
Efficient Access to Non-Sequential Elements of a Search Tree

Lubomir Stanchev
Computer Science Department

Indiana University - Purdue University Fort Wayne
Fort Wayne, IN, USA

stanchel@ipfw.edu

Abstract—This article describes how a search tree can be
extended in order to allow efficient access to predefined subsets
of the stored elements. This is achieved by marking some of the
elements of the search tree with marker bits. We show that our
approach does not affect the asymptotic logarithmic complexity
for existing operations. At the same time, it is beneficial because
the modified search tree can now efficiently support requests
on predefined subsets of the search elements that it previously
could not.

Keywords-marker bits; search trees; data structures

I. INTRODUCTION

A balanced search trees, such as an AVL tree ([1]), an AA
tree (see [2]), or a B+ tree ([3]), allows efficient retrieval of
elements that are consecutive relative to an in-order traversal
of the tree. However, there is no obvious way to efficiently
retrieve the elements that belong to a predefined subset
of the stored elements if they are not sequential in the
search tree. For example, consider a database that stores
information about company employees. A search tree may
store information about the employees ordered by age. This
search tree can be used to retrieve all the employees sorted
by age, but the search tree does not efficiently support the
request of retrieving all rich employees (e.g., making more
than 100,000 per year) sorted by age. In this paper, we will
show how the example search tree can be extended with
marker bits so that both requests can be efficiently supported.

The technique that is proposed in this paper will increase
the set of requests that can be efficiently supported by a
search tree. This means that fewer search trees will need to
be built. This approach will not only save space, but will
also improve update performance.

Naı̈ve solutions to the problem fail. For example, it is not
enough to mark all the nodes of the search tree that contain
data elements that belong to subsets of the data that we are
interested in. This approach will not allow us to prune out
any subtrees because it can be the case that the parent node
does not belong to an interesting subset, but the child nodes
do.

To the best of our knowledge, detailed explanation of how
marker bits work have not been previously published. Our
previous work [5] briefly introduces the concept of marker
bits, but it does explain how marker bits can be main-
tained after insertion, deletion and update. Other existing

approaches handle requests on different subsets of the search
tree elements by exhaustive search or by creating additional
search trees. However, the second approach leads to not only
unnecessary duplication of data, but also slower updates to
multiple copies of the same data.

Given a subset of the search elements S, our approach
marks every node in the tree that contains an element of
S or that has a descendant that contains an element of S.
These additional marker bits will only slightly increase the
size of the search tree (with one bit per tree node), but will
allow efficient logarithmic execution of requests that ask for
the elements of S in the tree order.

In what follows, Section II presents core definitions,
Section III describes how to perform different operations
on a search tree with marker bits, and Section IV contains
the conclusion.

II. DEFINITIONS

Definition 1 (MB-tree): An MB-tree has the following
syntax: 〈〈S1, . . . , Ss〉, S,O〉, where S and {Si}si=1 are sets
over the same domain ∆, Si ⊆ S for i ∈ [1..s], and O
is a total order over ∆. This represents a balanced search
tree of the elements of S (every node of the tree stores a
single element of S), where the in-order traversal of the
tree produces the elements according to the order O. In
addition, every node of the tree contains s marker bits and
the ith marker bit is set exactly when the node or one of its
descendants stores an element that belongs to Si - we will
refer to this property as the marker bit property.

The above definition can be trivially extended to allow
an MB-tree to have multiple data values in a node, as is the
case for a B Tree, but this is beyond the scope of this paper.

Going back to our motivating example, consider the
MB-tree 〈〈RICH EMPS 〉,EMPS , 〈age〉〉. This represents
a search tree of the employees, where the ordering is relative
to the attribute age in ascending order. The RICH EMPS set
consists of the employees that make more than $100,000 per
year. Figure 1 shows an example instance of this MB-tree.
Each node of the tree contains the name of the employee
followed by their age and salary.

Each node in the MB-tree contains the name of the
employee, their age, and their salary. Above each node the
value of the marker bit is denoted, where the bit is set

181

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

 0

Peter, 22, $20,000 Dave, 30, $20,000

 1

 John, 25, $35,000

Kate, 27, $35,000Mike, 20, $105,000 Ann, 23, $40,000

 1

 1

 0

 0

Figure 1. Example of an MB-tree

(operation) (return value)
left() left child
right() right child
parent() parent node
data() stored data
m[i] the i marker bit (1 ≤ i ≤ s)

Table I
INTERFACE OF A NODE

exactly when the node or one of its descendants contains
a rich employee. As the figure suggests, the subtree with
root node that contains the name Dave can be pruned out
when searching for rich employees because the marker bit
of the root node is not set. We will show that this MB-tree
can be used to efficiently find not only all employees sorted
by age, but also all rich employees sorted by age.

III. OPERATIONS ON AN MB-TREE

Although an MB-tree does not need to be binary, in the
following discussion we will consider only binary trees for
simplicity. In particular, we will assume that every node of
the search tree supports the methods of the interface shown
in Table I in constant time, where {Si}si=1 are the marker
bit sets.

Next, we describe how the algorithms for tree search and
update can be extended in the presence of marker bits.

A. Element Insertion

After an algorithm has inserted a leaf node n, it should
call the insert_fix method from Algorithm 1 to update
the marker bits in the tree.

Algorithm 1 insert_fix(Node n)

1: for i← 1 to s do
2: if n.data() ∈ Si then
3: n.m[i]← 1
4: else
5: n.m[i]← 0
6: end if
7: end for
8: insert_parent_fix(n.parent(), n.m)

Lines 1-7 of the code set the marker bits for the new node.
The call to the recursive function insert_parent_fix
fixes the marker bits of the ancestors of the inserted node,
where the later is presented in Algorithm 2.

Algorithm 2 insert_parent_fix(Node n, Bit[]
m)

1: if n = null then
2: return
3: end if
4: changed ← false
5: for i← 1 to s do
6: if m[i] = 1 and n.m[i] = 0 then
7: n.m[i]← 1
8: changed ← true
9: end if

10: end for
11: if changed then
12: insert_parent_fix(n.parent(), n.m)
13: end if

We claim that the resulting tree satisfies the marker bit
property. In particular, note that only the marker bits of the
inserted node and its ancestors can be potentially affected
by the insertion. Lines 1-7 of the insert_fix method
update the marker bits of the node that is inserted. If the ith

marker bit of the node is set, then we check the ith marker bit
of its parent node (Lines 6 of the insert_parent_fix
method). If the ith marker bit of the parent is set, then the ith

marker bit of all ancestors will be set because of the marker
bit property and nothing more needs to be done for the ith

marker bit. Conversely, if the ith marker bit of the parent is
not set, then we need to set it and then check the ith marker
bit of the parent of the parent node. This is done by Line 7
and the recursive call at Line 12, respectively. The variable
changed is used to record whether any of the marker bits
of the current node have been changed. If the variable is not
changed, then the marker bits of the ancestor nodes will not
need to be updated. Therefore, the marker bits of the inserted
node and its ancestors are updated correctly and the marker
bit property holds for the updated search tree.

B. Deleting a Node with Less than Two Children

Deleting a node with two children from a binary tree
cannot be performed by just connecting the parent of the
deleted node to the children of the deleted node because the
parent node may end up with three children. Therefore, we
will consider two cases: when the deleted node has less than
two non-null children and when the deleted node has two
non-null children. The first case is explained next, while the
second case is explained in Section III-D.

An implementation of Algorithm 3 should be called
before a node n with less than two non-null children is
deleted. In the algorithm, n.child() is used to denote the

182

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

non-null child of n and m[i] is set when the ith marker bit
of the ancestor nodes need to be checked. The algorithm
for the method delete_parent_fix that updates the
marker bits of n’s ancestors in the search tree is shown in
Algorithm 4.

Algorithm 3 delete_fix_simple(Node n)

1: for i← 1 to s do
2: if n.data() ∈ Si and (n is leaf node or

n.child().m[i] = 0) then
3: m[i]← 1
4: else
5: m[i]← 0
6: end if
7: end for
8: delete_parent_fix(n.parent(), m)

Algorithm 4 delete_parent_fix(Node n, Bit[]
m)

1: if n = null then
2: return
3: end if
4: changed←false
5: for i← 1 to s do
6: if m[i] = 1 and n.data() 6∈ Si and (n has no other

child or n.other_child().m[i] = 0) then
7: n.m[i]← 0
8: changed ← true;
9: end if

10: end for
11: if changed then
12: delete_parent_fix(n.parent(), m)
13: end if

Note that we have used n.other_child to denote the
child node of n that is not on the path to the deleted node.
We claim that the deletion algorithm preserves the marker
bit property. In particular, note that only the ancestors of
the deleted node can be affected. If m[i] = 1 (Line 6 of the
delete_parent_fix method), then we check whether
the data in the node belongs to Si and whether the ith marker
bit of the other child node is set. If both conditions are false,
then the only reason the ith marker bit of n is set is because
the data in the deleted node belonged to Si and now this
marker bit needs to be unset (Line 7) and the ancestors of
n needs to be recursively checked (Line 12). Conversely,
if one of the conditions is true or m[i] = 0, then the ith

marker bit of n and its ancestors will not be affected by the
node deletion. Therefore, the marker bits of the ancestors of
the deleted node are updated correctly and the marker bit
property holds for the updated search tree.

C. Element Update

Algorithm 5 should be executed after the data in a node
n is modified, where v is the old data value of n.

Algorithm 5 update_fix(Node n, Value v)

1: old ← n
2: for i = 1 to s do
3: if n.data() ∈ Si or (n.left() 6= null and

n.left().m[i] = 1) or (n.right()6= null and
n.right().m[i] = 1) then

4: n.m[i]← 1
5: else
6: n.m[i] = 0
7: end if
8: if n.m[i] = 1 and old .m[i] = 0 then
9: m[i]← “insert”

10: else if n.m[i] = 0 and old.m[i] = 1 then
11: m[i]← “delete”
12: else
13: m[i]← “no change”
14: end if
15: end for
16: update_parent_fix(n.parent(), m)

The pseudo-code updates the marker bits of the node n
and then calls the update_parent_fix method, which
is presented in Algorithm 6.

Algorithm 6 update_parent_fix(Node n,
Value[] m)

1: if n = null then
2: return
3: end if
4: changed ← false
5: for i = 1 to s do
6: if m[i] = “insert” and n.m[i] = 0 then
7: n.m[i]← 1
8: changed ← true
9: end if

10: if m[i] = “delete” and n.data() 6∈ Si

and (n.other_child() = null or
n.other_child().m[i] = 0)) then

11: n.m[i]← 0
12: changed ← true
13: end if
14: end for
15: if changed then
16: update_parent_fix(n.parent(), m)
17: end if

Note that we have used n.other_child() to denote
the child node of n that is not on the path to the updated
node. The method update_fix preserves the marker bit

183

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

property because it is a combination of the insert_fix
and delete_fix_simple methods. In particular, m[i] in
the method update_fix is set to insert when the ith

marker bit of the updated node was changed from 0 to 1 and
to delete when this marker bit was updated from 1 to 0.
The first case is equivalent to a node with the ith marker bit
set being inserted, while the second case is equivalent to a
node with the ith marker bit set being deleted.

D. Deleting a Node with Two Children

As it is usually the case ([4]), we assume that the deletion
of a node n1 with two non-null children is handled by first
deleting the node after n1 relative to the tree order, which
we will denote as n2, followed by changing the data value
of n1 to that of n2. The pseudo-code in Algorithm 7, which
implementation should be called after a node is deleted from
the tree, shows how the marking bits can be updated, where
initially n = n1, p is the parent of n2, v is the value of
the data that was stored in n2, and m[i] = 1 exactly when
n2.m[i] = 1 and for all descendants of n2, m[i] = 0.

Algorithm 7 delete_fix_two_children(n,p,v,m)

1: if p = n then
2: update_fix(n, v)
3: end if
4: changed ← false
5: for i=1 to s do
6: if m[i] = 1 and p.data() 6∈ Si and (p has no other

child or p.other_child().m[i] = 0) then
7: p.m[i]← 0
8: changed ← true
9: end if

10: end for
11: if changed then
12: delete_fix_two_children(n, p.parent(),

v, m)
13: else
14: update_fix(n, v)
15: end if

In the above code “p has no other child” refers to the con-
dition that p has no other child than the child that it is on the
path to the deleted node n2. Similarly, p.other_child()
is used to denote the child of p that is not on the path to
the deleted node n2. Note that the above algorithm changes
the nodes on the path from n2 to n1 using the deletion
algorithm from method delete_parent_fix and the
nodes on the path from n1 to the root of the tree using
the update algorithm from the method update_fix and is
therefore correct.

E. Tree Rotation

Most balancing algorithms (e.g., the ones for AVL, red-
black, or AA trees) perform a sequence of left and/or right

rotations whenever the tree is not balanced as the result of
some operation. Here, we will describe how a right rotation
can be performed, where the code for a left rotation is
symmetric. The pseudo-code in Algorithm 8 should be called
with a parent node n2 and right child node n1 after the
rotation around the two nodes was performed.

Algorithm 8 rotate_right_fix(n1, n2)

1: for i← 1 to s do
2: if n1.data() ∈ Si or (n1 has left child and

n1.left().m[i] = 1) then
3: n1.m[i]← 1
4: end if
5: if n2.data() ∈ Si or (n2 has left child and

n2.left().m[i] = 1) or (n2 has right child and
n2.right().m[i] = 1) then

6: n2.m[i]← 1
7: end if
8: end for

The above pseudo-code only fixes the marker bits of n1

and n2. The descendants of all other nodes will not change
and therefore their marker bits do not need to be updated.

F. Time Analysis for the Modification Methods

Obviously, the pseudo-code for the rotation takes constant
time. The other methods for updating marker bits visit
the node and possibly some of its ancestors and perform
constant number of work on each node and therefore take
order logarithmic time relative to the number of nodes in
the tree. Therefore, the extra overhead of maintaining the
marker bits will not change the asymptotic complexity of
the modification operations.

G. Search

Let us go back to our motivating example from Figure 1.
Our desire is to efficiently retrieve all rich employees in
the tree order. This can be done by repeatedly calling the
implementation of the next method from Algorithm 9. The
terminating condition is when the method returns null. The
algorithm finds the first node that is n or that is after n,
relative to the tree order, and that has data that belongs to
the set Si, where d is initially set to false.

The algorithm first checks if the data in the current node
is in Si. If it is, then we have found the resulting node
and we just need to return it. Next, we check the left child
node. If we did not just visit it and its ith bit is marked
and it is after the start node relative to the in-order tree
traversal order, then the subtree with root this node will
contain a node with data in Si that will be the resulting node.
Next, we check if the right child has its ith bit marked. This
condition and the condition that we have not visited it before
guarantees that this subtree will contain the resulting node.
Finally, if nighter of the child subtrees contain the node we

184

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Algorithm 9 next(n,i,d)

1: if (n.data() ∈ Si) then
2: return n
3: end if
4: if n.left() is not the last node visited and

n.left()6= null and n.left().m[i] = 1 and d
then

5: return next(n.left(), i, true)
6: end if
7: if n.right() is not the last node visited and

n.right() 6= null and n.right().m[i] = 1 then
8: return next(n.right(), i, true)
9: end if

10: if n.parent() = null then
11: return null
12: end if
13: return next(n.parent(), i, d)

are looking for, we start checking the ancestor nodes in order
until we find an ancestor that has a right child node that we
have not visited and its ith marker bit for this child is set.
We then visit this subtree because we are guaranteed that
it will contain the resulting node. Therefore, the algorithm
finds the first node starting with n that has data is in Si.
Since, in the worst case, we go up a path in the search
tree and then down a path in the search tree, our worst-case
asymptotic complexity for finding the next node with data
in Si is logarithmic relative to the size of the tree, which
is the same as the asymptotic complexity of the traditional
method for finding a next element in a search tree.

IV. CONCLUSION

We introduced MB-trees and showed how they are ben-
eficial for accessing predefine subsets of the tree elements.
MB-trees use marker bits, which add only light overhead
to the different operations and do not change the asymptotic
complexity of the operations. An obvious application of MB-
trees is merging search trees by removing redundant data,
which can result in faster updates because fewer copies of
the redundant data need to be updated.

REFERENCES

[1] G. M. Adelson-Velskii and E. M. Landis, “An Algorithm for
the Organization of Information,” Soviet Math. Doklady, vol. 3,
pp. 1259–1263, 1962.

[2] A. Andersson, “Balanced search trees made simple,” Workshop
on Algorithms and Data Structures, pp. 60–71, 1993.

[3] R. Bayer and E. McCreight, “Organization and Maintenance of
Large Ordered Indexes,” Acta Informatica, vol. 1, no. 3, 1972.

[4] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction
to Algorithms. McGraw Hill, 2002.

[5] L. Stanchev and G. Weddell, “Saving Space and Time Using
Index Merging,” Elsevier Data & Knowledge Engineering,
vol. 69, no. 10, pp. 1062–1080, 2010.

185

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

