
OLAP Authentication and Authorization via Query Re-writing

Todd Eavis
Department of Computer Science

Concordia University
Montreal, Canada

Email: eavis@cs.concordia.ca

Ahmad Altamimi
Department of Computer Science

Concordia University
Montreal, Canada

Email: a alta@cs.concordia.ca

Abstract—Online Analytical Processing (OLAP) has become
an increasingly important and prevalent component of Decision
Support Systems. OLAP is associated with a data model known
as a cube, a multi-dimensional representation of the core
measures and relationships within the associated organization.
While numerous cube generation and processing algorithms
have been presented in the literature, little effort has been made
to address the unique security and authentication requirements
of the model. In particular, the hierarchical nature of the cube
allows users to bypass - either intentionally or unintentionally
- partial constraints defined at alternate aggregation levels. In
this paper, we present an authentication framework that builds
upon an algebra designed specifically for OLAP domains. It is
Object-Oriented in nature and uses query re-writing rules to
ensure consistent data access across all levels of the conceptual
model. The process is largely transparent to the user, though
notification is provided in cases in which a subset of the
original request is returned. We demonstrate the scope of
our framework with a series of common OLAP queries. The
end result is an intuitive but powerful approach to database
authentication that is uniquely tailored to the OLAP domain.

Keywords-Data warehouses; Data security; Query processing

I. INTRODUCTION

Data warehousing (DW) and On-Line Analytical Process-
ing (OLAP) play a pivotal role in modern organizations.
Designed to facilitate the reporting and analysis required
in decision making environments [1], OLAP builds upon
a multi-dimensional data model that intuitively integrates
the vast quantities of transactional level data collected by
contemporary organizations. Ultimately, this data is used
by managers and decision makers in order to extract and
visualize broad patterns and trends that would otherwise not
be obvious to the user.

One must note that while the data warehouse serves as
a repository for all collected data, not all of its records
should be universally accessible. Specifically, DW/OLAP
systems almost always house confidential and sensitive data
that must, by definition, be restricted to authorized users.
The administrator of the warehouse is ultimately responsible
for defining roles and privileges for each of the possible
end users. In fact, a number of general warehouse security
models have been proposed in the literature [2]–[5]. Several
authors define frameworks that are likely too restrictive for
production warehouses. For instance, Rosenthal et al. [4]

discuss a security model based on authorization views. The
views are created for specific users so as to allow access
only to selected data. However, the administration of these
views becomes quite complex when a security policy is
added, changed, or removed. Moreover, complex roles can
be difficult to implement in practice, and models of this
type tend not to scale well with a large number of users.
Conversely, other researchers have focused on the design
process itself. For example, Fernndez-Medina et al. [2]
propose a Unified Modeling Language (UML) profile for
the definition of security constraints. Here, however, the
physical implementation of the underlying authentication
system remains undefined.

In this paper, we present an authentication model for
OLAP environments that is based on a query rewriting
technique. The model enforces distinct data security policies
that, in turn, may be associated with user populations of
arbitrary size. In short, our framework rewrites queries con-
taining unauthorized data access to ensure that the user only
receives the data that he/she is authorized to see. Rewriting
is accomplished by adding or changing specific conditions
within the query according to a set of concise but robust
transformation rules. Because our methods specifically target
the OLAP domain, the query rules are directly associated
with the conceptual properties and elements of the OLAP
data model itself. A primary advantage of this approach is
that by manipulating the conceptual data model, we are able
to apply query restrictions not only on direct access to OLAP
elements, but also on certain forms of indirect access.

The remainder of this paper is organized as follows. In
Section II, we present an overview of related work. Sec-
tion III describes the core OLAP data model and associated
algebra, and includes a discussion of the object-oriented
query structure for which the proposed security model has
been designed. The OLAP query rewriting model and its
associated transformation rules are then presented in detail
in Section IV. Final conclusions are offered in Section V.

II. RELATED WORK

As noted above, a number of security models that restrict
warehouse access have been proposed in the literature,
including those that focus strictly on the design process.

130Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

Extensions to the Unified Modeling Language to allow for
the specification of multi-dimensional security constraints
has been one approach that has been suggested [2]. In fact,
a number of researchers have looked at similar techniques
for setting access constraints at an early stage in the OLAP
design process [6], [7]. Such models have great value of
course, particularly if one has the option to create the
warehouse from scratch. That being said, their focus is not
on authentication algorithms per se, but rather on design
methodologies that would most effectively use existing tech-
nologies.

In terms of true authentication models, several researchers
have attempted to augment the core Database Management
System (DBMS) with authorizations views [4], [8]. Typ-
ically, alternate views of data are defined for each distinct
user or user group. The end result is often the generation of a
large number of such views, all of which must be maintained
manually by the system administrator. Clearly, this approach
does not scale terribly well, and would be impractical in a
huge, complex DW environment.

Query rewriting has also been explored in DBMS envi-
ronments in a variety of ways, with search and optimization
being common targets [9]. Beyond that, however, rewrit-
ing has also been utilized to provide fine grained access
control in Relational databases [10]. Oracle’s Virtual Private
Database (VPD) [11], for example, limits access to row level
data by appending a predicate clause to the user’s SQL
statement. Here, the security policy is encoded as policy
functions defined for each table. These functions are used
to return the predicate, which is then appended to the query.
This process is done in a manner that is entirely transparent
to the user. That is, whenever a user accesses a table that
has a security policy, the policy function returns a predicate,
which is appended to the user’s query before it is executed.

In the Truman model [10], on the other hand, the database
administrator defines a parameterized authorization view
for each relation in the database. Note that parameterized
views are normal views augmented with session-specific
information, such as the user-id, location, or time. The query
is modified transparently by substituting each relation in the
query by the corresponding parameterized view to make sure
that the user does not get to see anything more than his/her
own view of the database. In this model, the user can also
write queries on base relations by plugging in the values
of session parameters such as user-id or time before the
modified query is executed.

We note, however, that the mechanisms discussed above
(e.g., Oracle’s VPD) are not tailored specifically to the
OLAP domain and, as such, either have limited ability to
provide fine grained control of the elements in the conceptual
OLAP data model or, at the very least, would make such
constraints exceedingly tedious to define. Some commercial
tools, such as Microsoft’s Analysis Services [12], do in fact
provide such mechanisms. However, even here, authentica-

90 22 53 75

87 33 5 47

2 23 78 22

14 3 77 99

Measure
 (Sales)

TypeType

CategoryCategory

Product_numberProduct_number

Product Hierarchy

Store Hierarchy

CityCity

ProvinceProvince

Store_numberStore_number

CountryCountry
LN

22
1

Indoor

LN
42

6

OD92
3

OD25
8

Outdoor

Furniture

March
February

January

MQ21

MQ15

LQ58

CA69CalgaryAlberta

Laval

Montreal

Quebec

Canada

ProductProduct

StoreStore

TimeTime

Figure 1. A simple three dimensional data cube

tion controls are quite direct in that they must be explicitly
associated with any and all affected elements of the model.
This is in contrast to the work discussed in this paper, where
the primary contribution is a query rewriting technique that
transparently supports indirect authentication.

III. THE CONCEPTUAL DATA MODEL

We consider analytical environments to consist of one
or more data cubes. Each cube is composed of a series
of d dimensions — sometimes called feature attributes —
and one or more measures [13]. The dimensions can be
visualized as delimiting a d-dimensional hyper-cube, with
each axis identifying the members of the parent dimension
(e.g., the days of the year). Cell values, in turn, represent the
aggregated measure (e.g., sum) of the associated members.
Figure 1 provides an illustration of a very simple three
dimensional cube on Store, Time and Product. Here,
each unique combination of dimension members represents
a unique aggregation on the measure. For example, we can
see that Product OD923 was purchased 78 times at Store
MQ15 in January (assuming a Count measure).

Note, as well, that each dimension is associated with
a distinct aggregation hierarchy. Stores, for instance, are
organized in Country→ Province→ City groupings.
Referring again to Figure 1, we see that Product Number
is the lowest or base level in the Product dimension. In
practice, data is physically stored at the base level so as
to support run-time aggregation to coarser hierarchy levels.
Moreover, the attributes of each dimension are partially
ordered by the dependency relation � into a dependency
lattice [14]. For example, Product Number � Type �
Category within the Product dimension. More formally,
the dependency lattice is expressed in Definition 1.

Definition 1: A dimension hierarchy Hi of a dimension
Di, can be defined as Hi = (L0, L1, . . . , Lj) where L0 is
the lowest level and Lj is the highest. There is a functional

131Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

dependency between Lh−1 and Lh such that Lh−1 � Lh

where (0 ≤ h ≤ j).
Finally, we note that there are in fact many variations on

the form of OLAP hierarchies [15] (e.g., symmetric, ragged,
non-strict). Regardless of the form, however, traversal of
these aggregation paths — typically referred to as rollup
and drill down — is perhaps the single most common query
form. It is also central to the techniques discussed in this
paper.

A. Native Language Object Oriented OLAP Queries

The cube representation, as described above, is common
to most OLAP query environments and represents the user’s
conceptual view of the data repository. That being said, it
can be difficult to implement the data cube using standard
relational tables alone and, even when this is possible, per-
formance is usually sub-par as relational DBMSs have been
optimized for transactional processing. As a result, most
OLAP server products either extend conventional relational
DBMSs or build on novel, domain specific indexes and
algorithms.

In our own case, the authentication methods described in
this paper are part of a larger project whose focus is to
design, implement and optimize an OLAP-specific DBMS
server. A key design target of this project is the integration
of the conceptual cube model into the DBMS itself. This
objective is accomplished, in part, by the introduction of
an OLAP-specific algebra that identifies the core operations
associated with the cube (SELECT, PROJECT, DRILL DOWN,
ROLL UP, etc). In turn, these operations are accessible to the
client side programmer by virtue of an Object Oriented API
in which the elements of the cube (e.g., cells, dimensions,
hierarchies) are represented in the native client language as
simple OOP constructs. (We note that our prototype API
uses Java but any contemporary OO language could be
used). To the programmer, the cube and all of its data —
which is physically stored on a remote server and may be
Gigabytes or Terabytes in size — appears to be nothing
more than a local in-memory object. At compile time, a
fully compliant Java pre-parser examines the source code,
creates a parse tree, identifies the relevant OLAP objects,
and re-writes the original source code to include a native
DBMS representation of the query. At run-time, the pre-
compiled queries are transparently delivered to the back
end analytics server for processing. Results are returned and
encapsulated within a proxy object that is exposed to the
client programmer.

As a concrete example, Listing 1 illustrates a simple SQL
query that summarizes the total sales of Quebec’s stores
in 2011 for the data cube depicted in Figure 1. Typically,
this query would be embedded within the application source
code (e.g., wrapped in a JDBC call). Conversely, Listing 2
shows how this same query could be written in an Object-
Oriented manner by a client-side Java programmer. Note

S e l e c t S t o r e . p r o v i n c e , SUM(s a l e s)
From S t o r e , Time , S a l e s
Where S t o r e . s t o r e I D = S a l e s . s t o r e I D AND

Time . t ime ID = S a l e s . t ime ID AND
Time . year = 2011 AND
S t o r e . p r o v i n c e = ’ Quebec ’

Group by S t o r e . p r o v i n c e

Listing 1. Simple SQL OLAP Query

C l a s s SimpleQuery ex tends OLAPQuery{
P u b l i c boolean s e l e c t () {

S t o r e s t o r e = new S t o r e () ;
DateDimension t ime = new TimeDimension () ;
re turn (t ime . g e t Y e a r () == 2011 &&

s t o r e . g e t P r o v i n c e () == ’ Quebec ’) ;
}
P u b l i c O b j e c t [] p r o j e c t () {

S t o r e s t o r e = new S t o r e () ;
Measure measure = new Measure () ;
O b j e c t [] p r o j e c t i o n s = {

s t o r e . g e t P r o v i n c e () ,
measure . g e t S a l e s () } ;

re turn p r o j e c t i o n s ;
}}

Listing 2. An Object Oriented OLAP Query

that each algebraic operation is encapsulated within its own
method (in this case, SELECT and PROJECT), while the
logic of the operation is consolidated within the return
statement. It is the job of the pre-parser to identify the
relevant query methods and then extract and re-write the
logic of the return statement(s). Again, it is important
to understand that the original source code will never be
executed directly. Instead, it is translated into the native
operations of the OLAP algebra and sent to the server at
run-time.

While it is outside the scope of this paper to discuss the
motivation for native language OLAP programming (a de-
tailed presentation can be found in a recent submission [16]),
we note that such an approach not only simplifies the
programming model, but adds compile time type checking,
robust re-factoring, and OOP functionality such as query
inheritance and polymorphism. Moreover, query optimiza-
tion is considerably easier on the backed as the DBMS
natively understands the OLAP operations sent from the
client side. In the context of the current paper, however,
the significance of the query transformation process is that
the authentication elements (e.g. roles and permissions) will
be directly associated with the operations of the algebra. In
fact, it is this algebraic representation that forms the input
to the authentication module presented in the remainder of
the paper.

132Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

Users

userID

userName

userPassword

Role

roleID

roleName

roleDescription

Access

userID

roleID

startTime

endTime

OpPermissions

roleID

opID

Operation

ObjPermissions

roleID

dbID

cubeID

dimID

attID

opID

value1

value2

dbObject

dbID

dbName

CubeObject

dbID

cubeID

cubeName

DimObject

cubeID

dimID

dimName

dimLink

AttributeObject

dimID

attID

attType

attName

Figure 2. The Authentication DB.

IV. AUTHENTICATION AND AUTHORIZATION

Without sufficient security countermeasures, open access
to the OLAP repository becomes a powerful tool in the
hands of malicious or unethical users. Access Control is the
process that restricts unauthorized users from compromising
protected data. This process can be thought of as occurring
in two basic phases: Authentication and Authorization.
Authentication is a form of identity verification that attempts
to determine whether or not a user has valid credentials to
access the system. In contrast, Authorization refers to the
process of determining if the user has permission to access
a specific data resource. In this section, we will describe our
general framework, giving a detailed description of its two
primary components and the relationship between them.

A. The Authentication Module

The authentication component is responsible for verifying
user credentials against a list of valid accounts. These ac-
counts are provided by the system administrator and are kept
— along with their constituent permissions — in a backend
database (i.e., the Authentication DB). The Authentication
DB consists of a set of tables (users, permissions, and
objects) that collectively represent the meta data required
to authenticate and authorize the current user. For example,
the users table stores basic user credentials (e.g., name,
password), while the permissions table records the fact
that a given user(s) may or may not access certain controlled
objects. Figure 2 illustrates a slightly simplified version of
the Authentication DB schema. In the current prototype,
storage and access to the Authentication DB is provided
by the SQLite toolkit [17]. SQLite is a small, open source
C language library that is ideally suited to tasks that require
basic relational query facilities to be embedded within a
larger software stack.

Figure 3. A small Parse Tree fragment.

Figure 4. Authentication and Authorization.

Internally, the user’s transformed OLAP query is rep-
resented in XML format (embedded within the re-written
source code). Of course, in order to properly authenticate
the query, it must first be decomposed into its algebraic
components. The DBMS backend parser uses standard DOM
utilities to parse the received query and extract the query
elements (user credentials, dimensions, hierarchies, etc).
Figure 3 shows the XML tree corresponding to the query
depicted in Listing 2. Once the parsing is completed, the
Authentication module extracts the user credentials to verify
them against the Authentication DB. If the verification
is successful, the DBMS proceeds with the authorization
process. Otherwise, the query is rejected and the user/pro-
grammer is notified. In the case of successful authentica-
tion, the query elements are loaded into a memory-resident
QueryObject structure for Authorization checking. The
upper part of Figure 4 depicts the processing logic of the
Authentication module.

B. The Authorization Module

The second — and more significant — phase is autho-
rization, the process of determining if the user has permis-
sion to access specific data elements. Specifically, when a
user requests access to a particular resource, the request

133Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

is validated against the permitted resource list assigned to
that user in the backend database. If the requested resource
produces a valid match, the user request is allowed to
execute as originally written. Otherwise, the query will
either be rejected outright or modified according to a set
of flexible transformation rules. To decide if the query will
be modified or not, we rely on a set of authorization objects
against which the rules will be applied. The rules themselves
will be discussed in Section IV-D. The lower portion of
Figure 4 graphically illustrates the Authorization module and
indicates its interaction with the Authentication component.

C. Specifying Authorization Objects

Authorization is the granting of a right or privilege that
enables a subject (e.g., users or user groups) to execute an
action on an object. In order to make authorization decisions,
we must first define the authorization objects. Note that the
objects in the OLAP domain are different from those in
the relational context. In a relational model, objects include
logical elements such as tables, records within those tables,
and fields within each record. In contrast, OLAP objects
are elements of the more abstract conceptual model and
include the dimensions of the multi-dimensional cube, the
hierarchies within each dimension, and the aggregated cells
(or facts). In practice, this changes the logic or focus of the
authentication algorithm. For instance, a user in a relational
environment may be allowed direct access to a specific
record (or field in that record), while an OLAP user may be
given permission to dynamically aggregate measure values
at/to a certain level of detail in one or dimension hierarchies.
Anything below this level of granularity would be considered
too sensitive, and hence should be protected. In fact, the
existence of aggregation hierarchies is perhaps the most
important single distinction between the authentication logic
of the OLAP domain versus that of the relational world.

We note that in the discussion that follows, we assume an
open world policy, where only prohibitions are specified.
In other words, permissions are implied by the absence
of any explicit prohibition. We use the open world policy
mainly for practical reasons, as the sheer number of possible
prohibitions in an enterprise OLAP environment would be
overwhelming.

Before discussing the authorization rules themselves, we
first look at a pair of examples that illustrate the importance
of proper authorization services in the OLAP domain. We
begin with the definition of a policy for accessing a specific
aggregation level in a data cube dimension hierarchy.

Example 1: An employee, Alice, is working in the Mon-
treal store associated with the cube of Figure 1. The policy
is simple: Alice should not know the sales totals of the
individual provinces.

Clearly, Alice is prohibited from reading or aggregating
data at the provincial level in the Store dimension hierarchy.

Figure 5. The Below and Under functions.

However, in the absence of any further restrictions, it would
still be possible for her to compute the restricted values from
the lower hierarchies levels (e.g., City or Store Number).
Ideally, the warehouse administrator should not be respon-
sible for identifying and manually ensuring that all implied
levels be included in the policy. Instead, our model assumes
this responsibility and can, if necessary, restrict access to
all child levels through the use of the Below function. As
the name implies, this function returns a list consisting
of the specified level Li and all the lower levels of the
associated dimension hierarchy. Figure 5(a) illustrates an
example using a Below(Province) instantiation. Here, all
levels surrounded by the dashed line are considered to be
Authorization Objects, and thus should be protected. The
formalization of the Below function is given by Definition 2.

Definition 2: In any dimension Di with hierarchy Hi, the
function Below(Li) is defined as Below(Li) = {Lj : such
that Lj � Li holds}, where Li is the prohibited dimension
level.

As shown in Example 1, a policy may restrict the user
from accessing any of the values of a given level or
levels. However, there are times when this approach is too
coarse. Instead, we would like to also have a less restrictive
mechanism that would only prevent the user from accessing
a specific value within a level(s). For instance, suppose we
want to alter the policy in Example 1 to make it more
specific. The new policy might look like the following:

Example 2: Alice should not know the sales total for the
province of Quebec.

In Example 2, we see that Alice may view sales totals
for all provinces other than Quebec. However, Alice can
still compute the Quebec sales by summing the sales of
individual Quebec cities, or by summing the sales of Que-
bec’s many stores. In other words, she can use the values of
the lower levels to compute the prohibited value. Hence,
all these values should also be protected. To determine
the list of restricted member values, our model adds the
Under function. Figure 5 (b) provides an example using
Under(Quebec). Here, all the values surrounded by the
dashed line should be protected.

134Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 6. An Authorization Exception.

Finally, it is also possible that exceptions to the general
authorization rule are required. For instance, Alice should
not know the sales of stores in the province of Quebec except
for the stores in the city/region she manages (e.g., Montreal).
Figure 6 graphically illustrates this policy. In this case, the
circled members represent the values associated with the
exception that would, in turn, be contained within a larger
encapsulating restriction. Note that a user may have one or
more exceptions on a given hierarchy. The formalization of
the exception object is given in in Definition 3.

Definition 3: For any prohibited level Li, there may be
an Exception E such that E contains a set Ev of values
belonging to Under(Li). That is, Ev ∈ values of Under(Li).

To summarize, authorization objects consist of the values
of the prohibited level and all the levels below it, excluding
zero or more exception value(s). We formalize the concept
of the Authorization Object in Definition 4.

Definition 4: An Authorization Object O = {v : v ∈
Under(Li) - Ev}, where Li is the prohibited level, and Ev
is the exception value.

D. Authorization Rules

We now turn to the query authorization process itself.
As noted above, pre-compiled queries are encoded inter-
nally in XML format. For the sake of simplicity (and
space constraints), we will depict the received queries in
a more compact form in this section. For example, Listing 3
represents the same query shown in Listing 2. Note that
the query is divided into three elements: the SELECTION
element, the CONDITION element, and the FROM element.
The SELECTION element lists all attributes and measures
the user wants to retrieve. The CONDITION element, in turn,
limits or filters the data we fetch from the cube. Finally, the
FROM element indicates the cube from which data is to be
retrieved.

In the discussion that follows, we will assume the ex-
istence of a cube corresponding to Figure 1. That is, the
cube has three dimensions (Product, Store, and Time).
Dimension hierarchies include Product Number � Type �
Category for Product, Store Number � City � Province �
Country for Store, and Month � Year for Time. Selection

S e l e c t i o n :
S t o r e . P rov ince , SUM(s a l e s)

C o n d i t i o n :
Time . year = 2011 AND
S t o r e . P r o v i n c e = ’ Quebec ’

From :
S a l e s

Listing 3. A Query in Simple Form

operations correspond to the identification of one or more
cells associated with some combination of hierarchy levels.

One of the advantages of building directly upon the
OLAP conceptual model and its associated algebra is that it
becomes much easier to represent, and subsequently assess,
authorization policies. Specifically, we may think of policy
analysis in terms of Restrictions, Exceptions, and Level
Values that form a bridge between the algebra and the
Authentication DB. There are in fact four primary policy
classes, as indicated in the following list:

1) Li Restriction + No Exception
2) Li Restriction + Exception
3) Restriction on a specific value P of level Li + no

Exception
4) Restriction on a specific value P of level Li + Excep-

tion
As mentioned, the query must be validated before execu-

tion. If validation is successful, then it can be executed as
originally specified. Otherwise, the query is either rejected
or rewritten according to a set of transformation rules. In
the remainder of this section, we describe the four policy
classes and the processing logic relevant to each.

1) Policy Class 1: Li Restriction + No Exception: If a
user is prohibited from accessing level Li and the user has
no exception(s), then the authorization objects consist of the
values of level Li and all the levels below it. In short, this
means that if the user query specifies level Li or any of its
children in the SELECTION element, then the query should
simply be rejected. Moreover, if any value belonging to the
Li level or any of its children is specified in the CONDITION
element of the query, the query should also be rejected. The
formalization of the rule and an illustrative example is given
below.

Rule 1. If a user is prohibited from accessing the values of
level Li, and there is no exception, then the Authorization
Objects (O) = {v : v ∈ Below(Li) }.

Example 3: If Alice sends the query depicted in Listing 4,
which summarizes the total sales of Canada’s stores in 2011,
the query should be rejected.

Why is this query rejected? Recall that Alice is restricted
from accessing provincial sales. Consequently, we see that
an implicitly prohibited child level (i.e., City) is a component
of the SELECTION element. So, if we allow this query, Alice

135Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

S e l e c t i o n :
S t o r e . Ci ty , SUM(s a l e s)

C o n d i t i o n :
Time . year = 2011 AND
S t o r e . Count ry = ’ Canada ’

From :
S a l e s

Listing 4. Rule 1 example

S e l e c t i o n :
S t o r e . p r o v i n c e , SUM(s a l e s)

C o n d i t i o n :
Time . year = 2011 AND
S t o r e . C i t y = ’ M o n t r e a l ’

From :
S a l e s

Listing 5. Rule 4 example

can in fact compute the provincial sales by summing the
associated city sales.

2) Policy Class 2: Li Restriction + Exception: In this
case, the authorization objects that should be protected
consist of the prohibited level value and all values below it,
except of course for the value of the exception or any value
under it. Let us first formalize this case, before proceeding
with a detailed description.

Rule 2. If a user is restricted from accessing the values of
level Li, and the user has an exception E, then the
Authorization Objects (O) = {v : v ∈ Below(Li) -
Under(Ev) }.

As such, when a user is prohibited from accessing the Li

level — excluding the exception values — then the query
can be (i) allowed to execute, or (ii) modified before its
execution. Let’s look at these two cases now.

Rule 3. The query will be allowed to execute without
modification if the prohibited level value Lv or any of its
more granular level values in (Below(Li)) exists in the
CONDITION element AND is equal to the exception value
(Ev) or any of its implied values in (Under(Ev)).

Example 4: Suppose that we have the following policy:
Alice is restricted from accessing provincial sales except the
sales for Canadian provinces. If Alice resubmits the query
in Listing 3, it will now be executed without modification
because the prohibited value (e.g., Quebec) is under the
exception value (e.g., Under(Canada)).

But what if Alice has an exception value only for a more
detailed child level of Li (e.g., the city of Montreal)? In
this case, if Alice submits the previous query, it should now
be modified by replacing the restricted value (e.g., Quebec)
in the CONDITION element with the exception value (e.g.,
Montreal). In this example, Alice gets only the values that

S e l e c t i o n :
S t o r e . Ci ty , SUM(s a l e s)

C o n d i t i o n :
Time . Year = 2011

From :
S a l e s

Listing 6. Simple OLAP Query 2

S e l e c t i o n :
S t o r e . Ci ty , SUM(s a l e s)

C o n d i t i o n :
Time . Year = 2011 AND
S t o r e . P r o v i c e = ’ Quebec ’

From :
S a l e s

Listing 7. Rule 5 example

she is allowed to see. The modified query is depicted in
Listing 5. Rule 4 gives the formalization of this case.

Rule 4. If the prohibited level value Lv or any of its more
granular level values (Under(Lv)) exists in the
CONDITION element, and the exception value belongs to
this set of values, then the query should be modified by
replacing the prohibited value with the exception value.

In addition to the scenario just described, the query
can also be modified by adding a new predicate to the
CONDITION element when the prohibited level or any of
its child levels exists in the SELECTION element only.

Rule 5. If the prohibited level Lv or any of its more
granular levels (Below(Li)) exists in the SELECTION
element only, then the query should be modified by adding
the exception E as a new predicate to the query.

Example 5: Suppose that Alice sends the query depicted
in Listing 6. In this case, the query will be modified by
adding a new predicate (i.e., Store.Province = ’Quebec’),
because the prohibited level (i.e., City) exists in the SELEC-
TION element. After the modification, Alice will see only the
cities of Quebec. The modified query is depicted in Listing 7.

The complete processing logic for Policy Class 2 (i.e.,
Rule 3, Rule 4, and Rule 5) is encapsulated in Algorithm 1.
Essentially, the algorithm takes the prohibited level Li

and the exception E as input and produces as output an
authorization decision to execute or modify the query. The
process is divided into two main parts or conditions. In the
first case, we are looking at situations whereby the prohibited
level Lj exists in the query CONDITION element. Here, the
query can either be allowed to execute directly or further
modified. It executes directly if the prohibited value Lv is
equal to the exception value Ev or any value under Ev.
However, if the exception value Ev is equivalent to any
value under Lv, then the query is modified by replacing the

136Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

prohibited level with the exception level AND the prohibited
level value with the exception value.

In the second case, we target the scenario whereby the
prohibited level Lj exists in the SELECTION element only.
Here, we modify the original query by adding the exception
E as a new condition.

input : The prohibited level Li and the exception E
output: Decision to directly execute or modify

Let Ev = E value;
foreach level Lj ∈ Below(Li) do

if Lj exists in the query CONDITION element
then

Let Lv = Lj value;
if Lv == Ev OR Lv ∈ Under(Ev) then

Allow the query to execute without
modification;

end
else if Ev ∈ Under(Lv) then

Replace E by Lj , and Ev by Lv, then
inform the user, and allow the query to
execute;

end
end
else if Lj exists only in the query SELECTION
element then

Add E as new condition to the user query,
inform the user, and allow the query to
execute;

end
end

Algorithm 1:

3) Policy Class 3: Restriction on a specific value P of
level Li + no Exception: We now turn to the classes in
which specific values at a given level are restricted, as
opposed to all members at a given level. We begin with
the simplest scenario.

Rule 6. If a user is prohibited from accessing a specific
value P of level Li, and the user has no exceptions, then
the Authorization Objects(O)= {v : v ∈ P ∪ Under(P)
where P is the prohibited value}.

Here, the prohibited value P, or some value under P,
exists in the query CONDITION element. As per Rule 6,
the query should simply be rejected. But what if Li exists
in the SELECTION element only? In this case, the query
should be modified by adding the prohibited value as a new
predicate to the query CONDITION element. Let’s look at
the following example.

Example 6: Suppose that Alice is restricted from ac-
cessing Quebec’s sales. If Alice sends the query depicted
in Listing 8, the query should be modified as shown in
Listing 9.

S e l e c t i o n :
S t o r e . P rov ince , SUM(s a l e s)

C o n d i t i o n :
Time . year = 2011

From :
S a l e s

Listing 8. Simple OLAP Query 3

S e l e c t i o n :
S t o r e . P rov ince , SUM(s a l e s)

C o n d i t i o n :
Time . year = 2011 AND
S t o r e . P r o v i n c e != ’ Quebec ’

From :
S a l e s

Listing 9. Rule 7 example

The associated query summarizes the sales of provinces
in 2011. As noted, the SELECTION element contains the
prohibited level (Province), so instead of rejecting the query
we modify it by adding a new predicate to the condition. The
modified query returns only the sales that Alice is allowed
to see. The logic is formalized in Rule 7 below.

Rule 7. If the prohibited level Li exists in the SELECTION
element only, then the query should be modified by adding
a new predicate to the query CONDITION element.

4) Policy Class 4: Restriction on a specific value P
of level Li + Exception: Finally, we add an exception
to the queries described by Class 3. Here, the relevant
authorization objects consist of the prohibited value (P),
minus the exception values.

Rule 8. If a user is restricted from accessing a value P of
level Li, and the user has an exception E, then the
Authorization Objects(O)= {v : v ∈ (P ∪ Under(P)) - (Ev
∪ Under(Ev))} where P is the prohibited value and E is
the exception.

In this scenario, the query can either be allowed to execute
or modified according to the following associated rules.

Rule 9. The query will be allowed to execute, if the
prohibited value Lv exists in the CONDITION element AND
is equal to the exception value Ev or any value Under(Ev).

S e l e c t i o n :
S t o r e . Ci ty , SUM(s a l e s)

C o n d i t i o n :
S t o r e . C i t y = ’ M o n t r e a l ’

From :
S a l e s

Listing 10. Rule 9 example

137Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

Example 7: Suppose that Alice is restricted from access-
ing the sales of Canadian provinces, except for the sales of
Quebec. If Alice sends the Query depicted in Listing 10, the
query will be allowed to execute since the prohibited value
(i.e., Montreal) is under the exception value (i.e., Quebec).

Rule 10. If the prohibited level Li exists in the query
SELECTION element only, the query will be modified by
adding the exception E as a new predicate. In principle,
this rule is similar to Rule 4.

Rule 11. When Lv exists in the query CONDITION element
AND Lv is under Ev, the query is modified by replacing
the prohibited level Li by the exception level E AND the
prohibited level value Lv by the exception value Ev.

Algorithm 2 illustrates the full processing logic for Policy
Class 4 (Rule 8, Rule 9, Rule 10, and Rule 11). In short,
the authentication module takes the prohibited level value
P and the exception E as input and gives as output an
authorization decision to execute or modify the query. The
algorithm is again divided into two main parts. The first
component targets the case whereby the prohibited value P
exists in the query CONDITION element. Here, the query
can be modified or executed directly. If the prohibited value
belongs to the set of values under E , the query is modified
by replacing the condition that contains the prohibited value
by a new one containing the exception. Conversely, the query
is allowed to execute directly if the prohibited level value
Lv belongs to the values Under(P) AND Lv is equal to the
exception value Ev OR Ev belongs to the values Under(Lv).

In the second case, a new condition (exception E) is added
to the query CONDITION element when the prohibited level
Lv or any level below it Below(Lv) exists in the SELECTION
element only.

E. Authorization Rule Summary

The preceding sections have formalized the authentica-
tion framework in terms of four policy classes and their
associated transformation rules. Below, we summarize the
authorization decision in terms of its three possible outcomes
— Execute, Modify, Reject:

1) The query is allowed to execute without modification
in two situations:

• Level Li is restricted and there is an exception E:
a) If any upper level exists in the SELECTION or

PROJECTION query element, OR
b) If the Li value or any value from the levels

below it exists in the CONDITION element
AND this value is equal to the exception value
Ev or any value under it.

• A specific value of Li is restricted and there is an
exception E:
a) If the prohibited value Lv or any value under

it exists in the CONDITION element AND it is

input : The prohibited value P of level Li and the
exception E

output: Decision to directly execute or modify

Let Ev = E value;
foreach level Lj ∈ Below(Li) do

if Lj exists in the query CONDITION element
then

Let Lv = Lj value;
if (Lv == P) AND (P ∈ Under(Ev)) then

Add E as a new condition instead of the
condition that contains Lj , inform the
user, and allow the query to execute;

end
else if (Lv ∈ Under(P)) AND (Lv == Ev
OR Ev ∈ Under(Lv)) then

Allow the query to execute without
modification;

end
end
else if Lj exists only in the query SELECTION
element then

Add E as new condition to the user query,
inform the user, and allow the query to
execute;

end
end

Algorithm 2:

equal to the exception value Ev OR any value
under it.

2) The query is modified in one situation:

• A level Li is restricted and there is an exception
E:

a) If level Li or any value from the levels below
it exists in the query SELECTION element
only, then we add the exception E as a new
condition, OR

b) If the exception value Ev belongs to the values
under Lv, then we replace the prohibited level
in the CONDITION element by the exception
E.

3) The query is rejected in two situations:

• A level Li is restricted, and there is no exception:

a) If level Li or any value from a lower level
exists in the SELECTION element only, OR

b) If level Li or any value from the levels below
it exists in the CONDITION element.

• A specific value P is restricted, and there is no
exception:

a) If P or any value under it exists in the CON-
DITION element.

138Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

F. A note on Performance
As noted above, the authorization framework has been

incorporated into a DBMS prototype specifically designed
for OLAP storage and analysis. In practice, the authorization
logic has a negligible impact on performance (less than a few
milliseconds for the queries presented in this paper). Specif-
ically, the decomposition of the user query into its algebraic
components (and conditions) is performed by the underlying
query engine; the framework simply borrows the result as
input to the authorization process. Moreover, the analysis of
policy classes is based upon a fixed set of IF/ELSE cases
that, in turn, manipulate a small in-memory Authentication
Database. The run-time impact of this analysis is completely
dominated by the cost of answering the (validated) query.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed a query re-writing
model to provide access control in multi-dimensional OLAP
environments. We began by defining a conceptual model
that focused on the data cube and its constituent dimen-
sion hierarchies. From there we introduced the notion of
authorization objects designed to identify and constrain the
relationships between parent/child aggregation levels. We
then presented a series of rules that exploited the autho-
rization objects to decide whether user queries should be
rejected, executed directly, or dynamically and transparently
transformed. In the latter case, we identified a set of minimal
changes that would allow queries to proceed against a subset
of the requested data.

We note that while the current authentication and au-
thorization framework has been integrated into a prototype
DBMS that provides OLAP-specific indexing and storage,
we believe that the general principles are broadly applicable
to any DBMS product that understands the fundamental
data cube model. Exploiting the proposed framework would
allow such systems to significantly simplify the process of
designing and enforcing OLAP security policies by asso-
ciating authorization decisions with an intuitive conceptual
model rather than the low level logical model of relational
DBMSs.

Finally, it is important to point out that the framework
presented in this paper cannot block all attempts to access re-
stricted data. In particular, it is possible for a user possessing
some degree of external knowledge to combine the results of
multiple valid queries to obtain data that is itself meant to be
protected. We refer to such exploits as inference attacks. We
are currently working on inference detection mechanisms
that will piggy back on top of the core authentication and
authorization framework to provide an even greater level of
security for OLAP data.

REFERENCES

[1] T. H. Davenport and J. G. Harris, “Competing on analytics:
The new science of winning,” in Harvard Business School
Press, 2007.

[2] E. Fernández-Medina, J. Trujillo, R. Villarroel, and M. Pi-
attini, “Developing secure data warehouses with a UML
extension,” Information Systems, vol. 32, pp. 826–856, 2007.

[3] J. Trujillo, E. Soler, E. Fernandez-Medina, and M. Piattini,
“A UML 2.0 profile to define security requirements for data
warehouses,” Computer Standards & Interfaces, vol. 31, pp.
969–983, 2009.

[4] A. Rosenthal and E. Sciore, “View security as the basic
for data warehouse security,” in International Workshop on
Design and Management of Data Warehouse, 2000, pp. 8.1–
8.8.

[5] C. Blanco, E. Fernandez-Medina, J. Trujillo, and M. Piattini,
“How to implement multidimensional security into OLAP
tools,” International Journal of Business Intelligence and
Data Mining, vol. 3, pp. 255–276, 2008.

[6] C. Blanco, I. G.-R. de Guzman, D. Rosado, E. Fernandez-
Medina, and J. Trujillo, “Applying QVT in order to implement
secure data warehouses in SQL Server Analysis Services,”
Journal of Research and Practice in Information Technology,
vol. 41, pp. 135–154, 2009.

[7] J. Trujillo, E. Soler, E. Fernández-Medina, and M. Piattini,
“An engineering process for developing secure data ware-
houses,” Information and Software Technology, vol. 51, pp.
1033–1051, 2009.

[8] N. Katic, G. Quirchmay, J. Schiefer, M. Stolba, and A. Tjoa,
“A prototype model for data warehouse security based on
metadata,” in DEXA, 1998, pp. 300–308.

[9] A. Deshpande, Z. Ives, and V. Raman, “Adaptive query
processing,” Foundations and Trends in Databases, vol. 1,
pp. 1–140, 2007.

[10] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy,
“Extending query rewriting techniques for fine-grained access
control,” in ACM SIGMOD, 2004, pp. 551–562.

[11] “The Virtual Private Database,” June 2011, http://www.oracle.
com/technetwork/database/security/index-088277.html.

[12] “Microsoft Analysis Services,” June 2011, http://www.
microsoft.com/sqlserver/2008/en/us/analysis-services.aspx.

[13] J. Gray, A. Bosworth, A. Layman, D. Reichart, and H. Pira-
hesh, “Data cube: A relational aggregation operator general-
izing group-by, cross-tab, and sub-totals,” Data Mining and
Knowledge Discovery, vol. 1, pp. 29–53, 1997.

[14] V. Harinarayan, A. Rajaraman, and J. Ullman, “Implementing
data cubes efficiently,” in ACM SIGMOD, 1996, pp. 205–227.

[15] E. Malinowski and E. Zimányi, “Hierarchies in a multi-
dimensional model: from conceptual modeling to logical
representation,” Data and Knowledge Engineering, vol. 59,
pp. 348–377, 2006.

[16] T. Eavis, H. Tabbara, and A. Taleb, “The NOX framework: na-
tive language queries for business intelligence applications,”
in DaWak, 2010, pp. 172–189.

[17] “SQL database engine,” June 2011, http://www.sqlite.org.

139Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

