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Abstract—With the advent of the Software-as-a-Service (SaaS)
deployment model, managing operational costs becomes more
and more important for providers of hosted software. The cost
for hosting and providing a service is directly proportional to
the operational margin that can be achieved when running
a SaaS business. Possible avenues for reducing operational
costs are consolidation (i.e. co-locating multiple customers onto
the same server) and automation of cluster management (i.e.
migration of customers between servers, automatic replication
for performance or high availability). In this paper, we propose
the formalization for the problem of assigning “tenants” (i.e.
the customers) to servers of an on-demand database cluster. We
will pose this problem in the form of an optimization problem,
omitting database specifics and thus presenting the problem in
an abstract fashion, using the metaphor of assigning tokens to
baskets (i.e., tenants to servers). This formalization is both a
first step towards solving the placement problem in an efficient
way and a helpful basis for comparing multiple solutions to the
problem to each other.

Index Terms—multi-tenancy; software-as-a-service; databases;
enterprise applications; column-store

I. INTRODUCTION

Implementations of Enterprise SaaS commonly maintain

data in a farm of conventional databases. To reduce total

cost of ownership, multiple tenants are consolidated into each

database instance [1]. As an example, in October 2007, the

SaaS CRM vendor RightNow had 3,000 tenants distributed

across 200 MySQL database instances with 1 to 100 tenants

per instance [2]. Table I shows the cost of hosting such a

system with and without multi-tenancy on Amazon’s Elastic

Compute Cloud (EC2) for a year. This calculation assumes

each database is run on one small EC2 instance, which may not

be sufficient in some cases. The standard on-demand pricing

for one such unit is $0.085 per hour. The one-year reserved

pricing is $227.50 up front plus $0.03 per hour [3]. These

figures do not include the costs to administer the databases,

which would further skew the results in favor of multi-tenancy

by a wide margin. The moral of the story is clear: the more

consolidation the better.

Single-tenant Multi-tenant

Standard on-demand pricing $2,233,800 $148,920
One-year reserved pricing $1,470,900 $98,060

TABLE I
YEARLY COST TO HOST RIGHTNOW DATABASES ON AMAZON EC2

SaaS implementations commonly use pre-existing database

replication mechanisms for availability and performance. This

practice treats each group of tenants as a single unit for the

purposes of replication. As a result, the excess capacity that

is reserved to handle failures and workload surges is pooled

across only a small number of servers and significant over-

provisioning is required. In particular, common practice is to

maintain master/slave pairs in which each slave gets no traffic

so that it can handle the full load in case its master fails.

This technique is often referred to as mirroring (cf. Figure 1).

The downside of mirroring is that in case of a failure all

excess workload is re-directed to the other mirror. In doing

so, the mirror server is a local hot-spot in the cluster until the

failed server is back online. A technique for avoiding such

hot-spots is to use interleaving, which was first introduced

in Teradata [4]. Interleaving entails performing replication

on the granularity of the individual tenants rather than all

tenants inside a database process. This allows for spreading

out the excess workload in case of a server failure across

multiple machines in the cluster. As a result, excess capacity is

pooled across a larger number of servers, the work on any one

server is smoothed out with high probability, and less over-

provisioning is required. As an example, consider a scenario

in which the layout is “perfect” in the sense that, for any

two servers, there is at most one tenant with a replica on

both servers. If there are 10 tenants per server, then over-

provisioning by 50% would allow a failure of up to 5 servers
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that share a tenant with any given server. The benefits of this

scheme are proportional to the amount of consolidation: with

100 tenants per database, allowing a failure of 5 servers would

require over-provisioning by only 5%.
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Fig. 1. Example Layouts of Tenant Data

Replica placement is an on-line problem: the layout must

be modified as tenants join and leave the system and their

resource consumption varies with seasons and success. Place-

ment algorithms must be judged not only on the quality of

the layout, but also on the amount of data that must be

migrated to achieve it. Migration should be minimized because

it consumes resources and it can complicate failure recovery.

Web-scale databases generally sacrifice some layout quality

in order to avoid excessive migration. For traditional data

warehouses, mostly large and expensive server and storage

systems are used. For small- and medium-sized companies,

it is often too expensive to implement and run such systems.

Given this situation, the SaaS model comes in handy, since

these companies might opt to run their OLAP at an external

service provider. The challenge is then for the analytics service

provider to minimize total cost of ownership by consolidating

as many tenants onto as few computing resources as possible,

a technique often referred to as multi-tenancy [1].

The Rock project at the HPI [5], [6], [7], [8] seeks to

maximize throughput in a cluster of main memory column

databases. The goal is to support the highest possible number

of concurrently active users while guaranteeing hard service

level objectives on end-user response times (e.g. “99 percent

of all queries have to complete in less than 1 second”). We

explore different data placement strategies for deciding which

tenants are co-located on which servers in order to minimize

the number of servers when running a given number of users.

This problem is at the heart of large-scale Internet services

trying to minimize the cost of their data centers.

This paper is structured as follows: Section II will formulate

the placement problem as an optimization problem. We will

omit database specifics and pose the problem in an abstract

fashion, using the metaphor of assigning tokens to baskets (i.e.,

tenants to servers). Section III discusses the computational

complexity of the placement problem. In Section IV, we

discuss related work. Section V concludes this paper.

II. PROBLEM STATEMENT

Let N = {i1, . . . , i|N |} be a set of baskets and T =
{t1, . . . , t|T |} a set of tokens. An assignment of tokens to

baskets is given, as shown in Figure 2. All tokens have a

radius r(t) and a color c(t), which are also known for all

tokens. Each color occurs exactly twice (or, in other words,

each token occurs exactly twice, which means that there are

2|̇T | tokens in an assignment). The problem to be solved is to

find a new assignment of tokens to baskets with the following

properties:

• No color occurs twice in the same basket.

• The sum of all token radiuses in each basket does not

exceed a fixed upper bound cap(i).
• The sum of all token radiuses should have a similar value

for all baskets.

• Any two colors appearing together in one basket should

preferably not appear together in a second basket.

Fig. 2. Assignment of tokens to baskets

A. Formal Description

To denote the assignment of tokens to baskets we define a

decision variable y as follows:

y
(k)
t,i =

{

1 if token t is in basket i
0 otherwise

with k ∈ {0, 1}, t ∈ T, i ∈ N

The index k identifies the first and the second token of the

same color, respectively. An assignment of tokens to baskets

Y ′, the number of baskets N , and the set of tokens T with

their respective radiuses and colors is given as an input for this

problem. The goal is to devise an algorithm which calculates

a new assignment Y (i.e. the transformation f : Y ′ → Y ).

Token radiuses increase and decrease as time progresses,

although they are fixed for any given instance if the problem.

The model is that a new instance of the problem is created

each time one or more changes in token radius have been ob-

served. We are looking for an algorithm that—when invoked—

balances the sum of token sizes across all baskets and, at the

same time, tries to minimize color co-appearance across the

baskets. An optimal assignment in this respect would be such

that no two colors appearing together in one basket appear

158Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications



together in any other basket at the same time. To do so, the

algorithm moves tokens between the baskets.

The sum of all radiuses r(s) of the tokens in a given basket

i is defined as

R(i) :=
∑

t∈T

1
∑

k=0

y
(k)
t,i r(t), i ∈ N.

To describe how good (or bad) a given assignment of

tokens to baskets is w.r.t. color co-appearance, we introduce

a penalty function P (i). It is computed from the perspective

of an individual basket and is defined as the sum of all token

radiuses of co-appearing tokens in one of the other N − 1
baskets. Since this value depends on which of the other N−1
baskets is chosen as a partner in this binary comparison, P (i)
is defined relative to the partner yielding the maximum value:

P (i) = maxj∈N

(

∑

t∈T

1
∑

k=0

y
(k)
t,i y

(1−k)
t,j r(t)

)

with i, j ∈ N, i 6= j

1) Constraints:

1) A valid assignment Y must contain each color exactly

twice.
∑

i∈N

y
(0)
t,i + y

(1)
t,i = 2, ∀t ∈ T

2) No basket must contain any two tokens of the same

color.

y
(0)
t,i + y

(1)
t,i ≤ 1, ∀t ∈ T, ∀i ∈ N

3) The sum of all token sizes in a basket i must be less

than or equal to the capacity of the basket.

R(i) ≤ capi, ∀i ∈ N

2) Objective Functions:

1) All baskets shall be balanced w.r.t. aggregate token size

(in addition to constraint no. 3, which only specifies an

upper bound for the sum of all token radiuses within

one basket Ri). One way of progressing towards a

similar value for the different R(i)s is to minimize their

variance:

min V ar(R(1), . . . , R(|N |))

2) Co-appearances of colors in the baskets shall be mini-

mized:

min
∑

i∈N

P (i), ∀i ∈ N

3) In addition to minimizing the co-appearance penalty

per basket (the previous optimization goal), all baskets

should have a similar penalty. One way of progressing

towards a similar value for the different P (i)s is to

minimize their variance:

min V ar(P (1), . . . , P (|N |))

B. Possible Extensions

The general formulation of the problem as posed above can

be extended to make it even harder to devise good solutions.
1) Varying number of baskets: For the problem stated above

we assume a fixed number of baskets N . It might be the

case that the observed changes in token size create a situation

in which the current number of baskets is not sufficient for

finding an assignment of tokens to baskets such that none

of the above constraints is violated. Given such a situation,

the algorithm is allowed to create a new basket. Similarly,

when the changes in token size result in a situation where

all of the above constraints could be satisfied using fewer

baskets, then the algorithm can empty a basket by migrating its

tokens to other baskets and delete the basket. It would also be

conceivable to trade-off the the number of baskets against the

balancing of the R(i)s as well as the values and the balancing

of the P (i)s.
2) Minimizing the number of migrations: So far we have

not imposed a limit on the number of movements of tokens

between baskets necessary to provide the transformation f :
Y ′ → Y . However, it would be conceivable to try to minimize

the number of movements in this sequence. It would also be

interesting to study how fast the other goal functions converge

to an optimal value, varying the number of allowed migrations

in f .

III. COMPUTATIONAL COMPLEXITY

The tenant placement problem presented above is struc-

turally similar to the general bin packing with conflicts (BPC)

problem. In addition to standard bin packing with a given set

V of n items, an instance of BPC also contains conflict graph

G = (V,E), where an edge (i, j) ∈ E exists if items i and j
are in conflict and may thus not be assigned to the same bin.

The BPC problem is known to be NP-complete [9]. In order to

proof that the tenant placement problem is also NP-complete,

it must be shown that:

1) a candidate solution can be verified in polynomial time.

2) an instance of the BPC problem can be reduced to an

instance of the tenant placement problem.

1 follows trivially from the observation that all constraints of

the tenant placement problem are terms of quadratic or lower

complexity. A formal proof of 2 is beyond the scope of this

paper. However, the fact that the tenant placement problem

only contains additional constraints in comparison to BPC

suggests that a reduction is possible. In the remainder of this

section we will elaborate on the combinatorial complexity of

the tenant placement problem.
One possible way of enumerating all possibilities of as-

signing the two copies of a tenant to N servers will now

be briefly discussed. Given that both copies of a tenant must

be on different servers and that both copies are equivalent,

all possibilities to assign a single tenant to two servers can

be done by creating a matrix with dimensions N × N . The

elements of this matrix are defined as follows:

(i, j) =

{

1 if i < j
0 otherwise

, i, j ∈ N
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# Servers # Tenants Search Space

3 16 43,046,721
3 17 129,140,163
4 13 13,060,694,016
3 17 16,926,659,444,736

TABLE II
NUMBER OF COMBINATORIAL POSSIBILITIES FOR SMALL PROBLEM

INSTANCES

An example for N = 4 servers:









0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0









The number of possibilities for assigning two copies of

a tenant to N servers is thus N(N − 1)/2. We refer to all

1-valued elements of this matrix as possible configurations of

a tenant.

We developed a brute force solver for enumerating all

possibilities to assign T tenants to N servers. As we have

already established above, there are N(N − 1)/2 possibilities

to assign two copies of one tenant to N servers. The number

of combinatorial possibilities to assign T tenants to N servers

is thus:

(

N(N − 1)

2

)T

In our implementation, we encode each combination using

a sequence of length T with each element of the sequence

being an integer encoding a tenants configuration:

(a0, . . . , aT−1), 0 ≤ ai ≤
N(N − 1)

2
− 1

This sequence obeys lexicographic ordering in the sense that

the next combination can by computed simply by incrementing

the rightmost element of the sequence which is smaller than

(N(N − 1)/2) − 1. Brute force enumeration can nicely

be parallelized: In our implementation, we use recursion to

generate multiple ranges of the sequence with equal sizes.

Each of those ranges is then enumerated in parallel. Our

implementation uses Scala actors [10] and fits well with the

large number of available cores in modern server machines.

Nevertheless, a solution to the placement problem can only

be found for very small instances of the problem using brute

force. Table II show the steep increase of the search space size

for four small instances.

IV. RELATED WORK

The question of how to distribute data in a cluster of

databases has a fundamental impact on the overall performance

of the cluster. The data placement problem has been system-

atically studied in the context of parallel databases and, more

recently, distributed databases for Web applications.

A. Parallel Databases

In the parallel databases Teradata [11], Gamma [12], Bubba

[13] and Tandem [14], the data placement problem entails

distributing a fixed collection of relations across a fixed cluster

of servers so as to minimize response times. Large relations

are fully partitioned, also called fully de-clustered, across

all servers and thus placement is straight-forward. For small

relations, the placement problem is NP-hard [15] and various

heuristics have been proposed. In Bubba, small relations are

placed in decreasing order of their access frequency, or “heat”.

At each placement step, the algorithm tries to balance the over-

all heat at each server. In a simulation study, [16] compares

the Bubba algorithm with simple round robin placement of

small relations. The conclusion is that, for large numbers of

small relations, round robin performs as well as the Bubba

algorithm. Round robin is in general preferable because it does

not require knowledge of the workload.

Parallel databases generally maintain two copies of the data

to ensure high availability. For small relations, a common

approach to data placement is to simply treat each copy as

a separate relation, with the additional constraint that the

two copies cannot be placed on the same server. Bubba, for

example, maintains the copies in different formats and tracks

the heat of each copy independently.

For large relations, Teradata uses a technique called inter-

leaved de-clustering. Each of the N servers in a cluster is made

responsible for the primary copy of one fragment of a relation.

The secondary copy of each fragment is divided into N − 1
sub-fragments that are distributed across the other servers in

the cluster. Thus, when a server fails and the primary copy

of a fragment becomes unavailable, the work is redistributed

across N − 1 other servers.

A disadvantage of interleaved de-clustering is that, if two

servers in a cluster become simultaneously unavailable, one

sub-fragment will have no active copy and the entire system

has to be shut down. This problem gets worse as the cluster

gets bigger, since there are more servers that can fail. As

an alternative, Gamma uses a technique called chained de-

clustering [16] in which the servers are organized into a logical

ring. Each of the servers is made responsible for the primary

copy of one fragment and the secondary is placed immediately

after the primary in the ring. If a server fails, its workload

is taken over by its successor and predecessor in the ring,

which seemingly leads to an unbalanced system. The solution

is that the workloads for the other fragments are incrementally

shifted around the ring to re-balance the system. To shift

the workload for a fragment, the boundary for the range of

responsibilities between the two copies is shifted. Chained de-

clustering makes it possible to survive the failure of any two

non-adjacent servers in the ring.

In placement problem as presented in this paper, we are

solely concerned with the placement of small relations. In-

terleaving is performed at that level rather than at the level

of fragments and sub-fragments of large relations. In the

parallel databases, the load on fragments of a large relation
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is correlated because every fragment is used to answer a

query. The performance characteristics of our system differ

because tenants submit queries independently. In our context,

data placement is an on-line problem and entails adjusting

the size of the cluster so response times requirements are met

using as few servers as possible. When the load on a server

becomes too high due to increases in the maximum resource

consumption of tenants, our placement algorithms make local

adjustments to the layout. Parallel databases can accommodate

changes in the number and sizes of relations and the number

of servers in the cluster, however such changes are infrequent

and are applied more globally.

B. Web-Scale Databases

Amazon Dynamo is a distributed key-value store that uses

a multi-master-update, lazy-update-propagation model with

conflict resolution [17]. Data is distributed across the servers

using a variant of consistent hashing [18], [19]. The keys are

hashed into a fixed circular ring and each server randomly

chooses T tokens in the ring. For each of its tokens, a server

is responsible for the key range from that token to the next

higher token of any server. The replicas for a key range are

placed on the next distinct servers moving clockwise around

the ring. Thus Dynamo interleaves data: if a server fails,

its workload is distributed among T other groups of servers.

An essential characteristic of this system is that each key is

accessed independently, the keys may be randomly partitioned,

and such a partitioning results in a good load distribution for

large numbers of keys. In contrast, for Enterprise SaaS and

the algorithms studied in this paper, the partitions are fixed

at tenant boundaries and the workload varies greatly between

tenants.

In Google BigTable [20], rows are range-partitioned across

servers by key. Rows with the same key prefix are guaranteed

to be adjacent, hence the application can exert control over

partitioning. Enterprise SaaS can be implemented on such a

system by using the tenant ID as the leading prefix of the

key. In BigTable, replication is performed at a lower level

by the Google File System [21] and there is never more

than one active node for a given data item. Nevertheless,

if additional active copies were maintained using different

sort orders for the tenants, interleaved replication would be

provided. The problem with this approach is that the system

would unnecessarily maintain the sort order of tenants in

each replication group. Our approach is not subject to such

a constraint and is not operationally more complex.

C. Data Placement in Other Areas

Problems similar to data placement are also known outside

the database community.

The so-called File Allocation Problem (FAP) is concerned

with assigning files to nodes. If a file is on a node then access is

cheap (local access), otherwise there is some communication

cost attached to to accessing the file (remote access). This

problem has been extensively studied in literature, and many

different models using different objectives for optimization

have been proposed. A survey providing a qualitative com-

parison of these models can be found in [22].

An extension of the FAP is the replica placement problem

(RPP) for content delivery networks. As an example, consider

an Internet service provider that wants to assign multimedia

data to caches in the network topology. Here, the cost of

remote accesses is extended by the notion of the distance to

the closest node that has a copy of the requested object. [23],

[24] surveys and compares known formalizations and solutions

to RPP.

All approaches which can be subsumed by either FAP or

RPP minimize cost functions which are designed with the aim

of improving average data access performance. Utilization and

the ability to provide service at a guaranteed performance in

the presence of failures is not investigated.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have given a formal definition of the tenant

placement problem, which we have identified as one of the

key problems in cluster management for SaaS applications.

This formalization is both a first step towards solving the

placement problem in an efficient way and a helpful basis for

comparing multiple solutions to the problem to each other. We

have outlined a mechanism for the brute force enumeration of

the complete search space. However, the brute force strategy

is only useful for very small instances of the problem. As part

of future work we thus plan to work on heuristic methods

for solving the placement problem. In doing so, we plan to

not only investigate and compare the theoretical properties of

multiple placement algorithms but also to implement the algo-

rithms in a multi-tenant database system and experimentally

validate their practical usefulness.
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