DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Modeling Temporal Databases and Temporal Constraints

Mohamed Mkaouar, Mohamed Moalla

LIP2 Laboratory
University of Tunis El Manar, Faculty of Science
Campus Universitaire 2092 - El Manar Tunis, Tunisia
Mkaouar.Mohamed@gmail.com, Mohamed.Moalla@fst.rnu.tn

Abstract— Applications requiring a full and efficient
management of data feel the need to consider, beside the
current facts, historical and future facts, and to keep the track
of the manipulation of facts by the DBMS. In this paper, we
define concepts and modeling tools to express constraints,
taking into account the temporal dimension. The expression of
these constraints is achieved through an independent platform
modeling, in the UML-TF profile. Next, we propose extensions
to the SQL3 to be able to convert enhanced UML-TF
representations in a specific object-relational platform.

Keywords-Modeling Temporal Databases; Temporal
Constraints; UML profile; SQL3 extension

L INTRODUCTION

Over the past twenty five years there have been many
studies concerning the integration of different temporal
specifications in databases (DB), and of new languages and
temporal features in the DBMS [11][14][15]]25].
Nevertheless, there is not yet a general implementation of
Temporal DBMS and DB by manufacturers and designers.
We attribute this fact to two main reasons: the importance of
legacy DB and the complexity of the temporal environment.

Indeed, the importance of legacy DB, and of applications
that exploit them, makes any translation from a modeling
and/or development environment to another difficult and
expensive. That explains the slow transition from
navigational (network) DB to relational DB, and why,
despite the dominance of object-oriented programming,
OODB have yet to find dominance. It is the same for the
temporal dimension; there is now a gentle introduction to
some temporal features in the current DBMS [16][20][21],
which are still limited.

Investigations concerning works dealing with temporal
environment are not yet sufficient to develop temporal
DBMS. Other investigations remain indispensable to master
temporal data management and schema evolution [2],
concurrency control in temporal DB [17], development of
temporal applications [18], etc.

Such development requires appropriate formalisms and
tools, as well as a solid training for developers to this new
environment. It also requires rigorous use of the principles of
abstraction, provided by systemic methods and adopted by
object-oriented approaches, especially with the advent of the
MDA (Model Driven Architecture) introducing three levels
of abstraction: CIM (Computational Independent Model),

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Rafik Bouaziz

MIRACL Laboratory
University of Sfax, Faculty of Economics and Management
Route de I’Aéroport 3018, Sfax, Tunisia
Raf.Bouaziz@fsegs.rnu.tn

PIM (Platform Independent Model) and PSM (Platform
Specific Model).

We must therefore define a CIM and a PIM before
proceeding within a development considering a specific
platform in order to simplify the adoption of temporal DB.
But this principle of abstraction has not been adopted by
most of the works on temporal DB.

In this paper, we start by enriching the UML-TF profile
[19] to be able to model different classes of constraints
related to time, in the CIM and PIM levels. We then study
how to transform an UML-TF representation into a specific
object-relational ~ representation, including temporal
constraints.

The remainder of this paper is organized into six sections
as follows. Section two provides a brief overview of the state
of the art. The third Section describes UML-TF and reviews
on how to model specifications incorporating the temporal
dimension in this profile, with an illustration based on a real
application. In the fourth Section, we present different
classes of constraints on these specifications and how to
express them using examples from the same application. In
the fifth Section we propose a transformation of a UML-TF
representation into a specific object-relational representation.

II. STATE OF THE ART AND RELATED WORK

Time can be taken into account in accordance with what
is happening in the real world and/or in DB, whose updates
can be done with some phase shifts. So, two standards time
types, valid time and transaction time [13], and several kinds
of temporal facts which are mainly, Valid-time facts,
Transaction-time facts and bitemporal facts, are defined.

Valid-time facts may relate to the past, to the present or
to the future. Each such fact is represented by a timestamp
with their valid-times in reality. Thus, it becomes possible to
maintain the history of all valid facts, which can be updated
in real time with retroactive effect or postactive effect, but
not to keep track of deletions and corrections of errors.

Transaction-time facts can keep track of the manipulation
of facts by the DBMS, which timestamps them by the
execution time of the transaction that manipulates each fact.
This track covers insert operations, update operations —
whether evolution updates or error correction— and delete
operations. Transaction-time facts timestamps are defined
according to the schedule adopted by the operating system
and a granularity generally equal to the second, but could be
thinner if necessary. Thus, it becomes possible to maintain

162

mailto:Mohamed@gmail.com
mailto:Moalla@fst.rnu.tn
mailto:Bouaziz@fsegs.rnu.tn

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

the history of all the facts, valid or erroneous, past or current,
but not future. But only the current facts may be updated;
updates can not be made here either with retroactive effect,
or with postactive effect.

These wvalid or transaction histories have then
insufficiencies. A complete history can be assured only if
facts are timestamped by both valid and transaction-times,
thus we obtain bitemporal facts. It then becomes possible to
update the facts with retroactive or postactive effects, keep
track of wvalid facts and erroneous ones, and distinguish
between valid facts and erronecous ones. However, the
management of these facts becomes increasingly
complicated [2]. Then, the use of temporal dimensions must
be justified by the needs of users. A temporal DB must
contain conventional facts (non-temporal), when we do not
need historical, valid-time facts, when we need a wvalid
history of facts in reality, transaction-time facts, when we
need a history that keeps track of the manipulation of facts
by the DBMS, and bitemporal facts, when we want to have a
complete history. In addition, the DBMS must include
effective techniques to handle these kinds of facts
[2][17][23], on the one hand, and design methods must fully
adopt the principle of abstraction and include means for
expressing temporal specifications [19], on the other hand.

We want to expand in this paper the enhancement of the
UML-TF to be able to model temporal constraints in the
CIM and PIM levels. We then propose to classify the
constraints into several classes and sub-classes (cf.
Section 4) and suggests ways of expression for each of these
classes and subclasses. To our knowledge, this aspect has not
been sufficiently addressed, either by the temporal DB
models, or by the works dealing with constraint classification
and checking [3][7][9].

To the works concerning PSM, we note here that the
expression of temporal constraints under SQL [6][24].
Snodgrass [24] were limited to examining primary keys and
foreign keys, without detailing the other constraints that we
may declare at the CIM and PIM. Authors of reference [6]
proposed to represent all the constraints, even simple
constraints of not null fields or of columns domain’s, by
means of assertions without using standard SQL statements,
which do not promote their adoption. We want to enrich
SQL3 to allow the expression of temporal constraints,
affecting different levels of abstraction, in a declarative and
the simplest possible manner.

III. MODELING TEMPORAL DB wiTH UML-TF

We first review the main notation allowing the modeling
of temporal specifications with UML-TF [19] and then
illustrate such modeling with a case study.

A. Temporal notation

With UML-TF, modeling is made through the various
levels of abstraction proposed by MDA, while expressing the
temporal dimensions of any facts by stereotypes that we
classify into three categories: valid-time stereotypes,
transaction-time stereotypes and bitemporal stereotypes. To
these three categories we associate the following icons:

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

o & which symbolizes the real world clock, and is
intended to the first category of stereotypes. This
icon is used at the CIM level of the MDA approach.

o ‘B which represents the clock of the machine, and
is intended to the second category of stereotypes.
This icon is used at the PIM level of MDA.

o which symbolizes both clocks, and is intended
to bitemporal stereotypes. Such icon results from any
two declarations, first by a valid-time icon, then by a
transaction-time icon.

To realize the UML-TF profile, we defined an abstract
stereotype for each of the three categories of stereotypes.
Each abstract stereotype is a realization of the Evolutionary
Stereotype [8] that allows to aggregate new semantic
definitions. An abstract stereotype is then characterized by
appropriate meta-properties [19]. Some of these meta-
properties (Calendar, Type, Granule) concern timestamps
and are initialized by default values. These values, which can
be modified depending on the context, are to be exploited by
the temporal features that the DBMS should ensure to allow
the attribution of timestamps. Other meta-properties allow
expressing constraints on timestamps or on temporal
instances. These constraints, which we will detail in
Section 4, are to be included in the schema of the DB and
must be supported by the DBMS.

Each of the valid-time stereotypes, transaction-time
stereotypes and bitemporal stereotypes represents both a
realization of the concerned abstract stereotype, with
appropriate values of its meta-properties, and an extension of
the concerned meta-class of the UML metamodel. Due to
space limitations, we limit ourselves here to mention these
stereotypes and explain their effect. Further details
concerning their definition can be found in [19].

1) Valid-time stereotypes: Any need of a history
according to the valid-time dimension is expressed in the
CIM level, by one of the following valid-time stereotypes:

e <<VTA>> (Valid-Time Attribute): associated with
an attribute, this stereotype models the need to keep
all the valid values that have taken or will take effect
in reality. Each value is stamped with its valid-time.

e <<VTAs>> (Valid-Time Association): associated
with an association, with or without associative-
class, this stereotype models the need to preserve all
valid links that have taken or will take effect in
reality. If such a need is limited to one direction of
the association, we use the stereotype <<VTR>>
(Valid-Time Role).

e <<VTC>> (Valid-Time Class): This stereotype can
associate valid timestamps to each object of the
class.

o <VTGS>> (Valid-Time Generalization-
Specialization): This stereotype can associate valid
timestamps to each object of the concerned sub-
classes.

2) Transaction-time stereotypes: Such stereotypes can
be used, at the PIM level, for any element to model the need
to keep track of their instances by the DBMS. We define

163

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

here, as in the previous case, a stereotype for each type of
element: <<TTA>> (Transaction-Time Attribute),
<<TTAs>> (Transaction-Time Association), <<TTR>>
(Transaction-Time Role), <<TTC>> (Transaction-Time
Class) and <<TTGS>> (Transaction-Time Generalization-
Specialization).

3) Bitemporal stereotypes: Any element for which is
associated first a wvalid-time stereotype and second a
transaction-time stereotype is considred bitemporal; the two
sterotypes are systematically replaced by a bitemporal
sterotype which contains the meta-properties of the two
others and represented by the bitemporal icon. We define
the following Dbitemporal stereotypes: <<BTA>>
(BiTemporal Attribute) <<BTAs>> (BiTemporal
Association) <<BTR>> (BiTemporal Role) <<BTC>>

(BiTemporal Class) and <<BTGS>>

Generalization-Specialization).

(BiTemporal

B. Case study

As an example, let us consider the UML-TF class
diagram of Figure 1. At this level, we briefly describe the
application in general, and we further detail, in the following
sections, how to declare constraints related to time. This
diagram, concerns a higher education institution system. A
person can be a student, a teacher or both. A teacher may be
responsible at most than nine modules. Between seven and
fifteen modules are taught for any given audience. Any
training session concerns a teacher, a module, a group of an
audience or an audience. It is described by a day, an hour and
a classroom number. Each student should have, for each
module that he studies, two or three marks.

10..28
TEACHER PERSON STUDBENT Students
@ &Status ¥ Baccalaureate
E= Situati o .
& @Grade {C4d} Situation Z% - b @Diseases [0*] Aﬂeumtmn
o @S 1 H C3d} {Overlapping} esponsible
aary % UpdateStudient() ﬁ
% UpdateTeacher() Teacher * . i
esponsibility Grou
0..1| Responsibility ! Y o Group) |
o~ O Notification (C2%} T
@ ResponsibilityModule GGRO U P
Provides & NotificationNum o
¢ ETestMark o GroupCod
& EpExMark /NbrOfStudent
0..9] Responsible @ SExMark A UpdateGroup()
MODULE {C5"} % UpdateNotification() {Frozen} 0..1 2.7
% ModuleNum *
& Designation ™ *
& o CGSESSION (C1% 1
¢ UpdateModule() & SessionNum p—
7..15| Modules 1| {Frozen} & Day @A UDIENCE
+| ¢ BHour % AudenceCod
& ClassroomNum ¢ LibSection
. 0.1
% UpdateSession() : % UpdateAudience()
[=

Figure 1. UML-TF class diagram modeling the DB of an application for a higher education institution.

In this diagram:

e ‘Grade’, ‘Salary’ and ‘Diseases’ are bitemporal
attributes stereotyped by <<VTA>>;

e The association “ResponsabilityModule” and the
associative-classes “Notification” are stereotyped by
<<VTAs>>;

e AUDIENCE, GROUP and SESSION are three
valid-time classes stereotyped by <<VTC>>;

e ‘Responsible’ is a transaction-time role stereotyped
by <<TTR>>;

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

e ‘TestMark’, ‘PExMark’, ‘SExMark’, ‘Day’ and
‘Hour’ are transaction-time attributes stereotyped by
<<TTA>>;

e ‘Status’ is a bitemporal attribute stereotyped by
<<BTA>>;

“Affectation” is a bitemporal association;
‘Teacher’ is a bitemporal role stereotyped by
<<BTR>>;

e TEACHER and STUDENT are bitemporal classes
stereotyped by <<BTGS>>.

164

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

IV. NEW MEANS FOR EXPRESSING TEMPORAL
CONSTRAINTS

Commonly, the constraints are classified into static and
dynamic [10]. A static constraint controlling values or links
that can take an attribute or a relationship, respectively,
while a dynamic constraint control the evolution of these
values or these links (the employee’s salary can not decrease,
for example).

For static constraints, we distinguish in UML simple
constraints, called predefined, which usually focus on one
element of the diagram and for which the notation defines
“means” to express them in the diagram in a light manner.
There are also complex static constraints, which are usually
focused on more than one element of the diagram, and that
we call here not-predefined constraints; using OCL [22], it is
possible to formulate these constraints in different ways,
depending on the context. To avoid overloading the
diagrams, we propose to represent non-predefined
constraints, and also dynamic constraints, not by their
explicit expressions, but by codes assigned to them. These
codes are to be placed between two brackets beside the name
of the chosen context, as the five examples of the diagram in
Figure 1 ({C1%, {C2%, {C3%, {C4"} and {C5%; it is possible
to define many others temporal constraints in this diagram).
To distinguish a static complex constraint from a dynamic
constraint in the diagram, we use the exhibitors ‘* and o>
next to the code of the constraint. The explicit expression in
OCL of these constraints is then attached to the considered
diagram.

To allow the expression of constraints on temporal
instances, especially dynamic constraints, in OCL, it is
required to extend this constraint language. Indeed, a
temporal instance is characterized by elements from the
following: Value, Start Valid-Time, End Valid-Time, Start
Transaction-Time, End Transaction-Time and Index. The
extension that we propose allows identifying these elements,
by using the following keywords: Value, SVT, EVT, STT, ETT
and Index. These keywords are to be used for any temporal
instance using dot notation; the default is Value.

Following our analysis of the impact of the temporal
dimension on the expression of constraints, we have
proposed three categories of constraints related to time. We
study these categories in the three following sub-sections.

A. Static constraints involving a temporal dimension

When a static constraint is declared on an element which
is associated with a valid-time or a transaction-time
stereotype, it often changes meaning; the DBMS is not
sufficient to that verification at the current time, but extends
this verification at any time of the maintained history to also
cover past and, possibly, future facts.

The new meanings of these constraints do not affect the
means of their expression, but rather affect their verification.
However, we propose to express them by means of temporal
invariants, denoted by ‘Temporal inv:’; we therefore
propose to enrich our extension of OCL with this keyword.

Consider first the new meaning of an example of a
predefined constraint of the diagram in Figure 1: “The

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

multiplicity of roles of the association “Affectation” means
that at a given instant, a group of education is associated with
at least 10 students and at most 28 students, and a student is
assigned to one and a single group. However, a group may
be associated with more than 28 students and a student may
be assigned to multiple groups if we consider a history that
stretches over a long period”.

The constraint {overlapping}, which is not in fact, does
not change meaning. Applied to the Generalization-
Specialization Situation, it continues to mean that a person
can be both a student and a teacher, either for the current
time or at any past or future time.

We now detail the two non-predefined constraints {C1°}
and {C2°}.

e {C1°} : A teacher can not teach the same group more

than twice at the same period.

Context SESSION Temporal inv: C1
Session.allinstances->forAll(s1, s2, s3 | s1 <> s2
and s2 <> s3 and sl.Audience = s2,Audience =
s3.Audience implies s1.Teacher <> s2.Teacher
or s2.Teacher <> s3.Teacher and s1.Group <>
s2.Group or s2.Group <> s3.Group)

e {C2°}: A mark is to attribute to a student for a given
module only if this student is already enrolled in an
audience for which the module is taught.

Context Notification Temporal inv: C2
(self. Module) includes
self.Student.Group.Audience.Modules

When these constraints are applied to bitemporal
elements, only valid instances are taken into account.
Incorrect or deleted (in a non-destructive manner) instances
are not affected since they have already been verified.

B. Dynamic constraints

A formal expression of these constraints requires the use
of a constraint language incorporating temporal operators, as
already studied by several other works, especially those who
have proposed temporal extensions to OCL [5][26]. This
expression also requires the enrichment of OCL by the
proposed keywords to be able to access to the various
elements of a temporal instance. Nevertheless, for some
constraints in this category, mainly those that focus on a
single element, it is possible to find ‘semi-graphic’ means to
their expression; this expression is easier to use in modeling.

Constraints {C3d}, {C4% and {C5M are examples of
dynamic constraints. In what follows, we detail their
meaning and their expression in OCL extended by the above
mentioned keywords and by operators of temporal logic. For
the two constraints {C3% and {C4%, we also propose ‘semi-
graphic’ means to use as patterns for these types.

e {C3" : The salary of a teacher can not decrease.

Context TEACHER inv: C3
self.Salary=>forAll(s] : Salary, s2 : Salary |
s1.SVT < s2.SVT implies sl.value < s2.value)

/*or sl precedes s2 implies sl.value <s2.value) */
The ‘semi-graphic’ pattern that we propose to this
type of constraint is the following: {4}

165

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

e {C4" : The qualification of a teacher in his career
follows the following order: ‘Assistant Professor’
(A), ‘Associate Professor’ (AP) and ‘Professor’ (Pr);
but a teacher can begin as ‘AP’.

Context TEACHER inv: C4
self.Grade->forAll(gl : grade, g2 : grade |
gl.SVT < g2.SVT implies gl.value = ‘A’ and g2
=‘AP’ or gl =‘AP’and g2 = ‘Pr’)
and self.Grad->forAll (g : grad | g.index =1
implies g= ‘A’ or g = ‘AP’)

The ‘semi-graphic’ pattern that we propose to this

type of constraint is the following:

{Order : ‘Q’, ‘AAP’, ‘Pr’}

e {C5% : The responsibility of a module is assigned to
a teacher only if this teacher involved in teaching
this module since 5 years.

Context MODULE inv: C5
self.Responsability implies since 5 years
self. Responsability.Session->notEmpty()

C. Constraints on timestamps and on temporal instances

Compared to the two first categories of constraints, the
constraints in this category may cover one or two temporal
dimensions. These constraints concern stereotyped elements,
as was announced in Section 2, and for which we have
defined meta-properties in the abstract stereotypes. This
allows expressing them in a simple manner, simply by
valorizing the concerned meta-properties. We define two
classes for this category: constraints on timestamps, and
constraints on timestamped values of temporal instances.

1) Constraints on timestamps: In this class of
constraints we distinguish three sub-classes as follows:

The constraints of the first sub-class concern the
definition of default values or restrictions for a valid or
transaction stamp. These constraints may relate to the
timestamps of all instances of a stereotyped element, or for
some instances of this element. Some restrictions depend on
the properties of the timestamp, for example, it is not
possible to restrict the duration of a timestamp of type
instant.

As examples of such constraints, we can define for the
considered application the following ones: “A teaching
period starts on 15/9 of each year and ends on 31/7 of that
year.”; “A teacher can not remain in the grade of ‘Associate
Professor’ less then 3 years.”.

The second sub-class concerns all constraints defined
between a valid timestamp and a transaction timestamp of a
bitemporal element. These constraints have been widely
studied in [12]. As examples, we define the following
constraints: “The transaction-time of a status can not exceed
its valid-time more than one month.”.

The constraints of the third sub-class are systematically
imposed by the association of valid-time stereotypes in the
diagram. These constraints depend on the type of the
timestamp. In particular, it ensures data integrity when the
timestamp type is ‘temporal interval’ or ‘temporal element’.
Indeed, in this case:

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

e The timestamp of a link should be included (or
equal) in (to) the timestamp of each concerned
object; this is the case for example of links defined
between STUDENT and GROUP.

e The timestamp of an object of an aggregate class
must be included (or equal) in (to) the timestamp of
the concerned object in the component class; this is
the case of objects of the GROUP class vis-a-vis to
objects of the AUDIENCE class.

2) Constraints on temporal instances: We retain at this
level the following four main types:

e The extent of the maintenance of past valid values,
in number of values or in duration relative to the
current time; this concerns the vacuuming
parameters [23] which is a way to destructively
delete data becoming obsolete. The default values
assigned to the two concerned meta-properties
(V_Nbr and V_Duration) are equal to infinity. In the
example, we can impose that: “The number of
groups for each audience is not to historize beyond
three periods.”; “The label of a section is to historize
only for the last three values.”.

e The number of corrections or changes. By default,
this number is unlimited. In the example, we can
impose that it is not possible to correct the
assignment of a training session to a teacher more
than twice for the same period.

e How to keep the instances of a temporal collection
vis-a-vis the coalescing operator [4]. By default,
these instances are to keep coalesced, that is two
instances that follow in time must have different
values. In the example, links that concern
affectations of students to groups, and notifications
of students are to keep not coalesced.

e The management strategy for future data; this type
of constraints is specific to bitemporal elements; by
default, this management is to perform in a
destructive manner.

V. SPECIFIC REPRESENTATION TO THE OBJECT-
RELATIONAL PLATFORM

We present in this section how to extend the SQL3
standard by new keywords to allow the representation of
timestamped tables and columns, as well as constraints
related to time.

Our objective is to raise the issue and propose some
solutions. More adequate solutions, especially as regards the
expression of complex static constraints and dynamic ones,
require substantial investment and resources that are beyond
us.

A. Expression of timestamps

About the declaration of timestamps in SQL3 orders, we
propose to put the letter “V’, the letter ‘“T” or the two letters,
after the name of the concerned table or column. Each letter,
representing a timestamp, is followed by the values of the
meta-properties defined to the timestamp, when the defaults
values have to be changed.

166

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

B. Static constraints involving temporal dimension

As in UML-TF, we propose that the expression of static
constraints is to done in the same way, whether with or
without a time dimension, apart from the fact that the syntax
is enriched by the word ‘Temporal’, to indicate that the
constraint must be checked at any instant and not only at the
current time. Indeed, the constraints checking module of the
DBMS must ensure the checks within temporal DB.

To simplify the expression of different non-predefined
constraints, i.e., complex static ones, we propose not to use
assertions, instead we use CHECK constraints. Also, we
propose extending the use of such constraints by the
possibility of the employment of many free variables (Self)
that can or not be connected to the same table. For example,
we propose to declare the constraint {C1%} as follows:

ALTER TABLE SESSION

ADD Temporal CONSTRAINT Ck_C1

CHECK Self1-TEACHER .TeacherNum = Self2-

TEACHER.TeacherNum AND Self1-AUDIENCE.AudienceCod

= Self2-AUDIENCE.AudienceCod AND Self1-

GROUP.GroupCod = Self2-GROUP.GroupCod

AND NOT EXISTS

(Self1.-TEACHER.TeacherNum = Self3-

TEACHER .TeacherNum AND Self1-
AUDIENCE.AudienceCod = Self3-

AUDIENCE AudienceCod AND Self1-GROUP.GroupCod =
Self3-GROUP.GroupCod));

In this constraint, we used three free variables ‘Selfl’,
‘Self2’ and ‘Self3’ for each of the three tables: TEACHER,
AUDIENCE and GROUP.

C. Dynamic constraints

For the constraints of this class for which we found
‘semi-graphic’ expressions, it is also possible to find patterns
to represent them in a simple manner. For examples:

e for the example of the constraint {C3}, we propose

the pattern: NOT DECREASE.

e for the constraint {C4%}, we propose the following
pattern: IN THIS ORDER {‘Val,’, “Val,’, ...}
[START WITH “Val;’ [OR “Val,’]* ;

For the other dynamic constraints, which are currently
represented by relational DBMS with triggers, we also
propose to express them by CHECK constraints. The
expression of these constraints requires the use of temporal
logic operators. For example, we propose to declare the
constraint {C5% as follows:

ALTER TABLE MODULE

ADD CONSTRAINT Ck_5

CHECK Self.NumTeacherResponsible

AND EXISTS

(Self-TEACHER.NumTeacher =
Self.NumTeacherResponsible
AND Self-TEACHER Since 5 Year Self);

D. Constraints on timestamps and on temporal instances

To express the constraints on timestamps, we use the
arithmetic operators of comparison as well as Allen operators
[1], ie., BEFORE, AFTER, OVERLAPS, EQUAL, MEETS,
DURING, CONTAINS, STARTS, FINISH, etc.

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

In addition, to be able to express a restriction on the
duration of a temporal interval, we propose the following

pattern: {MAXPERIOD | MINPERIOD} Value SCALE [ON

‘Val 1, ‘Val 2°, ...]. SCALE can be YEAR, MONTH, DAY etc.;
it specifies the used temporal granule. Without the option
[ON “Val I’, ‘Val2’, ..]], the constraint is applied to all
instances of the concerned element, with this option, the
constraint is applied only to instances defined by the
indicated values; for example, MAXPERIOD 7 YEAR ON
‘Assistant Professor’ is applied only to Assistant Professors.

For the four types of constraints on temporal instances

proposed in Section 4.C.2, we propose to represent them
using the following patterns:

e VACCUMING AFTER Value {SCALE | VALUES}
[CASCADE]. The CASCADE option can progress the
vacuuming for data related to the concerned data.

e ONLY Value {CORRECTIONS | EVOLUTIONS}
ALLOWED.

o [COALESED | NOT COALESED [WITH Value MAX
VALUEQUIVALENT]}. By default, the instances are to
keep coalesced. The option WITH Value MAX
VALUEQUIVALENT precise the maximum number of
non-coalesced equivalent values.

o [FUTURE UPDATES DESTRUCTIVE |
UPDATES NOT DESTRUCTIVE].

FUTURE

E. Recapitulative example

We briefly illustrate here how we plan to use our
proposals to enrich SQL3, through an excerpt of the
command concerning the creation of the TEACHER table:

CREATE TABLE TEACHER V (DEFAULT, TEMPORAL
ELEMENT, DEFAULT) T

(TeacherNum NUMBER(3)

CONSTRAINT Pk_Teacher PRIMARY KEY,

LName VARCHAR2(20) NOT NULL,

Status V (DEFAULT, DEFAULT, YEAR) T VARCHAR2(2),

CONSTRAINT Dur_TeacherStatus
OR EQUAL TEACHER.VT,

CONSTRAINT SVT_STT_Status
Status.SVT + 1 MONTH,

CONSTRAINT Vacc_TeacherStatus Status VACCUMING
AFTER 3 VALUES,

CONSTRAINT lto_TeacherGrade Grade IN THIS ORDER
{‘A’, ‘AP’, ‘Pr’} START WITH ‘A’ Or ‘AP’,

CONSTRAINT MinEs_TeacherGrade Grade MINPERIOD 3

Status.VT DURING

Status.STT <=

YEARS ON ‘AP’

CONSTRAINT O2E_TeacherGrade Grade ONLY 2
EVOLUTIONS ALLOWED,

CONSTRAINT Nd_TeacherSal Salary NOT
DECREASE,

CONSTRAINT Fund_TeacherSalary Salary FUTURE
UPDATES NOT DESTRUCTIVE,

CONSTRAINT Vacc_TEACHER TEACHER

VACUUMING AFTER 80 YEAR CASCADE);

167

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

VI. CONCLUSION AND FUTURE WORK

We presented in this paper new concepts to improve the
modeling of four different kinds of facts: conventional facts
(non-temporal), valid-time facts, transaction-time facts, and
bitemporal facts.

Our proposals concern, first, the expression of constraints
in the UML-TF profile [19], dedicated to the modeling of
temporal DB. This profile allows such modeling in a simple,
customizable and progressive manner, using expressive
decorations. With the enrichment provided by these
proposals, it is possible to take into account temporal
constraints, classified into three categories: static constraints
invoking a temporal dimension, dynamic constraints, and
constraints on the timestamps or on temporal instances. This
classification into three categories, refined if necessary on
classes and sub-classes, helped us to identify appropriate
ways for expressing each type of constraint. In particular, the
formal expression of these constraints required the extension
of OCL with new keywords.

Secondly, we have proposed enhancements to SQL3 to
enable the mapping of UML-TF class diagrams in an object-
relational model, attempting to take advantage of the
“declarative” approach of constraints adopted by DB
languages. Thus, the designer can focus his attention on the
expression without worrying about the modules to be
integrated into the DBMS providing their checking.

Our future work focuses on the development of new tools
and the enrichment of platforms that support them in order to
implement our proposals. We also plan to study how
checking temporal constraints according to our proposals.

REFERENCES

[1] Allen J.F., Maintaining Knowledge about temporal intervals,
Communication of the ACM, 1983, pp. 832-843.

[2] Bouaziz R. and Brahmia Z., Gestion des données temporelles dans un
environnement multi-versions de schémas, Technique et Science
Informatiques, vol. 28 n° 1, 2009, pp. 39-74.

[3] Bohlen M. H., Valid Time Integrity Constraints, Technical Report
(94-30), University of Arizona, 1994.

[4] Bohlen M. H., Snodgrass R.T., and Soo M.D., “Coalescing in
Temporal Databases.”, Proceedings of the 22" International
Conference on Very Large DataBases (VLDB), Bombay, India,
September 1996, pp. 180-191.

[5] Cengarle M. V. and Knappe A., Towards OCL/RT, Lecture Notes in
Computer Science, vol. 2391, 2002, pp. 390-409.

[6] Cordeiro R. L. F., Edelweiss N., Galante R. M., and dos Santos C. S.,
“TVCL: Temporal Versioned Constraint Langage.”, 20 Simpdsio
Brasileiro de Bancos de Dados, Anais/Proceedings, 2005, pp. 55-69.

[7] Cordeiro R. L. F., Galante R. M., Edelweiss N., and dos Santos C. S.,
“A Deep Classification of Temporal Versioned Integrity Constraints
for Designing Database Application.”, Proceedings of the 19"
International Conference on Sofiware Engineering & Knowledge
Engineering, 2007, pp. 416-421.

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

(23]

[24]

Debnath N., Riesco D., Montejano G., Grumelli A., Maccio A., and
Martellotto P., “Definition of new kind of UML Stereotype based on
OMG Metamodel”, Proceedings of the Arab International
Conference on Computer Systems and Applications: AICCSA’03,
Tunis, 14-18 July 2003, Tunisia.

Doucet A., Fauvet M. C., Gangarski S., Jomier G., and Monties S.,
“Using Database Version to Implement Temporal Integrity
Constraints.”, Proceedings of the Second International Workshop on
Constraint Databases, 1997.

de Brock E.O., “A general treatment of dynamic integrity
constraints.”, Data & Knowledge Engineering, 32,2000, pp. 223-246.

Etzion O., Jajodia S., and Sripada S.M. (Editors), Temporal
Databases: Research and Practice, Spring-Verlag, Lecture Notes in
Computer Science, vol. 1399, 1998.

Jensen C.S. and Snodgrass R.T, “Temporal Specialization and
Generalization.”, [EEE Transactions on Knowledge and Data
Engineering, vol. 6, n° 6, 1994, pp. 954-974.

Jensen C. S. and Dyreson C. E. (Editors), Bohlen M. H., Clifford J.,
Elmasri R., Gadia S. K., et al., “The Consensus Glossary of Temporal
Database Concepts.”, in Etzion et al., 1998.

Jensen C. S., “Temporal Database Management.”, dr.techn. thesis by
Christian S. Jensen, defended April 2000 available at:
http://www.cs.auc.dk/~csj/Thesis.

Jensen C.S. and Snodgrass R.T. (Editors), Temporal Database
Entries for the Springer Encyclopaedia of Database Systems,
Technical Report TR-35, TIMECENTER, May, 2008.

Lomet D., Barga R., Mokbel M. F., and Shegalov G., “Transaction
Time Support Inside a Database Engine.”, Proceedings of the
International Conference on Data Engineering, 2006, pp. 35-46.

Makni A and Bouaziz R., Concurrency Control for Temporal
Databases, International Journal of Databases Management Systems,
vol. 2 n° 1, 2010, pp. 39-58.

Mkaouar M. and Bouaziz R., L’édification de framework pour I’aide
au développement d’applications temporelles, Information Science

for Decision Making, n° 21, 2005.

Mkaouar M. and Bouaziz R., UML-TF: un profil UML pour la
représentation des faits temporels, Technique et Science
Informatiques, vol. 26 n° 3-4, March-April 2007, pp. 305-338.

Oracle Corporation, Advanced Application Developer’s Guide: Using
Oracle Flashback Technology, Oracle Documentation, 2008.

Oracle Corporation, Workspace Manager Developer’s Guide, Oracle
Documentation, 2009.

OMG, Object Constraint Language (OCL) Specification, Object
Management Group, www.omg.org, 2001-2010.

Roddick J. F., Schema Vacuuming in Temporal Databases, /EEE

Transactions on Knowledge and data engineering, vol. 21 n° 5, 2009,
pp. 744-747.

Snodgrass R. T., Bohlen M. H., Jensen C. S., and Steiner A., “Adding
Valid Time to SQL/Temporal.”, SQL/Temporal Change Proposal,
ANSI X3H2-96-501r2, ISO / IEC / JTCI / SC21 / WG3 DBL-MAD-
146r2, “Adding Transaction Time to SQL/Temporal.”,
SQL/Temporal Change Proposal, ANSI X3H2-96-502r2, I1SO / IEC /
JTC1/SC21/WG3 DBL-MCI-143,1996.

Wu Y. Jajodia S., and Wang X.S,
Bibliography Update.”, in Etzion et al., 1998.

Ziemann P. and Gogolla M., OCL Extended with Temporal Logic,
Lecture Notes in Computer Science, vol. 2890, 2003, pp. 617-633.

“Temporal Database

168

http://www.cs.auc.dk/~csj/Thesis
www.omg.org

