
SQRM: An Effective Solution to Suspicious Users in Database

Dai Hua
College of Information Science & Technology, Nanjing

University of Aeronautics & Astronautics
Nanjing, China

dai_hua@nuaa.edu.cn

Zheng Guineng
College of Information Science & Technology, Nanjing

University of Aeronautics & Astronautics
Nanjing, China

redzgn@nuaa.edu.cn

Qin Xiaolin
College of Information Science & Technology, Nanjing

University of Aeronautics & Astronautics
Nanjing, China

qinxcs@nuaa.edu.cn

Li Ziyue
College of Information Science & Technology, Nanjing

University of Aeronautics & Astronautics
Nanjing, China

yenuo_1108@msn.com

Abstract—Since traditional database mechanisms such as
identity authentication and access control, can be fooled by
authorized but malicious users, to solving the problems, three
key techniques namely intrusion detection, damage quarantine
and recovery are studied for decades to implement survival
database systems. However, these techniques are all built on
identification of malicious behaviors, which is much more
complex, sluggish and inefficient than the identification of
suspicious behaviors because the former need more evidence
than the later. This paper proposes an effective security
mechanism by focusing suspicious users, namely suspect
quarantine and recovery method denoted as SQRM, to
increase the attack resistance of databases. It isolates invalid
data transparently from trustworthy users to prevent further
damage by suspicious users suspected to be malicious, while
still maintaining continued availability for their data access
operations to minimize loss of productive work in the case of
incidents that they are indeed innocent. And when they are
proved innocent or malicious, all invalid data caused by them
will be concurrently recovered. Using SQRM is sufficiently
effective to improve the survivability for database.

Keywords-database security; survival database; suspicious
user quarantine; invalid data recovery

I. INTRODUCTION
Database security, an issue focuses on data

confidentiality, integrity and availability [1] has drawn a
considerable amount of interest since database was used in
data-intensive and security-sensitive applications, such as
credit card billing, banking, air traffic control and online
stock trading. Traditional database security technologies,
such as identity authentication, access controls and
encryption concentrate on database confidentiality, which is
often powerless for malicious attacks including authorized
abusing, hackings, and so on. So many attacks succeeded,
which had fooled traditional database protection
mechanisms, because in reality not all attacks can be averted
at their beginning. Consequently, survival database systems
(or attack resistant，or intrusion tolerant, or self healing
database systems) [2-5] are of significant concern, which
can survive malicious attacks, and provide continuous but

maybe degraded service when the damage is being
recovered.

To implement survival database systems, three key
technologies namely intrusion detection (ID) [6-9], damage
quarantine (DQ) [10-14] and damage recovery (DR) [15-19]
have been studied for decades. ID detects malicious attacks
including malicious users’ transactions and operations. DQ
isolated all invalid data result from corruption of malicious
attacks detected by ID, and ensure invalid data not be
accessed by trustworthy users, otherwise it might cause
damage spreading [20] (if data x is invalid, operation
y=x+100 will have damage spread to y). DR repairs all
invalid data and improves availability of database.
Apparently, ID, DQ and DR are built on the identification of
malicious behaviors. Actually, the identification of
suspicious behaviors could be more efficient, easier and
earlier than identification of malicious behaviors in practical
applications, because the latter needs more evidence to
investigate. Obviously trustworthy data would be in danger
as long as the suspicious behaviors exist because they could
be indeed malicious. Therefore if we can control suspicious
behaviors immediately after it has been detected, the indeed
malicious attacks will be prevented earlier; the scare of
damage will be decreased and the recovery of database will
be easier and more efficient.

Here, we focus on suspicious users, whose behaviors are
suspicious, but still need further investigation and more
evidence to finally confirm their uncertain identities
innocent or malicious. For example, when an accountant
logs on banking system at 2:00 am as user “Jack” who
usually works in the daytime, this abnormal logon will make
Jack suspicious. The real identity of this Jack is uncertain.
Perhaps Jack himself is working overtime involving an
urgent task, or this Jack is a malicious hacker who cheated
jack’s identity. More evidence is needed to make the right
judgment. What could we do if we encounter this suspicious
Jack? The naive rejection would cause loss of his
constructive work if he is indeed Jack himself. On the other
hand, the simple permission may cause further damage if he
is a hacker. As a result, to handle the above dilemma,
necessary measures should be taken toward suspicious users.

59

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

In order to solve problems of suspicious users，Suspect
Quarantine and Recovery Method (SQRM) is presented by
us in this paper. SQRM has two phases of work: Suspicious
User Quarantine Phase (SUQ-Phase) and Invalid Data
Recovery Phase (IDR-Phase). As shown in Figure 1, user s
was trustworthy before it was detected suspicious at time t1,
proved innocent or malicious at time t2, and invalid data
recovery was accomplished at time t3. SUQ-Phase starts
from t1 to t2, while IDR-Phase originates from t2 to t3. The
key points of SQRM are as follows:

• In SUQ-Phase, s will be quarantined immediately
once s is detected suspicious, but instead of being
stopped arbitrarily, s will be able to continue its
work. An extra value of data is provided to s for its
data accessing. Meanwhile, the invalid data caused
by s will be access denied by trustworthy users to
prevent damage spreading since it is recovered.

• In IDR-Phase, when s is proved innocent or
malicious, all the extra value of data caused by s will
be identified. If s is proved malicious, the extra value
of data caused by s will be incorrect and discarded
directly, but if s is proved innocent, it will be
identified as correct and written back into the
database. All the invalid data caused by s will be
recovered at last.

Figure 1. SQRM workflow

There is an evaluation criterion of judging the strategy
of handling suspicious users: No Leakage of Invalid Data
(NLID). NLID requires that invalid data should be isolated
from trustworthy users, which means that they would not
access any invalid data, so the damage spreading will be
prevented. Meanwhile all invalid data will be recovered
trustworthy, and the integrity and correctness of database
will be assured.

To satisfy the NLID criterion and make sure suspicious
users working under quarantine, we present a data model of
SQRM firstly, which characterizes the value types of data
items maintained by trustworthy and suspicious users. Then
we provide the user operation isolation algorithm and on-
the-fly invalid data recovery algorithm based on the data
model, the former algorithm will not only isolate all invalid
data from trustworthy users to prevent damage spreading,
but also provide extra value of data items to suspicious users
to continue their work, while the later will recover all the
invalid data in IDR-Phase of suspicious users.

The rest of the paper is organized as follows. Section 2
discusses the related works. In Section 3, we give the
theoretical model and algorithms of SQRM. Finally, Section
4 summarizes what we have done and future work of this
paper.

II. RELATED WORKS
Since current research mostly relies on ID, DQ and DR

method to solve malicious attacks to implement survival
database systems. Only a few studies of suspicious users
have been proposed. In current research of suspicious uses,
Liu et al. proposed a data attack isolation system (DAIS)
using data versions [21-23]. The main point of DAIS
includes two steps as following: In step 1, once a user s is
detected suspicious, it will be isolated from other users
according to isolation protocol, and suspicious version data
will be created and maintained by s when s performs
updates in database. Meanwhile trustworthy users can not
access any suspicious version data. In step 2, when s is
proved malicious, all the suspicious version data maintained
by s will be discarded. And when s is proved innocent, to
resolve the conflicts between trustworthy and innocent
transactions statically or dynamically, precedence graph of
transactions will be created. Because the acyclic precedence
graph means no conflict of transactions and consistence of
database, if cycles appear in precedence graph, related
committed transactions (trustworthy or innocent) incurring
cycles will be backed out to break cycles thus guaranteeing
precedence graph acyclic (Back out a transaction means to
restore every data item updated by it to the latest value
before updates). After precedence graph is established, the
suspicious version data (which is indeed trustworthy)
maintained by the innocent user s will be adopted to replace
the corresponding trustworthy version data (which are
indeed invalid). Till now the processing of suspicious user s
is accomplished.

However, DAIS still has shortcomings in damage
spreading. We illustrate it by giving an example as follows:

Example 1: Suppose user s is detected suspicious at
time t1, proved innocent at time t2, and user u is always
trustworthy. During time interval [t1, t2], s executes
transactions Ts1 and Ts2 while u executes Tu1, Tu2 and Tu3.
Details of these transactions are shown in Figure 2. We
denote trustworthy version data as x[T], and suspicious
version data as x[s] maintained by s.

Figure 2. Operations and History of Transactions

In [t1, t2], s is suspicious. According to DAIS, when 5
transactions are finished, x[T] and z[T] will be updated while
y[s] and v[s] are created (x[T]=21, z[T]=18, y[s]=13 and
v[s]=13 as shown in TABLE I). When s is proved innocent
at t2, an acyclic precedence graph G of committed
transactions will be created as shown in Figure 3. Obviously
there is no conflict of transactions. Since the proved

Tu1: x = x + 5

Ts1: y = y + 5

Tu2: x = x + y

Ts2: v = y

Tu3: z = y +10

t1

t2

Time

Prove s
Innocent

Detect s
Malicious

Detect
Suspicious

Prove Innocent
or Malicious

t1 Time

SUQ-Phase

 t3

Finish Invalid
Data Recovery

t2

IDR-Phase

60

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

innocence of s indicates that Ts1 and Ts2 are trustworthy, y[s]
and v[s] are actually trustworthy too, they will be adopted to
replace y[T] and v[T] (y[s]=13 replace y[T]=8 and v[s]=13
replace v[T]=8, then remove y[s] and v[s] as shown in
TABLE I). At this moment we are certain about that y[s]
and v[s] should be written back into y[T] and v[T]. But when
s is executing its operations with suspicious identity in [t1,
t2], y[s] and v[s] could also be discarded if s is proved
malicious. Therefore y[T] and v[T] are invalid since y[s] and
v[s] are created till they are replaced by y[s] and v[s], but
these invalid data is not isolated from trustworthy users in
DAIS. If they are accessed by trustworthy users, leakage of
invalid data might cause damage spreading (In example 1,
y[T]=8 and v[T]=8 are invalid since Ts1 and Ts2 commit till
they are replaced with y[s]=13 and v[s]=13, but the
trustworthy transactions Tu2 and Tu3 both read the invalid
y[T]=8, when Tu2 and Tu3 commit, x[T] and z[T] will be
infected invalid too.) According to the above discussion, we
can see that DAIS can not satisfy NLID criterion.

Figure 3. Precedence Graph G

TABLE I. VALUE OF DATA VERSIONS

Data Item x y z v
Data Versions x[T] x[s] y[T] y[s] z[T] z[s] v[T] v[s]
5 Transactions

Finished 21 — 8 13 18 — 8 13

After Data
Version

Replacement
21 — 13 DEL 18 — 13 DEL

a. “DEL“ means data deletion; b. “—“ means data not exists; c. x = y = z =v = 8 at beginning

III. SQRM METHOD
We assume that all operations of users are trustworthy

when the users are trustworthy, suspicious when the users
are suspicious and malicious when the users are malicious.
The identity transition diagram of user is shown in Figure 4.
A trustworthy user can be detected suspicious, and a
suspicious user can be proved innocent (trustworthy) or
malicious. Furthermore, because suspect detecting method
is not the purpose of this paper, we assume that detection of
suspicious users is accurate and prompt (In fact, suspicious
detection could be simple and efficient in practical
applications. For example, when a user logs on system from
an unknown address or an abnormal time, this user could be
suspicious).

Figure 4. Identity transition diagram of users

In this section, we will formally describe the theoretical
concepts and algorithms of SQRM, including data modal,
user operation quarantine algorithm and invalid data
recovery algorithm. The key points of SQRM are to isolate
invalid data from trustworthy users to prevent damage
spreading, provide the quarantined extra value of data items
to suspicious users for catching results of their work instead
of stopping them arbitrarily, and recover the invalid data as
soon as possible.

A. Data Model
A database system could be seen as a set of data items,

we denote it as DB={x1, x2… xn}. There are two value types
of data item as shown in definition 1.

Definition 1. Each data item xi∈DB could have two
value types:

• Normal Type value (NT-value). It is maintained by
all trustworthy users and denoted as xi

N. We use
DBN= {xi

N… xj
N} to represent NT-value set.

• Quarantined Type Value (QT-value). It is
maintained only by suspicious user who created it
and denoted as xi

Q. The user maintaining xi
Q is

denoted as owner(xi
Q). We use DBQ= {xi

Q … xk
Q} to

represent QT-value set.
NT-value and QT-value of a data item are transparent to

users. If a user submits to accessing a data item xi
successfully, only one value (xi

N or xi
Q) of xi will be

accessed. Data accessing measures follow user operation
isolation algorithm in Section 3.2. When database is
initialed to start service, only NT-value of data items exists,
and all data items are trustworthy so as to be able of being
accessed by trustworthy users at that time. We give the
definition of trustworthy data as follows.

Definition 2. Trustworthy Data. For a data item
xi∈DB, if its NT-value xi

N exists and QT-value xi
Q does not

exist, xi is a trustworthy data. We use ℜ to represent the
trustworthy data set.

ℜ = {xi| xi∈DB∧∃xi
N∈DBN∧¬∃xi

Q(xi
Q∈DBQ)} ⑴

However, when suspicious user emerges, invalid data
could be produced because of suspicious activities in SUQ-
Phase. And when suspicious user is proved innocent or
malicious, invalid data will be recovered to be trustworthy
finally in IDR-Phase. We will give definitions of invalid
data and discuss it in next sections.

B. User Operation Isolation Algorithm
Once a suspicious user is detected, it should be

quarantined efficiently, and make sure that suspicious users
will be able to continue their work in isolation instead of

Prove
Malicious

Suspicious

Malicious

Detect Suspicious

Prove Innocent
Trustworthy

Tu1

Tu2

Tu3

Ts1

Ts2

61

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

being stopped arbitrarily, meanwhile the invalid data will
not be accessed by trustworthy users to prevent damage
spreading. To achieve this goal, data accessing operations of
users should be controlled as shown in User Operation
Isolation Algorithm (UOIA). Here, read(xi

Q/xi
N),

write(xi
Q/xi

N) and create(xi
Q/xi

N) are the read, write and
create operations on NT-value or QT-value of x.

Algorithm 1：UOIA Pseudo Code
Input: User s submit read or write operation on data item xi
Output: Result of operation (TRUE or FALSE)
Steps:
1: IF s is trustworthy THEN
2: IF ¬∃ xi

Q(xi
Q∈DBQ)∧ ∃ xi

N(xi
N∈DBN) THEN

3: execute read(xi
N) or write(xi

N);
4: RETURN TRUE; // user operation succeed
5: END IF
6: ELSE IF s is suspicious THEN
7: IF s submit read on xi THEN
8: IF ∃ xi

Q(xi
Q∈DBQ ∧owner(xi

Q) = s) THEN
9: execute read(xi

Q);
10: RETURN TRUE;
11: ELSE IF ¬∃ xi

Q(xi
Q∈DBQ)∧ ∃ xi

N(xi
N∈DBN) THEN

12: execute read(xi
N);

13: RETURN TRUE;
14: END IF
15: ELSE IF s submit write on xi THEN
16: IF ∃ xi

Q(xi
Q∈DBQ∧owner(xi

Q) = s) THEN
17: execute write(xi

Q);
18: RETURN TRUE;
19: ELSE IF ¬∃ xi

Q(xi
Q∈DBQ)∧ ∃ xi

N(xi
N∈DBN) THEN

20: execute create(xi
Q); //create QT-value

21: set owner(xi
Q) = s; // set ownership of QT-value

21: execute write (xi
Q);

22: RETURN TRUE;
23: END IF
24: END IF
25: END IF
26: RETURN FALSE; // user operation failed

We can see that in UOIA: a) When a trustworthy user s

wants to read or write data item xi, only if xi
N exists and xi

Q
does not exist (which means that xi is trustworthy), the read
or write operation on xi

N will be executed, otherwise it will
fail. b) When suspicious user s wants to read xi, if xQ owned
by s exists, xi

Q will be returned to s, while if xi
Q does not

exist and xi
N exists, xi

N will be returned to s. c) When
suspicious user s wants to write xi, if xi

Q owned by s exists,
the write operation on xi

Q will be executed, while if xi
Q

doesn’t exist and xi
N exists, xi

Q will be created, and the write
operation on xi

Q will be executed in the end. Note that the
algorithm is based on strict two-phase-locking (2PL) [24]
concurrency control protocol with data item locking
granularity.

Data accessing of suspicious users could cause
trustworthy data to be invalid. For a trustworthy data x, if a
suspicious user s submits write operation (UPDATE) on it,
according to UOIA, the QT-value xi

Q
 owned by s will be

created, so xi
N and xi

Q will both exist. Due to the suspicious
identity of s, xi

Q is also suspicious. If s is indeed malicious,
xi

Q should be discarded since it is incorrect value of xi and
xi

N will be identified as correct. Reversely, if s is indeed

trustworthy, xi
Q is actually the correct value of xi reversely,

while xi
N is turned to be incorrect and should be replaced

with xi
Q. Obviously, the correct value of data item xi is

undetermined, either xi
N or xi

Q is correct. So accessing xi
N or

xi
Q by trustworthy users could harm trustworthy data and

cause damage spreading, leading this kind of data items
invalid. Particularly, if s submits a new data creation
operation (INSERT) successfully, a particular data item will
be created with only QT-value existence, which renders
situation similar to above: Suppose that data item xi with
only xi

Q existence is created by s, if s is indeed trustworthy,
xi will be also trustworthy, but if s is indeed malicious, xi
should be non-existent, so this kind of data item is also
uncertain and invalid. Therefore, to isolate invalid data like
xi from trustworthy users is essential to prevent damage
spreading. Here we give the definition of invalid data as
follows.

Definition 3. Invalid Data: For a data item xi∈DB, if
the QT-value xi

Q exists, xi is an invalid data. We denote
invalid data set of database as ℑ , and invalid data set
caused by suspicious user s as IDS(s).

ℑ= {xi| xi∈DB∧∃xi
Q(xi

Q∈DBQ)} ⑵
IDS(s)={xi|xi∈DB∧∃xi

Q(xi
Q∈DBQ∧owner(xi

Q) = s)} ⑶
Since invalid data is caused by suspicious users, if we

use S={s1, s2, …, sm} to represent all suspicious users, we
can get an equation about invalid data set as follows.

()
i

i
s S

IDS s
∈

ℑ = ∪ ⑷

Lemma 1. DB = ℜ∪ℑ
Following the definition of ℑ andℜ , it is easy to see

that Lemma 1 is true.
Lemma 2. UOIA can ensure all invalid data of ℑ will

be isolated from trustworthy users.
Proof: (Sketch) According to UOIA procedures, for

each data item xi∈DB, only if xi
N exists and xi

Q does not
exist, which means that xi is trustworthy, xi can be read or
written by trustworthy users. But if xi

Q exists, the access to
data item xi by any trustworthy users will fail. So Lemma 2
holds.

As known from Lemma 2, all invalid data will be
isolated from trustworthy users to prevent damage spreading,
and QT-value of data items will be provided to continue the
work of suspicious users in isolation. Therefore, work of
SUQ-Phase can be accomplished by following UOIA.

C. On-the-fly Invalid Data Recovery Algorithm
Once a suspicious user is proved innocent or malicious,

for each invalid data xi caused by it, the correct value of xi
will be identified, and the IDR-Phase will start. The key
points of the recovery measures are as follows: If s is proved
innocent, the QT-value of invalid data owned by s is correct
to be written back into the corresponding NT-value, if s is
proved malicious, the QT-value of invalid data owned by s
is incorrect and should be deleted. To implement the above
measures, we give an On-the-fly Invalid Data Recovery
Algorithm (OIDRA) as shown in Algorithm 2. Here,

62

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

delete(xi
Q/xi

N) represent delete operation on NT-value or QT-
value of data item xi.

In OIDRA, once a suspicious user s is proved innocent
or trustworthy, the performing operations of s will be
canceled and s will be stopped from data accessing to begin
invalid data recovery. Then, if s is proved innocent, all QT-
value of invalid data owned by s is correct, they will be
adopted to replace the corresponding NT-value (if NT-value

does not exist, it will be created firstly). After that the data
accessing authority of s will be resumed. If s is proved
malicious, all QT-value owned by s will be deleted. When
above procedures finished, all QT-value owned by s will be
dropped, and all invalid data of IDS(s) will be recovered to
end the IDR-Phase of s. Therefore the work of IDR-Phase
can be fulfilled by OIDRA.

Algorithm 2：OIDRA Pseudo Code
Input: a signal that s is proved innocent or malicious
Output: Recovery of invalid data
Steps:
1: Cancel all performing operations of s, and stop s from

accessing database;
2: IF s is proved innocent THEN
3: FOR EACH xi

Q∈DBQ∧owner(xi
Q) = s

4: IF ¬∃ xi
N(xi

N∈DBN) THEN
5: execute create(xi

N);
6: END IF
7: set xi

N= xi
Q;

8: execute delete(xi
Q);

9: END FOR
10: Resume data accessing authority for s;
11: ELSE IF s is proved malicious THEN
12: FOR EACH xi

Q∈DBQ∧owner(xi
Q) = s

13: execute delete(xi
Q);

14: END FOR
15: END IF

Furthermore, since all invalid data is isolated from

trustworthy users as known from Lemma 2, OIDRA can
performs concurrently with other operations, so OIDRA is
an on-the-fly algorithm.

Lemma 3. OIDRA can ensure that all invalid data of ℑ
will be recovered in the IDR-Phase of suspicious users.

Proof: (Sketch) According to OIDRA procedures, once
a suspicious user s is proved innocent or malicious, all
invalid data of IDS(s) caused by s will be recovered. Since
every suspicious user will be proved innocent or malicious
finally, each invalid data caused by suspicious users will be
recovered in the end. While all invalid data caused by all
suspicious users is just the invalid data set ℑ as known
from definition 2, so Lemma 3 can be satisfied.

Lemma 4. SQRM can satisfy NLID criterion.
Proof: (Sketch) According to Lemma 2 and Lemma 3,

we can see that all invalid data caused by suspicious users
will be isolated from trustworthy users, so damage
spreading will be prevented, and all invalid data will be
recovered in the IDR-Phase of suspicious users. As a result,
the NLID criterion can be satisfied in SQRM.

Therefore, the suspect quarantine and recovery method
we proposed in this paper is an effective security
mechanism, which can make sure that further damage by

damage spreading will be confined and all invalid data will
be recovered.

IV. CONCLUSIONS
In this paper, we presented an effective security

mechanism, namely suspect quarantine and recovery
method denoted as SQRM, to increase the attack resistance
of database vulnerable to suspicious users. We develop a
suspicious user quarantine scheme in SQRM that isolates
invalid data from trustworthy users to protect databases
from any further damage caused by damage spreading, and
provides the ability of working continually to suspicious
users instead of stopping them arbitrary. At the same time,
we propose an on-the-fly invalid data recovery method to
repair all the invalid data caused by suspicious users when
they are proved innocent or malicious.

There are some future works for SQRM. First, since
transactions, which consist of access operations, will be
suspended or aborted even if only one invalid data accessed,
we will investigate the effect of SQRM on transaction
success rate. Second, the availability of database when
dealing with the quarantine of suspicious users will be
studied. Furthermore, we will concentrate on construction of
survival database system which is able to solve the problem
of suspicious users by SQRM.

ACKNOWLEDGMENT
Our work is supported by the National Natural Science

Foundation of China (60673127), the National 863 High
Technology Research and Development Program of China
(2007AA01Z404) and the Jiangsu Province Science &
Technology Pillar Program (BE2008135).

REFERENCES
[1] E. Bertino and R. Sandhu, "Database Security-Concepts, Approaches,

and Challenges," IEEE Transactions on Dependable and Secure
Computing, vol. 2, no. 1, pp. 2-19, Jan.-Mar. 2005, doi:10.1109/
TDSC.2005.9.

[2] P. Ammann, S. Jajodia, and C. D. McCollum, “Surviving information
warfare attacks on databases,” Proc. 1997 IEEE Symp. Security and
Privacy, IEEE Press, May. 1997, pp. 164-174, doi:10.1109/SECPRI.
1997.601331.

[3] P. Liu, “Architectures for Intrusion Tolerant Database Systems,” Proc.
18th Annual Computer Security Applications Conference, IEEE Press,
Dec. 2002, pp. 311-320, doi:10.1109/CSAC. 2002.1176303.

[4] T. Chiueh and D. Pilania, “Design, implementation, and evaluation of a
repairable database management system,” Proc. 21th Int. Conference
on Data Engineering, IEEE Press, Apr. 2005, pp. 1024–1035,
doi:10.1109/ICDE.2005.49.

[5] P. Liu and J.W. Jing, “The Design and Implementation of a Self-
Healing Database System,” Journal of Intelligent Information Systems,
vol. 23, Nov. 2004, pp. 247-269, doi:10.1023/B:JIIS.0000047394.
02444.8d.

[6] Y. Hu and B. Panda, “A data mining approach for database intrusion
detection,” Proc. 2004 ACM Symp. Applied Computing, ACM Press,
Mar. 2004, pp. 711-716, doi:10.1145/967900.968048.

[7] M. Vieira and H. Madeira, “Detection of Malicious Transactions in
DBMS,” Proc. 11th IEEE Int. Symp. Pacific Rim
Dependable Computing, IEEE Press, Dec. 2005, pp. 350-357,
doi:10.1109/PRDC.2005.31.

[8] J. Fonseca, M. Vieira, and H. Madeira, “Integrated Intrusion Detection
in Databases,” Proc. 3rd Latin-American Symp. Dependable

63

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Computing, Springer-Verlag Press, Sep. 2007, pp. 198-211, doi:
10.1007/978-3-540-75294-3_15.

[9] A. Kamra, E. Terzi, and E. Bertino, “Detecting anomalous access
patterns in relational databases,” The VLDB Journal, vol. 17, Aug.
2008, pp. 1063-1077, doi:10.1007/s00778-007-0051-4.

[10] P. Liu and S. Jajodia, “Multi-phase Damage Confinement in Database
Systems for Intrusion Tolerance,” Proc. 14th IEEE Computer Security
Foundations Workshop, IEEE Press, Jun. 2001, pp. 191-205,
doi:10.1109/CSFW.2001.930146.

[11] K. Bai and P. Liu, “A light weighted damage tracking quarantine and
recovery scheme for mission-critical database systems,” Proc. 17th
ACM Conference on Information and knowledge management, ACM
Press, Oct. 2008, pp. 1403-1404, doi:10.1145/1458082.1458302.

[12] K. Bai, M. Yu, and P. Liu, “TRACE: Zero-Down-Time Database
Damage Tracking, Quarantine, and Cleansing with Negligible Run-
Time Overhead,” Proc 13th European Symp. Research in Computer
Security, Springer-Verlag Press, Oct. 2008, pp. 161-176,
doi:10.1007/978-3-540-88313-5_11.

[13] M. Yu, W. Zang, and P. Liu, “Database Isolation and Filtering against
Data Corruption Attacks,” Proc 23rd Annual Computer Security
Application Conference, IEEE Press, Dec. 2007, pp. 97-106,
doi:10.1109/ACSAC.2007.18.

[14] K. Bai and P. Liu, “A data damage tracking quarantine and recovery
(DTQR) scheme for mission-critical database systems,” Proc. 12th Int.
Conference Extending Database Technology, ACM Press, Mar. 2009,
pp. 720-731, doi:10.1145/1516360.1516443.

[15] P. Liu, P. Ammann and S. Jajodia, “Rewriting Histories: Recovering
From Malicious Transactions,” Distributed and Parallel Databases, vol.
8, Jan. 2000, pp. 7-40, doi:10.1023/A:1008731200105.

[16] P. Ammann, S. Jajodia, and P. Liu, “Recovery from Malicious
Transactions,” IEEE Transactions Knowledge and Data Engineering,
vol. 14, Sep. 2002, pp. 1167-1185, doi:10.1109/TKDE.2002.1033782.

[17] T. Chiueh and S. Bajpai, “Accurate and efficient inter-transaction
dependency tracking,” Proc. 24th Int. Conf. Data Engineering, IEEE
Press, Apr. 2008, pp. 1209-1218, doi: 10.1109/ICDE.2008. 4497530.

[18] D. Lomet, Z. Vagena, and R. Barga, “Recovery from ”bad” user
transactions,” Proc. 2006 ACM SIGMOD Int. Conference
Management of Data, ACM Press, Jun. 2006, pp. 337–346,
doi:10.1145/1142473.1142512.

[19] R. Yalamanchili and B. Panda, “Transaction Fusion: A Model for Data
Recovery from Information Attacks,” Journal of Intelligent
Information Systems, vol. 23, Nov. 2004, pp. 225-245,
doi:10.1023/B:JIIS.0000047393.99078.c4.

[20] K. Bai and P. Liu, “Towards Database Firewall: Mining the Damage
Spreading Patterns,” Proc. 22nd Annual Computer Security
Applications Conference IEEE Press, Dec. 2006, pp. 449-462,
doi:10.1109/ACSAC.2006.52.

[21] S. Jajodia, P. Liu, and C. D. McCollum, “Application-Level Isolation
to Cope With Malicious Database Users,” Proc. 14th Annual
Computer Security Applications Conference, IEEE Press, Dec. 1998,
pp. 73-82, doi:10.1109/CSAC.1998.738580.

[22] P. Liu, “DAIS: A Real-Time Data Attack Isolation System for
Commercial Database Applications,” Proc. 17th Annual Computer
Security Applications Conference, IEEE Press, Dec. 2001, pp. 219-
229, doi:10.1109/ACSAC.2001.991538.

[23] P. Liu, H. Wang, and L.Q. Li, “Real-time data attack isolation for
commercial database applications,” Journal of Network and Computer
Applications, vol 29, Nov. 2006, pp. 294-320, doi:10.1016/j.jnca.
2005.03.001.

[24] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

64

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

