shown in Fig. 3.

Example 7 (path matching): For this, we first define a

labeling function, that maps nodes and edges to labels. The
path matching operator works on the graph after the labeling
and selects all paths in the original graph that match the path
pattern. For this, the selection condition fe selects the edges:

�#	|∃', '	%�	&	'&!ℎ	%�	�	&�!#$	-&+#-%�., ')&!�ℎ#�	!ℎ#	
'&!ℎ	'&!!#$�, &�,	#	%�	&�	#,.#	%�	'}

fn selects the nodes such that each edge e that is selected
either starts from the node or ends in the node.

An example of path matching is shown in Fig. 2.

190Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 2. Illustrating path matching. Given a provenance structure graph,

first the labeling is applied, and the result of matching the path pattern

SX*CX*D is shown.

We call the different selection operators, each with its
own definition of fn and fe as a variation of the general
selection operator �� . The shortest path operator is such a

variation, where fe selects the edges that are in the shortest
path given two nodes, and fn selects the nodes that are along
the shortest path between the nodes. Sub-graph isomorphism
as in [11] is another variation, as the result is a sub-graph of
the original provenance structure graph; another variation is
an operator that returns a sub-graph pruning away nodes
whose in-degree/out-degree are above/below a threshold.

We define union and intersection of provenance graphs;
union of two provenance structure graphs returns a new
graph that includes all the nodes in these graphs, and all the
edges in these graphs; intersection of two provenance
structure graphs returns a new graph that includes only the
nodes present in both these graphs and the edges that are
present in both these graphs.

Even though the general selection operator is powerful,
there are queries that require new nodes or edges that cannot
be expressed using our selection operator (because the
selection operator only returns a sub-graph of the original
graph). An operator, called the abstraction operator allows
introducing new edges in some situations (such as transitive
closure). This operator takes a provenance structure graph G
= (N, E) and a set N’ of nodes as input, and produces a graph
which includes all the nodes in �	 ∩ �′. If there is an edge
between 2 nodes in �	 ∩ �′ in G, that edge is kept. If there is
a path between 2 nodes in �	 ∩ �′ in G, and no intermediate
node of this path is in �	 ∩ �′, then a new edge is added to
the resulting structure graph (Fig. 3).

Figure 3. Example showing in-betweener operator (expressed using the

general selection operator), and abstraction; both these operators consider

the nodes {N1, N3} as input.

C. Integrated Query Model

In the previous two sections, we examined different
operators for querying the content of provenance entities and
for querying the structure of provenance graph. We need to
integrate these two operator sets to be able to express a wide
range of interesting queries. For this, we define one more
operator that takes a structure graph and projects the set of
provenance entities (nodes and edges in the graph). This
projection operator is denoted as 	�(�); it returns the set of

nodes and edges in G. Different content-based constructs can
be applied on this set of provenance entities. Also note that
the basic structure functions (from, to, next etc) can be used
to select entities from a structure graph.

In addition, any implementation of our query model will
provide a pre-defined set of variations of the general
selection operator. For instance, an implementation may
provide descendant, ancestor and shortest-path variations of
the general selection operator. Furthermore, for any operator,
multiple physical level implementation alternatives can be
provided.

Let us look at a fictitious, but complete example based on
the provenance structure graph shown in Fig. 1. Assume that
a certain batch of milk powder is found to be contaminated,
and we need to find all candy bars that are affected (so that
they can be recalled). Suppose we also want to find the total
financial loss (the total worth of the affected candy bars).

Figure 4. (a) computes the candy bars that are affected; (b) computes the

total financial loss

Fig. 4 shows how this query can be answered. From the
structure graph, G, the 	�(�) operator first computes the set

of entities in G; then the content-based selection operator
selects the artifacts that represent the contaminated milk-
powder. Now the general selection operator ��- descendant

selects the sub-graph of G that represent descendants of the
contaminated milk-powder entities. We apply 	�(�) to get

all the entities in this graph; then the content-based selection
operator selects all artifacts that are candy bars. To find the
total financial loss, we project (content-based projection) the
price and qty of each of the selected candy bar entities from
above, and perform aggregation to find the total loss.

191Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

IV. EVALUATION

For our evaluation, we consider two more examples from
our milk powder example in Fig. 1. We will further consider
some example queries from the Third Provenance Challenge
[19], and describe how they can be expressed.

Query 1: From Fig. 1, determine how a problematic set

of milk powder was produced, transported and processed to
make an affected brand of candy.

Fig. 5 (a) shows Query 1. An alternate option (to using
two content-based selection operators) is to use one selection
operator with predicates combined using OR. Fig. 5 (b)
shows Query 2 using shortest-path operator.

Figure 5. (a) Query 1 (b) Query 2 using shortest-path operator

Query 2: From Fig. 1, determine the earliest products
produced from known contaminated milk powder.

The Third Provenance Challenge [23] provided

provenance information about data from the Pan-STARRS
project, that continuously scans the visible sky once a week
and builds a time-series of data. The aims of the project
include: help detect moving objects that may potentially
impact with earth, build a massive catalog of solar system
and stars. These are some of the queries from this data.

Query 3 (from [23]): Given a particular detection which

files contributed to it?
This is similar to Fig. 4 (a), except that the first content-

based selection selects the detection, the general selection is
an ancestor operator, and the second content-based selection
selects the files.

Query 4 (from [23]): The user finds a particular table

with data that they do not expect. Was the range check
performed on this table?

Query 4 can be answered using the path matching
operator as shown in Fig. 6 (a). Fig. 6 (b) shows Query 5,
also using the path matching operator.

Query 5 (from [23]): The user executes a workflow many

times over different data sets. Find which of these executions
halted.

Figure 6. (a) Query 4, if there are no paths selected by the path matching

general selection operator, that means range check was not performed; if

there is a path selected, then range check was performed (b) Partial Query

5, showing that path matching operator can be used to find all paths

resulting in a halted execution starting from the specified data sets.

From our evaluation section, we can conclude that a wide
range of queries, including shortest path queries can be
expressed using the constructs that we defined. Further, the
content based operators and the provenance structure graph
based operators are combined to express several interesting
queries that cannot be expressed using Datalog/SQL.

V. RELATED WORK

There has been lots of interest in provenance data
management in the recent past. The initial works on
provenance were tightly integrated with the application they
considered [1, 5, 15]. The provenance community realized
that it would be beneficial to have a uniform model for
representing provenance and this led to the development of
the Open Provenance Model (OPM) [20]. OPM describes
how the provenance information can be represented in a
general fashion; OPM also describes inference queries, such
as the nodes that are ancestors or descendants of a node.

Most of the previous works on provenance also had some
query mechanism, VisTrails [15] used the VisTrails query
language called vtPQL; Kepler [1] provides a query
language called QLP, which works on Kepler’s proprietary
provenance model; ZOOM [5] provides an interface for
users to query provenance information similar to inference
queries in OPM; Taverna [25] allows query specification
using SPARQL query language; Karma [22] supports
provenance queries using XPath and SQL. These works are
tightly coupled with their underlying provenance
representation mechanism, and hence is not general. Also,
they are based on SQL or XPath kind of languages, and
hence the expressiveness is limited by the expressiveness of
these languages.

In [21], the authors propose an algebra for their
provenance data model called provenir, which is defined
using OWL-DL. The algebraic operators supported are
provenance(), for obtaining the complete provenance (which
can be expressed using ancestor/descendant operators);
provenance_pathway(), which returns a subset of the
information returned by provenance(), provenance_context(),
which uses a user specified context (can be expressed using a
combination of content-based operators for manipulating the
context and ancestor/descendant operators). However, there
are several other operators that we need for provenance
metadata processing which are not supported. In [19], the
authors consider scoping of provenance, because the entire

192Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

provenance might be overwhelming for the user. The authors
consider the scenario where the user can explicitly exclude a
part of the provenance. In our system, such scoping can be
expressed either by developing a variation of the general
selection operator that excludes part of the provenance, or by
expressing it as first computing the complete provenance
(using ancestor/descendant operators) and then excluding the
portions that the user wants to exclude. In [26], the authors
use the linking of data as supported by Linked Open Data
(LOD) cloud; such context can be used for queries and for
the interpretation of experimental data. In our work, such
joins across multiple graphs can be expressed by unioning
the graphs and then performing a join, or by selecting
nodes/edges from one graph and using that as a context to
select a subgraph of the second graph.

OPQL [16] introduces a query language that is directly
defined over the Open Provenance Model (OPM). Here, the
authors specify six types of graph patterns based on the
patterns described in [11] and define three types of graph
matching based on these graph patterns; the authors then
define algebra operators for extracting sub-graphs that match
a pattern, and for performing set operations such as union,
intersection and difference. The implementation of OPQL
uses SQL and hence their expressiveness is limited by what
is expressible in SQL. Another work that considers querying
data provenance is [13]. Here, the authors are concerned with
data provenance; however, their query language is general
and is applicable to workflow provenance as well. Their
query language introduces XQuery style FOR-WHERE-
RETURN expressions, with an additional INCLUDE PATH
clause which specifies the paths that need to be included in
the resulting graph. However, the WHERE clause is
restricted so that shortest path kind of queries cannot be
expressed, though it is possible to express
ancestor/descendant queries. For manipulating graph data
models, [11] specifies graph patterns and studies extracting
sub-graphs as specified in the pattern.

The works described above [11, 13, 16] all manipulate
graphs and return graphs as result. However, the
expressiveness is limited to those expressible using
Datalog/SQL; queries such as shortest paths are not
considered. Also [11] is a query language for graphs in
general, and not limited to provenance graph queries; some
of the queries that may be interesting to general graphs, may
not be interesting to provenance graphs.

Graph querying to a limited extent is supported by
commercial database software such as PostgreSQL
(http://pgfoundry.org/docman/view.php/1000262/505/READ
ME.txt) and MySQL (http://openquery.com/graph/doc).
Here, graphs are represented as first class objects (not as
tables), and an arbitrary set of graph operations are
supported. For instance, MySQL supports shortest path, but
does not support sub-graph isomorphism or path pattern
matching. Also, they come up with SQL like syntax for all
these operations, which we believe will be cumbersome if
we want to perform a series of operations on a graph, as in a
query plan. In short, we believe that support for graphs
within databases is in its infancy, and most implementations
are supporting only an arbitrary subset of graph operations.

In our work, we provide a mechanism to query graphs that is
general, where the users express their query as a workflow
(thus are not limited by a text based language like SQL), and
one query can express a series of operations to be performed
on the graph.

In [2, 3], the authors consider querying of semantic
associations from data represented using OWL. Here, the
authors talk about given two nodes, how to determine the
relationship between the nodes. One type of relationship
referred to as / -pathAssociated (where there is a path
between two nodes) can be expressed using our in-betweener
operator, which is a type of the general selection operator.
For other types of / -queries (relationships between nodes),
we need to define other types of the general selection
operator. However, note that in [2] the authors define a
language exclusively for querying path information.
However, for provenance data, we need more operators than
just for querying the path information; we therefore use a
workflow based approach, where the user specifies the query
as a workflow consisting of any number of operators (as
needed). One of the query constructs that we propose is a
general selection operator for the structure graph of
provenance; the only requirement is that this operator returns
a sub-graph of the original graph; no restrictions are imposed
on how the selection condition for nodes and edges are
specified. Therefore, we are able to express a wide variety of
queries including shortest path queries, sub-graph or path
matching, ancestor, descendant, etc., while still maintaining a
simple and elegant formalism of a selection operator.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we studied algebraic constructs that can be
used for provenance queries. Several interesting queries
cannot be expressed using today’s graph languages, or
provenance query languages, as they rely on translating their
queries into SQL/Datalog. We proposed two sets of algebraic
constructs for querying provenance: content based operators
manipulate the content (or annotation) of the nodes in a
provenance graph; structure based operators manipulate the
structure of a provenance graph. One of the powerful
algebraic operators that we propose is a general selection
operator that selects a sub-graph of the provenance structure
graph, based on general restrictions on nodes and edges. An
user expresses a query in our query model as a workflow by
integrating these algebraic constructs. Our query model can
express a wide range of interesting queries.

As part of future work, we are currently investigating
optimization opportunities for the various operators and for
provenance storage. Further, we are considering whether
constructs that allow arbitrary addition of nodes and edges
are useful for provenance queries, and how they can be
supported.

ACKNOWLEDGMENT

We would like to acknowledge Yaobin Tang, who did
initial work on provenance with us, and whose master’s
thesis led to many of the insights that we describe in this
paper. We would also like to acknowledge the discussions

193Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

with the members of the University of Michigan, Flint, and
Ann Arbor database groups, and discussions with
Chunhyeok Lim and Shiyong Lu at Wayne State University,
who are currently pursuing research on provenance. Last, but
not the least, we would like to acknowledge NSF for
partially supporting this research.

REFERENCES

[1] M. Ananad, S. Bowers, and B. Ludascher, Techniques for Efficiently
Querying Scientific Workflow Provenance Graphs, In EDBT 2010,
pp. 287 – 298.

[2] K. Anyanwu, A. Maduko, and A. P. Sheth, SPARQ2L: Towards
Support for Subgraph Extraction Queries in RDF Databases, In
WWW 2007, pp. 797 – 806.

[3] K. Anyanwu and A. P. Sheth, / -Queries: Enabling Querying for
Semantic Associations on the Semantic Web, In WWW 2003, pp. 690
– 699.

[4] O. Benjelloun, A. D. Sarma, A. Y. Halevy, M. Theobald, and J.
Widom, Databases with Uncertainty and Lineage, VLDB Journal, 17
(2), 2008, pp. 243 – 264.

[5] O. Biton, S. C. Boulakia, S. B. Davidson, and C. S. Hara, Querying
and Managing Provenance through User Views in Scientific
Workflows, In IEEE ICDE 2008, pp. 1072 – 1081.

[6] P. Buneman and W-C Tan, Provenance in Databases, In ACM
SIGMOD 2007 (Tutorial), pp. 1171 – 1173.

[7] A. Chapman and H. V. Jagadish, Why Not? In ACM SIGMOD 2009,
pp. 523 – 534.

[8] A. Chapman, H. V. Jagadish, and P. Ramanan, Efficient Provenance
Storage, In ACM SIGMOD 2008, pp. 993 – 1006.

[9] Y. Cui and J. Widom, Lineage Tracing for General Data Warehouse
Transformations, In VLDB Journal, 12 (1), 2003, pp. 41 – 58.

[10] T. G. Green, G. Karvounarakis, and V. Tannen, Provenance
semirings, In ACM PODS 2007, pp. 31 – 40.

[11] H. He and A. K. Singh, Graphs-at-a-time: Query Language and
Access Methods for Graph Databases, In ACM SIGMOD 2008, pp.
405 – 418.

[12] R. Ikeda and J. Widom, Panda: A System for Provenance and Data, In
IEEE Data Engineering Bulletin, 33 (3), 2010, pp. 42 – 49.

[13] G. Karvounarakis, Z. G. Ives, and V. Tannen, Querying Data
Provenance, In ACM SIGMOD 2010, pp. 951 – 962.

[14] D. Koop, E. Santos, B. Bauer, M. Troyer, J. Freire, and C. T. Silva,
Bridging Workflow and Data Provenance Using Strong Links, In
SSDBM 2010, pp. 397 – 415.

[15] D. Koop, C. E. Scheidegger, J. Freire, and C. T. Silva, The
Provenance of Workflow Upgrades, In International Provenance and
Annotation Workshop (IPAW), 2010, pp. 2 – 16.

[16] C. Lim, S. Lu, A. Chebotko, and F. Fatouhi, OPQL: A First OPM-
Level Query Language for Scientific Workflow Provenance, In IEEE
SCC 2011, pp. 136 – 143.

[17] C. Lim, S. Lu, A. Chebotko, and F. Fatouhi, Storing, Reasoning and
Querying OPM-Compliant Scientific Workflow Provenance Using
Relational Databases, In Future Generation Computer Systems, 27
(6), 2011, pp. 781 – 789.

[18] A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, K. F. Moore, and
D. Suciu, Causality in Databases, In IEEE Data Engineering Bulletin,
33 (3), 2010, pp. 59 – 67.

[19] S. Miles, Electronically Querying for the Provenance of Entities, In
IPAW 2006, pp. 184 – 192.

[20] The OPM Provenance Model (OPM), available at
http://openprovenance.org/, retrieved: December, 2011.

[21] S. Sahoo, R. Barga, J. Goldstein, and A. Sheth, Provenance Algebra
and Materialized View-based Provenance Management, Microsoft
Research Technical Report, 2008, available at
http://research.microsoft.com/apps/pubs/default.aspx?id=76523,
retrieved: December, 2011.

[22] Y. Simmhan, B. Plale, and D. Gannon, Karma2: Provenance
Management for Data Driven Workflows, International Journal of
Web Services Research (IJWSR), 5 (2), 2008, pp. 1 – 22.

[23] Third Provenance Challenge, available at
http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenanceChallenge,
retrieved: December, 2011.

[24] A. Woodruff and M. Stonebraker, Supporting Fine-Grained Data
Lineage in a Data Visualization Environment, In IEEE ICDE, 1997,
pp. 91 – 102.

[25] J. Zhao, C. Goble, R. Stevens, and D. Turi, Mining Taverna’s
Semantic Web of Provenance, In Concurrency and Computation:
Practice and Experience, 20 (5), 2008, pp. 463 – 472.

[26] J. Zhao, S. S. Sahoo, P. Missier, A. P. Sheth, and C. A. Goble,
Extending Semantic Provenance into the Web of Data, IEEE Internet
Computing, 15 (1), 2011, pp. 40 – 48.

194Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

