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Abstract—A common approach to achieve high read and
write performance for column-oriented in-memory databases is
to separate the data store into a read-optimized main partition
and a write-optimized differential buffer. The differential
buffer has to be merged into the main partition periodically
to preserve read performance and increase memory efficiency.
If data is dictionary-compressed, this merge process becomes
time-consuming since it involves rewriting the whole main
tables if dictionary mappings are changed. To reduce the
merge time, we introduce the concept of sparse dictionaries,
which can avoid rewriting the whole table in many cases. The
basic idea is to place gaps in the dictionaries of the main
partition which allows us to merge the differential buffer into
the main partition without expensive recompression of the main
tables. We leverage known data characteristics to optimize our
algorithms for enterprise applications.

Keywords-Column-store; In-memory databases; Dictionary
compression; Write-optimized Store; Read-optimized Store

I. INTRODUCTION

An In-Memory Database (IMDB) is a database system
where the primary persistence resides entirely in the main
memory [1]. In recent years, the introduction of a 64 bit
address space in commodity operating systems and the
constant drop in hardware prices make large capacities of
main memory in the order of terabytes technically feasible
and economically viable. Together with ever increasing com-
puting power due to multicore CPUs, this change enables
the storage and processing of large sets of data in memory
and opens the way for general-purpose in-memory data
management.

Recently, column-oriented in-memory DBMS were pro-
posed to consolidate transactional and analytical workloads
in a single database system, which provides the potential
for new enterprise applications and a reduction of the total
costs of operating enterprise IT landscapes [2]. Following the
data characteristics found in enterprise systems, the proposed
architecture relies on dictionary compression per column to
utilize memory efficiently. While a column-oriented storage
model favors read-mostly analytical workloads, fast write
operations on dictionary-compressed column structures are
challenging. A common concept in columnar databases is to

split the storage in two parts [3], [4]: a read optimized main
partition and a write optimized differential buffer or delta
store. For dictionary-compressed data, the read optimized
store operates on a sorted dictionary, whereas the write-
optimized store appends new values to its dictionary.

We call the process of unifying the two parts a merge.
The main performance bottleneck of the naive algorithm as
described in [5] is that the whole main partition needs to be
copied, leading to a time- and memory-consuming operation
– experiments with an implementation of this algorithm in
our storage engine HYRISE [6] revealed that copying the
structures consumes up to 50% of the total execution time
of a merge.

Copying the columns to be merged is required as the
dictionary mappings change throughout the merge and the
value IDs of each record need to be changed. As the
dictionary of the main partition is sorted, this happens
each time a value is inserted. Our basic idea is to avoid
this by placing gaps in the dictionary, leading to so-called
sparse dictionaries. That way, we can add new values to the
dictionaries of the main partition without having to change
all following value IDs and merge differential buffer into the
main partition in-place. We can perform this intermediate
merge several times until the gaps have been filled, before
we need to execute the full merge that involves copying the
columns.

A. Contributions

Specifically, our contributions presented in this paper are
the following:

1) A new strategy to merge dictionary-compressed read-
optimized and write-optimized stores based on a novel
data structure called sparse dictionary

2) A cost model for estimating the cost of inserting
a value into a sparse dictionary depending on the
underlying data characteristics

3) A performance evaluation that compares the runtime
of the regular merge process [5] with our optimized
sparse merge
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B. Related work

Our work is based on the system model of an in-memory
database as described in [7]. Besides this architecture specif-
ically targeted for enterprise applications, other in-memory
database have been recently developed. From a research
point of view, MonetDB [8] and H-Store [9] have been the
most influential systems; from a commercial perspective,
SAP’s In-memory computing engine, IBM’s SolidDB and
Oracle’s Times Ten are best known.

Targeting the challenge of order-preserving dictionaries if
the domain size is not known a priori, Binnig et al. [10]
describe a data structure specific to string compression.

Concerning the merge algorithm as described in [5],
another improvement has been proposed in [11]. This al-
gorithm reduces memory consumption by merging single
columns. Our object is to improve run-time and we consider
the contribution in this paper as complimentary to this work.

C. Structure of this Paper

This remainder of this paper is structured as follows:
Section II gives an overview of the two proposed merge
processes, the full sparse merge and the intermediate sparse
merge. In Section III, we introduce the sparse dictionary and
define the underlying data structure. Section IV describes
a cost model for inserting values into a sparse dictionary,
based on which we define operations on the sparse dictionary
in V. Section VI compares the performance of our proposed
sparse merge to the regular merge and we close this paper
in Section VII with some concluding remarks.

II. FULL SPARSE MERGE AND INTERMEDIATE SPARSE
MERGE

We replace the regular merge process as described in
[5] with two merge processes: a full sparse merge and an
intermediate sparse merge.

Intermediate merges are faster than full merges, as they
perform an in-place merge leveraging well-placed gaps of
the dictionaries of the main partition in order to insert new
values. As no, or only a small number of value IDs change,
we do not need to copy the tables of the main partition, but
change the values in the columns of the main partition in
place using an index. Intermediate merges can still merge the
whole differential buffer into the main partition, but the size
of the new values in the dictionary of the buffer is limited
by the number of the remaining gaps in the dictionary and
the value domain (bit width) of the value IDs.

However, we cannot only rely on intermediated merges:
at some point in time the number of gaps will be depleted
and/or the width of the value IDs has to be increased. In
the first case new gaps have to be added and they should be
distributed in a way that supports the intermediate merge,
once again requiring a rewrite of a large part of the table.
In the latter case all value IDs will have to be rewritten. For
these cases we propose the full sparse merge. In contrast

to the intermediate sparse merge, it does not operate in-
place on the main store and always has to rewrite the whole
store. While merging the differential and main dictionary,
and potentially increasing the resulting new main dictionary,
it redistributes the gaps as efficiently as possible to speed up
succeeding intermediate sparse merges.

In order to decrease the number of full merges required,
the increasing width of the value IDs and the addition and
redistribution of the gaps should be synchronized. It turns
out that at a high enough filling level of the dictionary,
it becomes more expensive to shift the values in a way
that uses the last gaps than to do a full merge. Moreover
subsequent intermediate merges benefit largely from the full
merge.

In the following, we introduce sparse dictionaries, the
data structure our proposed merge processes operate on, and
describe the operations on this dictionary required for the
full and intermediate sparse merge.

III. SPARSE DICTIONARY

The basic idea of a sparse dictionary is to leave gaps in
regular intervals within the dictionary. As a consequence
new value IDs can be inserted in the dictionary without
moving other values around. In practice, the concept of
sparse dictionaries entails a number of implementation spe-
cific questions, such as:
• How can gaps be identified?
• Where should the gaps be placed?
• How many gaps should the dictionary have?

In this section, we introduce some definitions to describe
our data structures and algorithms throughout the remainder
of this paper, and we evaluate data structures used to mark
gaps in the dictionary vector.

When it comes to the other two questions, the naive
approach would be adding a fixed number of gaps during
each full merge and uniformly distribute the gaps over the
dictionary vector. However, as some value IDs are used
more often than others, moving them around in case no
gap is located close to them is more expensive then others.
Therefore, we introduce a cost model for changing values
in the sparse dictionary in Section IV and discuss optimized
operations in Section V.

A. Definitions

To formally describe our data structures and algorithms
throughout this paper we use the following notation:
M: Attribute vector of the main partition of the consid-

ered column
UM: Dictionary of the Main partition of the considered

column prior to a merge process
S: (new) Sparse Dictionary of the Main partition of the

considered column after a merge
GS : set of value IDs representing sparse elements / gaps

within the sparse dictionary
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Figure 1. Additional Memory Consumption caused by gap identification
with 30% sparse values running on a 64 bit machine.
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Figure 2. Additional Memory Consumption caused by gap identification
with 1% sparse values running on a 64 bit machine. Memory Consumption
of bit map implementation and set are nearly equal.

l(U): denotes the length in bits of a single value in the
given dictionary
D: Attribute vector of the differential buffer of the con-

sidered column
UD: Dictionary of the Differential buffer of the considered

column prior to a merge
IS : index to identify which values in a dictionary are

sparse
d(vid) : [0, |S|[ 7→ W : dictionary mapping for a column

with domain W
Note that we store two vectors for each column: A

dictionary vector that holds the mapping from value IDs
to values for all distinct values of the considered column,
and an attribute vector, that holds the value IDs.

Furthermore we define a metric called Sparsity Ξ that
represents the relative number of gaps in a sparse dictionary
S. It is defined as follows:

Ξ(S) =
|GS |
|S|

(1)

B. Evaluation of Data Structures for the Sparse Dictionary
Our sparse dictionary S is implemented as a vector

holding the values. To quickly identify gaps in the vector,

we need an index IS . The value of a gap can remain
undefined – however, we can set it to the value of a
preceding entry that is not sparse to assist standard binary
search algorithms on the vector. As index structure, we
have evaluated three options based on memory consumption
and access time: a bit map, free memory lists [12] and a
set storing the indexes of gaps.

The bit map stores one bit per entry of the dictionary and
therefore leads to a memory consumption of |Dictionary|
bits and an access time into the vector of O(1).

The free memory list stores in each gap the index of the
next gap. As all values in the dictionary are distinct, the
number of bits needed to encode the values is always bigger
or equal to the width of the index. So the index always fits
into the dictionary slot. In this way the memory overhead
of the free memory list is zero (Note that we cannot store
the values of preceding entries in the gaps, as mentioned
above). The downside of the free memory list is that each
check whether a certain value ID is free requires iterating
over the whole free memory list. Furthermore each iteration
generates a cache miss as the gaps are by purpose distributed
over the dictionary. Hence the access time is O(n), with n
being the number of gaps.

When using a set for storing the indexes of the gaps,
memory consumption is heavily implementation dependent,
but would scale up with number of gaps and only logarithmi-
cally with the whole number of elements in the dictionary
as it is the case with the bit map. For our calculation we
assume a self-balancing binary search tree, as it is used in
the standard c++ library. This leads to a memory overhead
δm in bits of

δm = (log2(|Dictionary|)) ∗ n
+size(Pointer) ∗ (n− 1)

(2)

and an access time of O(log(n)), n being the number of
gaps.

Figures 1, 2, and 3 compare the memory consumption of
each of the three data structures. Comparing figure 1 and 3
shows that the bit map has a far smaller memory footprint
with a larger fraction of gaps than the set. Yet, when using
smaller fractions of free spaces in the dictionary, the set
outperforms the bitmap. As one can see in Figure 2 the
break even point is about 1%. The free memory list does
not need any additional memory but has a linear runtime
for containment lookups. In conclusion it depends on the
scenario to choose the right data structure: If memory con-
sumption is a concern, the free space list is the right choice.
If performance is the most important priority, the bit map
offers the best characteristics, but the space characteristics
of the set are better if only very little gaps (below 1%) are
used.
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Figure 3. Additional Memory Consumption caused by gap identification
with 0.1% sparse values running on a 64 bit machine.

Figure 4. Insertion of a new element into a sparse dictionary and two
possible outcomes

IV. COST MODEL FOR CHANGES IN THE SPARSE
DICTIONARY

In this section, we address the question of how the right
places for the gaps can be found and based on this question,
where to insert a new value in the dictionary. For inserting
new values, the problem is trivial if we hit a gap at the
position we want to insert. But a common case is that
we must create an empty space at the desired position
by shifting values in an existing gap. Figure 4 illustrates
this problem. The two cases have different costs depending
on the number of occurrences of each changed value ID.
Consequently we define a cost function to approximate
the resulting cost for changing a specific value ID in the
dictionary. We also apply this for cost function later for
placing the gaps in case we create a new sparse dictionary
during a full sparse merge (Section V-A). The idea is to
leave more gaps around values that implicate high costs
when shifted.

Change Cost Functions: We define a change cost function
π that assigns the cost of changing the associated value to

each value ID:
π(vid) : [0, |S|[ 7→ N (3)

In the following we discuss potential cost functions.
1) Simple Cost Function: The simple cost function re-

turns 1 for every value ID.

πsimple(vid) = 1 (4)

Although this function causes no computation overhead, it
is only useful, if the occurrence of distinct values in the main
store follows a uniform distribution. However, an analysis of
the data characteristics of enterprise systems in [13] showed
that the value distribution of the columns with more than
one distinct values is in more than 50% of the cases better
approximated by a zipf distribution.

2) Quantitative Cost Function: A more advanced change
cost function is the so-called quantitative cost function. It
calculates the number of elements in the main storage that
have to be rewritten as a result of changing the given value
ID, which becomes computationally expensive in case of
large tables. In case of a small number of distinct values, a
potential solution would be to maintain a list of occurrences
of each value; however, the additional memory consumption
increases in case of many distinct values.

πquantitative(vid) = |x : x ∈M∧ x = vid| (5)

3) Pareto Cost Function: The problem with the simple
cost function introduced in IV-1 is that it assumes an even
distribution, whereas the quantitative cost function suffers
from a long computation time or high space consumption to
save pre-calculated values. As our cost model should support
the decision for the placement of gaps, we do not require an
optimal result, but rather a heuristic that is fast to calculate.
We therefore have defined the pareto cost function, which is
based on the observed data characteristics in the enterprise
application domain discussed in [13].

Analyzing the characteristics of the data sets discussed in
[13] we found out that in most columns at most 20% of
the distinct values are sufficient to cover at least 80% of all
rows. We use this observation to categorize the values in the
dictionary in two categories: The first category, called FC,
consists of the 20% of the distinct values that cover the most
rows in a given column. The second category, called SC,
contains all remaining values. The pareto cost function is
basically the quantitative cost function with a reduced co-
domain. Based on the observed value distribution, we give
those two categories a relative value. In our analyzed data set
we have seen that 20% of values covered between 73.53%
up to 94.02% of the of elements in the main store, on average
86.91%. Assuming an even distribution within the categories
this means that each 1% of the first class distinct values of
the first category covers on average 86.91%

20% = 4.34% of
the rows in a column. In contrast to that, 1% of the second
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class values cover only 100%−86.91%
80% = 0.16% of the values.

Accordingly one distinct value of the first category covers
on average 27 times more values than a value of the second
category.

πpareto(vid) =

{
27, d(vid) ∈ FC
1, d(vid) ∈ SC (6)

Note that the assigned values for the pareto cost function
depend on the expected value distribution of the data set at
hand. The assigned values to each class can be adjusted for
different value distributions.

V. OPERATIONS ON THE SPARSE DICTIONARY

In this section, we describe operations on the sparse
dictionary that are required when performing the proposed
full and intermediate sparse merge. These operations are the
creation of a new sparse dictionary in a full merge and
insertion of values into the dictionary in an intermediate
merge.

A. Creating the Dictionary

Creating a new sparse dictionary during the full sparse
merge is considered as a merge of two existing dictionaries.
At startup, the initial main dictionary is empty. Before we
describe the proposed algorithm in detail, we discuss the
rationale for choosing the number of gaps.

The Size of the Dictionary and the Number of Gaps: As
discussed in Section III, we use a vector as the underlying
data structure for a dictionary. Having the sizes of the two
input dictionaries as input, we need to determine how much
size we want to reserve for our new dictionary. There are
several points to consider:

1) The more gaps there are in the dictionary, the faster
the intermediate merges are as it reduces the likelihood
of shifting values.

2) The more gaps there are in the dictionary, the more
intermediate merges can be done before another ex-
pensive full merge is required.

3) The more gaps there are in the dictionary, the more
space is used by the dictionary.

4) The more gaps there are in the dictionary, the less
values fit into a cache line when iterating over the
dictionary values, slowing down the iteration.

5) If the total number of elements in the dictionary
excesses the size of the next power of 2, a full merge
is required to increase the bitmask for a value ID and
the marginal cost of additional gaps is increased.

6) The minimum required size of our new dictionary
might not be |UM| + |UD| since values might be
contained in both dictionaries. This is actually the
upper bound of the required minimum size.

Size Depending on Space Efficiency: Points 1 - 4 show
us that there is basically a trade-off of size and speed. The
size of the gaps is determined by |GS | ∗ l(S). Point 5 shows
us that there is a sweet spot for this trade-off: total number

of elements including gaps is most efficient just before it
excesses any power of 2, requiring additional space per value
ID. Thus an easy to make estimate for an efficient element
number would be:

|S| = 2dlog2(|UM|+|UD|)e (7)

Distribution of gaps: Having determined the size of the
new sparse dictionary, we need to define the distribution of
the gaps based on the cost function π. A fairly simple but fast
algorithm would be to evenly distribute the gaps – however,
that way we would not take our cost function into account.
The A-Star algorithm always offers a optimal solution for
our problem but its runtime and in particular its memory
consumption characteristics make it unsuitable for our case
[14]. A more viable alternative is the greedy algorithm [15],
although it does not offer an optimal solution.

Algorithm for creating the Dictionary: Algorithm V.1
describes the merge process of two dictionaries and the
creation of the new sparse dictionary.

Algorithm V.1: MERGEDICTIONARIES(UM,UD)

S ← newSparseDictionary(|UM|, |UD|)
IS ← newSparseDictionaryIndex(|UM|, |UD|)
STemp← vector of size |UM|+ |UD|
gaps← vector of size |UM|+ |UD|
mainTemp← vector of size |UM|
diffTemp← vector of size |UD|
i, j, k ← 0
while i 6= |UM| ∨ j 6= |UD|

do



value← min(UM[i],UD[j])
if value == UM[i]

then

mainTemp[i]← k
i← i+ 1
value← UM[i]

if value == UD[j]

then

diffTemp[j]← k
j ← j + 1
value← UD[j]

STemp[k]← value
k ← k + 1

gaps← findDistribution(STemp)
i, j, k ← 0
while i < |UM|+ |UD|

do



j ← gaps[i]
value← STemp[i]
while j > 0

do


S[k]← value
IS [k]← 0
k ← k + 1
j ← j − 1

S[k]← value
IS [k]← 1
k ← k + 1
i← i+ 1
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The merge of the dictionaries is similar to the one
described by Krueger et. al. [5] but inserts gaps to the
dictionary in a second pass. We require a second pass,
as we need to first merge the dictionaries to calculate the
distribution of gaps as discussed in the previous subsection.

Having created a temporary dictionary vector with the
appropriate size (STemp), we iterate over the two ordered
input dictionaries from the main partition and the differential
buffer in parallel and merge them, while preserving the
order of all values. Note that both dictionaries can contain
equal values. We enter the old value IDs into the vectors
mainTemp and diffTemp to preserve a mapping from
old value IDs to new value IDs, required by running
transactions. In a next step we calculate the number of gaps
that should be inserted into the final dictionary prior to
each value (findDistribution), applying the cost function
π and a greedy algorithm [15], as discussed previously. In
the second pass, we iterate over the temporary dictionary,
as well as the vector including the gaps and add gaps and
values to the new sparse dictionary S. To indicate whether
an entry of S is a gap, we set the according position in the
bitmap IS to 0.

B. Inserting into the Sparse Dictionary

The insertion of an new value is trivial if we have to
insert it before or after a gap. However, we might also
face the issue that we must create an empty space at the
desired position by shifting values in an existing gap (see
Figure 4). Note that multiple shifts can happen during an
intermediate sparse merge. Therefore we note all changes
in so-called change map described in the next section and
apply all changes to the main partition afterwards.

If we have to create an empty space to insert the new
value, we have to choose whether to shift the succeeding
or the preceding values to the next gaps. To decide which
values to shift, we calculate the estimated resulting cost
using π and bit map IS we introduced earlier. Afterwards we
shift all values between our insert position and the selected
gap by one value ID and note this change in a change map.
Finally we insert the given value in order.

Creating the Change Map: Having added a new entry to
the dictionary and having shifted value IDs in it, we need
to reflect these changes in the column’s main partition. We
need to refresh the value IDs of all values that we shifted in
the dictionary. However, it would not be practical to apply
those changes to the main data store immediately. There are
several reasons for this:
• Double updates: Having changed one single dictionary

key requires to change all associated keys in the main
partition. If the next insertion into the dictionary causes
the first value to change again, all values in the main
partition have to be changed once more.

• Unusable without index: The performance penalty will
further increase if no index is used. The insertion of

each value into the dictionary would require a full table
scan in order to update the values.

Consequently, we propose a change map data structure that
stores a mapping from the old value ID of a shifted value
ID to the corresponding new value ID. We store all changes
with the dictionary during the whole merge in this data
structure. At the end of the merge, we commit these changes
to the main store, avoiding the two problems stated above. To
record these changes, we use a CSB+ tree that is optimized
for read as well as write operations [16].

We only insert position changes of already existing values,
meaning that we have to exclude all new values that were
shifted in course of the merge. The reason is the following:
Given a new value is inserted at position 12. To do this the
old value at 12 needs to be shifted to 13. Thus 12 7→ 13 is
added to the change set. Now another insertion causes 12
shift to 13 and 13 shift to 14. In this case there would be
two values for 12 in the change map: 12 7→ 13 (the new
value) and 12 7→ 14. As soon as we replace value IDs in
the main storage we would not know whether we should
replace the value ID 12 with 13 or 14. Moreover, there is
no point in tracking shifts of new values, since none of them
are in the main storage and can be replaced. Thus we create
another bitmap similar to the one saving whether a value ID
is occupied or not. This bitmap saves whether a value ID
points to a new Value or not.

Our goal is a tree structure that maps the value ID for a
value before the merge to the corresponding value ID after
the merge. If a value ID that has to be refreshed was already
mapped, we need to know this and have to find the original
ID (pre-merge) that maps to this ID. This operation involves
a reverse search on the tree which results in a linear search
over all values of the change map. This would have to be
done at every insert of a change item and thus potentially
multiple times per value insertion. In the following, we
propose three methods of reducing the search time.

A Second Mapping: The simplest approach to this prob-
lem would be the construction of a second map, or an index
structure for the reverse lookup. But this would involve an
increase in memory consumption since the keys and values
would have to be stored in memory twice. Moreover the
write performance, which is important to us because of the
number of updates, would suffer as well.

Shared-Leave Structure: Another approach would be the
use of a Leaf structure as proposed in [10]. This would avoid
storing value IDs twice in memory.

Mapping with Lazy and Fast Search: The two proposals
above were general solutions – in the following, we propose
a specific solution exploiting the characteristics of our spe-
cific case

First, we define the Fast Search: The input of our function
is a mapping x 7→ y of the current state of the dictionary
which maps the value ID x via the mapping function f(K)
to a new ID y. In the following we call x the key of the
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Figure 5. Performance of the Full Sparse Merge and Intermediate Sparse
Merge compared to a regular Merge over multiple merge cycles

mapping and y the new value. Hence we need to check the
map m, whether it already contains a mapping z 7→ x. In this
case we have to replace it by z 7→ y. Searching a mapping
with new value x in our map would require O(n) steps (n
being the number of elements in m), as we need to iterate
over all values in m in the worst case.

But we know that we find a mapping with key z in
close distance where we would enter x 7→ y in the map,
as each shift increases the distance between x and z by one.
Thus we can iterate starting from the closest key to x in
both directions, thereby exploiting the cache line by reading
chunks of date in each direction. However this assumes that
a mapping z 7→ x is contained in our map which is typically
not the case.

In order to deal with this issue we propose the Lazy
Search. The idea of Lazy search is to reduce the question:
“Which z maps to x: f−1(x)?” to the question “Is there a
z that maps to x: x ∈ f(K)?”. If we can answer the latter
question quickly, we will not run into worst case complexity
of the Fast Search, as we abort the search in case x /∈ f(K).
For the discussion of deciding whether x ∈ f(K), we define
the following:

K is the set of all value keys of the mappings
in the change map

Enew is the set of all value IDs which constitute
a gap in the current state of the dictionary
during merge

Eold is the set of all value IDs which constituted
a gap before the merge started

N is the set of all new value IDs that belong
to a new value from the differential buffer

Furthermore, we know, that f(x) 6= x, as we only record
changes of a mapping, and that x /∈ Enew, since we only
shift values that are not empty. As discussed earlier, we do

not store new values in the changed map, thus x /∈ N . We
can exclude these cases.

If the element at x was not shifted since the beginning
of the merge (x /∈ K) and x was not empty at this point in
time, meaning x /∈ Eold, we know that the same element is
still at this position as only one element can be contained at
the same time and because of x /∈ K, x was never moved.
Consequently, no element could have been moved to x and
thus x /∈ f(K):

x /∈ K ∧ x /∈ Eold ⇒ x /∈ f(K) (8)

On the other hand, if x has been shifted since the
beginning of the merge and x was not empty at this point of
time, we know that another value has been mapped to the
value ID x and we find a mapping with new value x in our
map. Hence:

x ∈ K ∧ x /∈ Eold ⇒ x ∈ f(K) (9)

If the element at x was empty at the beginning of the
merge and we encounter a mapping from value ID x to
another ID, we have to find a mapping in m that has assigned
a value to x. Hence:

x ∈ Eold ⇒ x ∈ f(K) (10)

We can summarize these observations in the following
truth table:

x ∈ K x ∈ Eold x ∈ f(K) Rule
1 0 X (9)
0 1 X (10)
0 0 × (8)

As we can see, based on the two conditions x ∈ Eold and
x ∈ K we can quickly decide whether we should perform a
fast search. x ∈ Eold can be checked in constant time using
the old bitmap and x ∈ K can be checked in O(log(n)),
by searching the CSB+ tree. This way we can efficiently
avoid searching the map if the sought-after mapping is not
in the map.

Finally, the attribute vector of the main partition must
be updated using the change map. This step is quite fast
forward. All entries in the main which are equal to a key
in the change map must be replaced by the corresponding
value. It is best to use an index for this operation because
otherwise a full table scan is required. After that, the entries
from the attribute vector of the differential buffer must be
appended to the main partition using the value IDs of the
sparse dictionary of the main storage.

VI. PERFORMANCE EVALUATION

Test Setup: In order to evaluate the performance of the
sparse full merge as well as sparse intermediate sparse we
set up an experiment that executed five subsequent merges:
2 full merges and 3 intermediate merges and compared the
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Figure 6. Total time spend on merging in the course of 5 subsequent
merges

results against five regular merges. The used table starts
with 50000 entries in the main part. At each stage of
the experiment, the merge has to add a differential buffer
with 20% of the size of the current main partition. Each
distinct value is represented on average 10 times in the table.
The first full sparse merge creates a sparsity of 50% for
the subsequent intermediate merges. The first full merge is
required to bring the table and the dictionary in a state that
allows the subsequent in-place merges through the gaps in
the dictionary that are created in this merge. The last full
merge restores the starting state (a dictionary with a lower
sparsity) to offer a fair comparison to the regular merge.
The performance evaluation was done using the column
oriented in-memory database prototype HYRISE [6]. The
test machine used a 64 bit Linux (Ubuntu) operating system
and was equipped with a 2.4 GHz Core 2 Duo processor
with 2 cores and 2 GB of RAM. Figure 5 shows the results
of our experiment.

Results: As shown in Figure 5 the full sparse merge
is slower than a regular merge due to the overhead of
reorganizing the dictionary. But it enables the faster inter-
mediate merges. However, it is striking that the runtime of
the intermediate merges increases faster than of the regular
merges. This is due to the dictionary filling more with each
additional sparse merge, leading to more shifting of value
IDs in the dictionary. The more often we merge, the closer
the runtime approaches the regular merge. Figure 6 shows
the run times and deviations of all five merges (consequently
including the full sparse merges) added together. We can
see, that the total time the system uses to merge decrease by
roughly 25% when using full sparse merges and intermediate
sparse merges compared to a regular merge.

VII. CONCLUSION

In this paper we showed implementation techniques for
the concept of an intermediate sparse merge and a full
sparse merge both using a sparse dictionary. The full sparse

merge reorganizes a dictionary and a table so that several
in-place merges using the intermediate sparse merge can
be executed. The full sparse merge “charges” the table so
that it can use a few very fast intermediate sparse merge
that do not require the table to be copied. The combination
from full sparse merge and intermediate sparse merge can
reduce the total time the machine spends merging by around
25%, thus allowing other operations such as queries use the
freed resources. Additionally, the intermediate sparse merge
avoids the high base cost of the copy operation. Thus it
scales with the size of the differential buffer and the state
of the dictionary. Therefore it becomes possible to use the
merge more often at a lower cost. This improves the general
query performance since the differential buffer is smaller and
more values reside in the read optimized main store.
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