
1

A Field Analysis of Relational Database
Schemas in Open-source Software

Fabien Coelho, Alexandre Aillos, Samuel Pilot, and Shamil Valeev
CRI, Maths & Systems, MINES ParisTech

35, rue Saint Honoré, 77305 Fontainebleau cedex, France.
fabien.coelho@mines-paristech.fr, firstname.lastname@mines-paris.org

Abstract—The relational schemas of 407 open-source projects
storing their data in MySQL or PostgreSQL databases are in-
vestigated by querying the standard information schema, looking
for various issues. These SQL queries are released as the Salix
free software. As it is fully relational and relies on standards,
it may be installed in any compliant database to help improve
schemas. The overall quality of the surveyed schemas is poor: a
majority of projects have at least one table without any primary
key or unique constraint to identify a tuple; data security features
such as referential integrity or transactional back-ends are hardly
used; projects that advertise supporting both databases often
have missing tables or attributes. PostgreSQL projects have a
better quality compared to MySQL projects, and it is even
better for projects with PostgreSQL-only support. However, the
difference between both databases is mostly due to MySQL-
specific issues. An overall predictor of bad database quality is
that a project chooses MySQL or PHP, while good design is found
with PostgreSQL and Java. The few declared constraints allow to
detect latent bugs, that are worth fixing: more declarations would
certainly help unveil more bugs. Our survey also suggests some
features of MySQL and PostgreSQL as particularly error-prone.
This first survey on the quality of relational schemas in open-
source software provides a unique insight in the data engineering
practice of these projects.

Keywords—open-source software; database quality survey; au-
tomatic schema analysis; relational model; SQL.

I. INTRODUCTION

In the beginning of the computer age, software was freely
available, and money was derived from hardware only. Then in
the 70s it was unbundled and sold separately. Stallman initiated
the free software movement, which is now quite large [1], to
implement his principle of sharing software, Such free soft-
ware is distributed under a variety of licenses. The common
ground is that it must be available as source code to allow its
study, change and improvement, as opposed to compiled or
obfuscated, hence the expression open source. This induces
many technical, economical, legal, and philosophical issues.
Open-source software (OSS) is a subject of academic studies
in psychology, sociology, economics, or software engineering,
including quantitative surveys. Developers’ motivation [2],
organization [3] and profiles [4] are investigated; Quantitative
studies exist about code quality in OSS [5][6][7][8] and its
dual, static analysis to uncover bugs [9][10]. Database surveys
are available about market shares, or server exposure security
issues [11]. This study is the first survey on the quality of
relational database schemas in OSS. It provides a unique
insight in the data engineering practice of these projects.

Codd’s relational model [12] is an extension of the set
theory to relations (tables) with attributes (columns) in which
tuple elements are stored (rows). Elements are identified by
keys, which can be used by tuples to reference one another be-
tween relations. The relational model is sound, as all questions
(in the model) have corresponding practical answers and vice
versa: the tuple relational calculus describes questions, and
the mathematically equivalent relational algebra provides their
answers. It is efficiently implemented by many commercial
and open-source software such as Oracle, DB2 or SQLite.
The Structured Query Language (SQL) is available with most
relational database systems, although the detailed syntax often
differs. The standardization effort also includes the information
schema [13], which provides meta data about the schemas of
databases through relations.

The underlying assumption of our study is that applications
store precious transactional user data, thus should be kept
consistent, non redundant, and easy to understand. We think
that database features such as key declarations, referential
integrity and transaction support help achieve these goals. In
order to evaluate the use of database features in open-source
software, and to detect possible design or implementation
errors, we have developed a tool to analyze automatically
the database structure of an application by querying its
information schema and generating a report, and we have
applied it to 407 open-source projects. Following MacCabe’s
metric to measure program complexities [14], several metrics
address data models [15][16] or database schemata either in
the relational [17][18] or object relational [19] models. These
metrics rely on information not necessarily available from the
database concrete schemas. We have rather followed the dual
and pragmatic approach [20], which is not to try to do an
absolute and definite measure of the schema, but rather to
uncover issues based on static analyses. Thus the measure is
relative to the analyses performed and results change when
more are added.

Section II presents the methodology used in this study.
We describe our tool, our grading strategy and the statistical
validation used on the assertions derived from our analyses.
Section III lists the projects by category and technology, and
discusses similarities and differences depending on whether
they run on MySQL or PostgreSQL. Section IV describes the
results of our survey. The overall quality of projects is quite
poor, as very few database schemas do not raise error-rated
advices. Section V gives our conclusive thoughts.

9

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

2

II. METHODOLOGY

Our Salix automatic analyzer is based on the information
schema. We discuss the queries, then describe the available
advices, before presenting the statistical validation used.

A. Information schema queries

Our analyses are performed automatically by SQL queries
on the databases meta data using the standard information
schema. This relational schema stores information about the
databases structure, including catalogs, schemas, tables, at-
tributes, types, constraints, roles, permissions. . . The set of
SQL queries used for this study are released as the Salix free
software. It is based on pg-advisor [21], a PostgreSQL-
specific proof of concept prototype developed in 2004. Some
checks are inspired by [22][23][24] or similar to [25] others.
Our tool creates a specific table for every advice by querying
the information schema, and then aggregates the results in
summary tables. It is fully relational in its conception: there
is no programming other than SQL queries. The development
of Salix uncovered multiple issues with both implementations
of the information schema.

B. Advice classification and project grading

The 47 issues derived by our SQL queries on the standard
information schema are named advices, as the user is free
to ignore them. Although the performed checks are basic and
syntactic, we think that they reflect the quality of the schemas.
Each advice has a category (19 design, 13 style, 6 consistency,
4 version, 5 system), a severity (7 errors, 21 warnings, 14
notices, 5 informations), and a level (1 raised per database,
10 per schema, 27 per relation, 7 per attribute, 2 per role).
The severity classification is arbitrary and must be evaluated
critically by the recipient: most of them should be dealt with,
but in some cases they may be justifiable. Moreover, detected
errors do not imply that the application is not functional.

The 19 design advices focus on detecting design errors.
Obviously, semantic error, say an attribute is in the wrong
relation, cannot be guessed without understanding the appli-
cation and thus are out of reach of our automatic analysis.
We rather focus on primary and foreign key declarations, or
warn if they are missing. The rate of non-null attributes is also
checked, with the underlying assumption from our experience
that most data are mandatory in a relation. We also check
the number of attributes so as to detect a possible insufficient
conception effort.

The 13 style advices focus on relation and attribute names.
Whether a name is significant in the context cannot be
checked, so we simply look at their length. Short names are
discouraged as they would rather be used as aliases in queries,
with the exception of id and pk. We also check that the
same name does not represent differently typed data, to avoid
confusing the user.

The 6 consistency advices checks for type and schema
consistency in a project, such as type mismatches between
a foreign key and the referenced key. As databases may also
implements some of these checks, it is possible that some cases
cannot arise.

The 4 version advices focus on database-specific checks,
such as capabilities and transaction support, as well as ho-
mogeneous choices of back-end engines in a project. This
category could also check the actual version of a database
used looking for known bugs or obsolescence. Only MySQL-
specific version advices are currently implemented.

Finally, the 5 system advices, some of which PostgreSQL-
specific, check for weak passwords, and key and index issues.

These advices aim at helping the schema developer to
improve its relational design. We also use them in our survey
to grade projects with a mark from 0 to 10, by removing
points each time an advice is raised, taking more points if the
severity is high. The grading process is normalized using the
number of possible occurrences, so that larger projects do not
receive lower marks just because of the likelihood of having
more issues for their size. Also, points are not removed twice
for the same issue: for instance, if a project does not have a
single foreign key, the same issue will not be raised again on
every tables. Advices not relevant to our open-source database
schema survey, e.g., weak password checks, were deactivated.

C. Survey statistical validation

The data collected suggest the influence of some parameters
on others. These results deal with general facts about the
projects (say foreign keys are more often used with Post-
greSQL) or about their grading (say MySQL projects get
lower marks). In order to determine significant influences,
we applied Pearson’s chi-square tests to compute probabilistic
degrees of certainty. Each checked assertion is labeled with an
expression indicating the degree of certainty of the influence
of one parameter on another:

very sure The probability is 1% or less to get a result as or
more remote from the average. Thus we conclude that there
is an influence, with a very high degree of certainty.

rather sure The probability of getting such a result is
between 1% and 5% (the usual statistical threshold). Thus
there is an influence, with a high degree of certainty.

marginally sure The probability is between 5% and 25%:
Such a result may have been obtained even if there is no
influence. The statement must be taken with a pinch of salt.

not sure The probability is over 25%, or there is not enough
available data to compute it. The test cannot asserts that there
is a significant influence.

The rational for choosing Pearson’s chi-square test is that it
does not make any assumption about the distribution of values.
However, it is crude, and possibly interesting and somehow
true results may not be validated. Moreover, the test requires
a minimal population, which is not easily reached on our
small data set especially when criteria are crossed. Finally, it
needs to define distinct populations: for grades or sizes, these
populations are cut at the median value in order to perform
the test on balanced partitions.

We also computed a correlation matrix to look for possible
inter-parameter influence. The result suggested that the param-
eters are pretty independent beyond the obvious links (say the
use of a non-transactional back-end is correlated with isolated
tables), and did no help uncover significant new facts.

10

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

3

Category Total % My % Pg % both % tabs atts
CMS 70 17.2 61 20.2 1 3.7 8 10.3 39.2 6.6
System 36 8.8 17 5.6 1 3.7 18 23.1 28.1 11.9
Blog 24 5.9 20 6.6 0 0.0 4 5.1 28.2 7.1
Market 21 5.2 20 6.6 0 0.0 1 1.3 55.0 7.6
Project 20 4.9 11 3.6 3 11.1 6 7.7 29.7 7.2
Forum 19 4.7 17 5.6 0 0.0 2 2.6 23.1 8.3
Accounting 16 3.9 9 3.0 6 22.2 1 1.3 93.1 8.4

TABLE I
MAIN CATEGORIES OF PROJECTS, WITH COUNTS, DATABASE SUPPORT AND SIZES

Technology Total % My % Pg % both % tabs atts
PHP 311 76.4 262 86.8 7 25.9 42 53.8 32.2 7.3
C 34 8.4 9 3.0 5 18.5 20 25.6 22.4 11.7
Java 18 4.4 7 2.3 5 18.5 6 7.7 57.3 9.4
Perl 18 4.4 9 3.0 4 14.8 5 6.4 50.5 7.1

TABLE II
MAIN TECHNOLOGIES OF PROJECTS, WITH COUNTS, DATABASE SUPPORT AND SIZES

III. PROJECTS

We discuss the projects considered in this study, grouped
by categories, technologies, sizes and release dates. We first
present how projects were selected, and then an overview.

A. Project selection

We have downloaded 407 open-source projects starting in
the first semester of 2008, adding to our comparison about
every project that uses either MySQL or PostgreSQL that we
could find and install with reasonable time and effort. The
database schemas included in this study are derived from a
dump of the database after installation, or from the creation
statements when found in the sources. These projects were
discovered from various sources: lists and comparisons of
software on Wikipedia and other sites; package dependencies
from Linux distributions requiring databases; security advi-
sories mentioning SQL; searches on SourceForge.

Some projects were fixed manually because of various
issues, such as: the handling of double-dash comments by
MySQL, attribute names (e.g., out) rejected by MySQL, bad
foreign key declarations or other incompatibilities detected
when the projects were forced to use the InnoDB back-end
instead of MyISAM, or even some PostgreSQL table defini-
tions including a MySQL specific syntax that were clearly
never tested. A particular pitfall of PostgreSQL is that by
default syntax errors in statements from an SQL script are
ignored and the interpreter simply jumps to the next statement.
When installing a project, the flow of warnings often hides
these errors. Turning off this feature requires modifying the
script, as no command option disables it. More than a dozen
PostgreSQL projects contained this kind of issues, which
resulted in missing tables or ignored constraint declarations.

B. Overview of projects

We have studied the relational schemas of 407 (see [26]
for the full list) open-source projects based on databases: 380
of these run with MySQL, 105 with PostgreSQL, including
78 on both. A project supporting PostgreSQL is very likely

to support also MySQL (74%), although the reverse is not
true (only 20%) (very sure), outlining the relative popularity
of these tools. Only 27 projects are PostgreSQL specific.
Although there is no deliberate bias in the selection process
described in the previous section, where we aimed at complete-
ness, some implicit bias remains nevertheless: for instance, as
we can speak mostly English and French, we found mostly
international projects advertised in these tongues; Table I
shows main project categories, from the personal mundane
(game, homepage) to the professional serious (health-care,
accounting, system). Table II shows the same for project tech-
nologies. Projects in rare categories or using rare technologies
do not appear in these cut-off tables. The result is heavily
slanted towards PHP web applications (76%), which seems
to reflect the current trend of open-source programming as
far as the number of projects is concerned, without indication
of popularity or quality. The ratio of PHP projects increases
from PostgreSQL only support (25%) to both database support
(53%) (rather sure) to MySQL only support (86%) (very sure):
PHP users tend to choose specifically MySQL.

The survey covers 16104 tables (MySQL 11303, Post-
greSQL 4801) containing 139092 attributes (MySQL 93960,
PostgreSQL 45132). The project sizes in tables average at
33.2, median 17 (from 1 to 607 tables), with 2 to 10979
attributes. MySQL projects average at 30 tables, median 16
(from 1 to 466), with 247 attributes (from 2 to 9725), while
PostgreSQL projects average 46 tables, median 20 (from 1
to 607), with 430 attributes (from 6 to 10979 attributes). The
largest MySQL project is OSCARMCMASTER, and the largest
PostgreSQL project is ADEMPIERE. Detailed table counts raise
from projects with MySQL only support (average 28.3, me-
dian 16), to both databases (average 34.5, median 18) or
PostgreSQL only (average 81.1, median 31). MySQL-only
projects are smaller than other projects (marginally sure):
more ambitious projects seem to use feature-full but maybe
less easy to administrate PostgreSQL. However obvious this
assertion would seem, the statistical validation is weak because
of the small number of projects with PostgreSQL. MySQL
projects that use the InnoDB back-end are much larger that

11

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

4

Advice Lvl. Cat. Sev. MySQL PostgreSQL
Proj % Adv % Proj % Adv %

Schema without any FK sch. design error 339 89 339 89 58 55 58 55
Tables without PK nor Unique table design error 218 57 1272 11 67 63 917 19
FK type mismatch table consist. error 2 0 17 0 10 9 153 3
Backend engine inconsistency sch. version error 26 6 26 6 0 0 0 0
FK length mismatch table consist. error 3 0 5 0 1 0 3 0
Integer PK but no other key table design warn 345 90 6119 54 89 84 2062 42
Homonymous heterogeneous attributes att. style warn 242 63 1998 2 66 62 477 1
Unsafe backend engine used in schema sch. version warn 338 88 338 88 0 0 0 0
Isolated Tables table design warn 25 6 857 7 35 33 1120 23
Tables without PK but with Unique table design warn 98 25 341 3 15 14 40 0
Unique nullable attributes att. design warn 58 15 226 0 22 20 166 0
Nullable attribute rate over 80% sch. design warn 24 6 24 6 21 20 21 20
Redundant indexes table system warn 0 0 0 0 22 20 192 3
Attribute name length too short att. style warn 22 5 65 0 15 14 46 0
Large PK referenced by a FK table design warn 9 2 99 0 15 14 178 3
Composite Foreign Key table design warn 5 1 19 0 8 7 26 0
Table name length too short table style warn 9 2 10 0 6 5 15 0
FK not referencing a PK table design warn 1 0 12 0 7 6 23 0
Redundant FK table system warn 1 0 1 0 2 1 6 0
Non-integer Primary Key table design note 214 56 1950 17 66 62 1565 32
Attribute count per table over 20 table design note 188 49 535 4 54 51 356 7
MySQL is used base version note 380 100 380 100 0 0 0 0
Tables with Composite PK table design note 164 43 1583 14 54 51 636 13
Attribute name length quite short att. style note 159 41 609 0 42 40 198 0
Attribute named after its table att. style note 100 26 1473 1 35 33 4767 10
Table without index table system note 0 0 0 0 53 50 660 13
Nullable attribute rate in 50-80% sch. design note 62 16 62 16 24 22 24 22
Table name length quite short table style note 56 14 81 0 24 22 47 0
Table with a single attribute table design note 59 15 360 3 22 20 48 0
Mixed attribute name styles table style note 89 23 752 6 1 0 37 0
Mixed table name styles sch. style note 31 8 100 26 3 2 4 3
Attribute name length short att. style info 267 70 2240 2 69 65 618 1
Unsafe backend engine used on table table version info 338 88 8746 77 0 0 0 0
Nullable attribute rate in 20-50% sch. design info 107 28 107 28 39 37 39 37
Table name length short table style info 99 26 197 1 32 30 70 1

TABLE III
LIST OF RAISED ADVICES AND DETAILED COUNTS ABOUT THE 407 PROJECTS

their MyISAM counterpart (very sure) and are comparable
to projects based on PostgreSQL, with 58 tables on average.
The number of attributes per table is comparable although
smaller for MySQL (average 8.3 – median 7.0) with respect
to PostgreSQL (average 9.4 – median 7.0).

The per-category tables (tabs) and attributes-per-table (atts)
counts shows that accounting, health-care and market projects
are more ambitious than other categories (marginally sure).
The per-technology analysis counts suggests that Perl, Python
and Java projects are larger than those based on other tech-
nologies (rather sure).

These projects are mostly recent, taking their status at
an arbitrary common reference date chosen as March 31,
2009: 257 (63%) were updated in the last year, including
141 (34%) in the last six months, and the others are either
obsolete or very stable. The rate of recent projects raises from
MySQL-only projects (57%) to projects with both support
(79%) (very sure) or with PostgreSQL support at (81%) (very
sure). However there is no significant difference on the recent
maintenance figure between projects that are PostgreSQL-only
and projects with both databases support. Projects that include
PostgreSQL support were updated more recently that those

based on MySQL only.

IV. SURVEY RESULTS

We now analyze the open-source projects of our survey
by commenting actual results on MySQL and PostgreSQL,
before comparing them. Table III summarizes the advices
raised for MySQL and PostgreSQL applications. The first four
columns give the advice title, level, category and severity. Then
four columns for each database list the results. The first two
columns hold the number of projects (i.e. schema) tagged and
the overall rate. The last two columns give the actual number
of advices and rate, which varies depending on the level. A
per-project aggregate is also available online [26].

A. Primary keys

A majority of MySQL projects (218 – 57%) have at
least one table without neither a primary key nor a unique
constraint, and this is even worse with PostgreSQL projects
(67 – 63%). The certainty of the observation (marginally sure)
on MySQL-only vs PostgreSQL-only is low because of the
small number of projects using the later. As 11% of all MySQL
tables and 19% of all PostgreSQL tables do not have any

12

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

5

key, the view of relations as sets is hindered as tuples are not
identified, and data may be replicated without noticing.

A further analysis gives some more insight. For MySQL,
42% of tables without key do have some KEY option for
indexes, but without the UNIQUE or PRIMARY keyword that
makes it a key. Having KEY not always declaring a key
was clearly a bad design choice. A little 2% of tables
without key have an auto increment attribute, which suggest
uniqueness in practice, but is not enforced. Also, the missing
key declaration often seems to be composite. Some tables
without key declarations are intended as one tuple only, say
to check for the version of the schema or configuration of
the application. Similarly, 28% of PostgreSQL tables without
key have an index declared. Moreover, 19% have a SERIAL

(auto incremented) attribute: Many designers seem to assume
wrongly that SERIAL implies a key. A comment found in
the SQLGREY project source suggests that some keys are not
declared because of MySQL key size limits.

A simple integer primary key is provided on 60% of
tables, with a significantly decreasing rate from MySQL-only
(65%) to both database support (59%) (very sure) down to
PostgreSQL-only support (39%) (very sure). If these primary
keys were non-semantic numbers to identify tuples, one would
expect at least one other key declared on each table to identify
the underlying semantic key. However it is not the case: most
(84%) of these tables do not have any other key. When a
non simple primary key is available, it is either based on
another type or a composite key. The composite keys are
hardly referenced, but as the foreign keys are rarely declared
one cannot be sure, as shown in the next section.

B. Referential integrity
Foreign keys are important for ensuring the data consistency

in a relational database. They are supported by PostgreSQL,
and by MySQL but with some back-end engines only. In
particular, the default MyISAM back-end does not support
foreign keys, and this feature was deemed noxious in previous
documentations: Version 3.23 includes a Reasons NOT to Use
Foreign Keys constraints Section arguing that they are only
useful to display diagrams, hard to implement and terrible for
performance. Foreign key constraints are introduced with the
InnoDB engine starting with MySQL 3.23.44 in January 2001.
Although the constraints are ignored by the default MyISAM
engine, the syntax is parsed, and triggers the creation of
indexes. Version 5.1 documentation has a Foreign Keys Section
praising the feature, as it offers benefits, although it slows
down the application. Caveats describe the inconsistencies that
may result from not using transactions and referential integrity.
From a pedagogical perspective, this is a progress.

Foreign key constraints have long been a missing or avoided
feature in MySQL and this seems to have retained momentum
in many projects, as it is not supported by the default engine:
few MySQL projects (41 – 10% of all projects, 60% of those
with InnoDB) use foreign key constraints. The foreign key
usage rate is significantly higher (22%) when considering
projects supporting both databases (marginally sure).

Among MySQL projects, 312 (82%) use only the default
MyISAM back-end engine, thus do not have any foreign key

checks enabled. In the remainder, 42 (11%) use only InnoDB,
and 26 (6%) use a combination of both. More projects (20 –
25%) rely on InnoDB among those supporting both MySQL
and PostgreSQL (rather sure). A third of InnoDB projects (26
– 38%) are not consistent in their engine choice: 35% of tables
use MyISAM among the 68 InnoDB projects. A legitimate
reason for using MyISAM tables in an InnoDB project is that
FULLTEXT indexes are only available with the former engine.
However, this only applies to 11 tables in 6 projects, all other
1403 MyISAM tables in InnoDB projects are not justified by
this argument. A project may decide to store transient data in
an unsafe engine (e.g., memory) for performance reason and
possibly without any risk of losing data, but this optimization
is beyond our tool and is reported as an error. This case
is rare, as it represents only 13 tables in 6 projects. About
26% of tables use MyISAM as a default implicit choice in
InnoDB projects, similar to 26% when considering all MySQL
projects. Some engine inconsistencies seems due to forgotten
declarations falling back to the default MyISAM engine.

We have forced the InnoDB back-end engine for all MySQL
projects: 22 additional projects declare 92 new foreign key
constraints previously ignored. These new foreign keys are
very partial, targeting only some tables. They allow to uncover
about two dozen issues, either because the foreign key declara-
tion were failing (say from type errors detected by MySQL) or
thanks to analyses from our tool. Additional checks based on
foreign keys cannot be raised on schemas that do not declare
any of them. Thus isolated tables warnings must be compared
to the number of projects that do use referential constraints: 25
– 60% of these seem to have forgotten at least some foreign
keys, and it is actually the case by checking some of these
projects manually.

The foreign key usage is better with PostgreSQL projects,
although it is still a minority (47 projects – 44%). This rate
is close to the foreign key usage of MySQL projects when
considering InnoDB projects only. It gives a better opportunity
for additional advices to be checked. The foreign key usage
rate raises significantly to 78% when considering PostgreSQL-
only projects vs dual support projects (very sure).

On the very few projects with partial foreign key declara-
tions, several of these declaration reveal latent bugs, including
type mismatch, typically CHAR targeting a VARCHAR or vice-
versa, or different integers, and type length mismatch, usually
non matching VARCHAR sizes. There are 22 such bugs found
out of the small 1387 declared MySQL attribute constraints,
and 156 among the 3861 PostgreSQL constraints. There are
also 130 important warnings related to foreign keys raised
for MySQL, and 227 for PostgreSQL. If this ratio of errors
is projected on a the number of tables involved, hundreds
additional latent bugs could be detected if the developers were
to declare the referential constraints.

C. Miscellaneous issues

More issues were found about style, attribute constraints
and by comparing projects with dual database support.

There is 10679 noticeable style issues raised from our
analyses (5088 for MySQL, 5591 for PostgreSQL), relating

13

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

6

 0

 25

 50

 75

 100

 125

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u
m

b
e

r
o
f
p
ro

je
c
ts

c
u
m

u
la

ti
v
e
 %

MySQL quality

 0

 25

 50

 75

 100

 125

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u
m

b
e

r
o
f
p
ro

je
c
ts

c
u
m

u
la

ti
v
e
 %

MySQL quality

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u
m

b
e

r
o
f
p
ro

je
c
ts

c
u
m

u
la

ti
v
e
 %

PostgreSQL quality

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u
m

b
e

r
o
f
p
ro

je
c
ts

c
u
m

u
la

ti
v
e
 %

PostgreSQL quality

TABLE IV
QUALITY PER DECILE

MySQL projects
Size nb avg σ min med max

small 134 4.6 ± 1.3 0.5 4.5 9.1
medium 132 4.3 ± 1.2 0.0 4.4 8.7
large 114 4.4 ± 1.3 0.0 4.5 8.2

PostgreSQL projects
Size nb avg σ min med max

small 37 5.1 ± 1.9 0.0 5.2 9.4
medium 27 5.7 ± 1.6 2.0 5.3 9.3
large 41 5.4 ± 2.0 0.0 5.7 9.1

TABLE V
QUALITY PER SIZE

MySQL projects
Category nb avg σ min med max
project 17 4.5 ± 1.1 1.4 4.8 6.2
system 35 4.4 ± 1.4 0.0 4.7 7.0
blog 24 4.5 ± 0.9 2.5 4.5 7.2
forum 19 4.3 ± 0.9 2.4 4.4 5.7
cms 69 4.3 ± 0.9 0.5 4.3 6.3
market 21 4.0 ± 1.4 1.9 4.3 8.2

PostgreSQL projects
Category nb avg σ min med max

accounting 7 6.1 ± 2.3 2.0 6.5 9.1
cms 9 6.4 ± 1.3 4.1 6.2 8.1
irc 7 5.4 ± 1.7 2.0 5.7 7.4
project 9 5.8 ± 1.5 4.4 5.3 9.3
system 19 4.9 ± 1.7 2.0 5.0 9.0
mail 8 4.9 ± 1.6 3.0 4.8 7.5

TABLE VI
QUALITY PER PROJECT MAIN CATEGORIES

MySQL projects
Techno. nb avg σ min med max
java 13 4.7 ± 2.4 0.0 5.2 7.8
c 29 4.7 ± 1.5 2.0 4.7 8.4
perl 14 4.1 ± 2.1 0.5 4.6 8.7
php 304 4.4 ± 1.1 0.0 4.4 8.4

PostgreSQL projects
Techno. nb avg σ min med max
java 11 6.0 ± 2.6 0.0 6.5 9.3
perl 9 5.8 ± 1.8 2.0 6.1 8.1
php 49 5.2 ± 1.7 0.0 5.4 8.2
c 25 5.0 ± 1.7 2.0 5.1 9.0

TABLE VII
QUALITY PER PROJECT MAIN TECHNOLOGIES

MySQL projects
Date nb avg σ min med max

recent 125 4.4 ± 1.2 1.3 4.4 8.4
older 255 4.4 ± 1.3 0.0 4.4 9.1

PostgreSQL projects
Date nb avg σ min med max

recent 52 5.3 ± 1.6 0.0 5.3 9.3
older 53 5.5 ± 2.0 0.0 5.7 9.4

TABLE VIII
QUALITY PER PROJECT RELEASE DATE

to table or attribute names, including a number of one-letter
attribute names or two-letters table names. The id attribute
name is used in the SLASH project with up to 6 different types,
mixing various integers and fixed or variable length text types.
In PHPETITION, a date attribute has types DATE, DATETIME or
VARCHAR. 80% of MySQL projects and 79% of PostgreSQL
have such style issues.

Many projects does not bother with NOT NULL attribute
declarations: 86 MySQL projects (22%) and 45 PostgreSQL
projects (42%) have over half of their attributes null-able. This
does not reflect the overall use of constraints: for MySQL, the
average number of key-related constraints per table is 1.06
(from KANNEL 0.00 to OPENMRS 3.54), while for PostgreSQL
it is 1.20 (from ANDROMEDA 0.00 to ADEMPIERE 4.25). Project
ANDROMEDA is astonishing: there is not a single constraint
declared (no primary key, no foreign key, no unique, no not

null) on the 180 tables, although there are a number of non-
unique indexes and of sequences.

It is interesting to compare the schemas of the 78 projects
available with both databases. This dual support must not
be taken at face value: PostgreSQL support is often an
afterthought and is not necessarily functional, including project
such as ELGG, TAGADASH, QUICKTEAM or TIKIWIKI where some
PostgreSQL table declarations use an incompatible MySQL
syntax; 27 (34%) projects have missing tables or attributes
between the MySQL and PostgreSQL versions: 190 tables and
173 individual attributes are missing or misspelled one side or
another. Among the missing tables, 73 look like some kind
of sequence, and thus might be possibly legitimate, although
why the auto increment feature was not satisfactory is unclear.
At the minimum, the functionalities are not the same between
MySQL and PostgreSQL versions for those projects.

14

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

7

D. Overall quality
We have computed a synthetic project quality evaluation

ranging from 10 (good) to 0 (bad) by removing points based
on advice severity (error, warning, notice), level (schema,
table, attribute) and project size. The MySQL projects quality
average is 4.4 ± 1.3 (from 9.1 GENOVAWEB to 0.0 OSCARMC-
MASTER), significantly lower than PostgreSQL 5.4±1.8 (from
9.4 COMICS to 0.0 NURPAWIKI) (very sure). This does not
come as a surprise: most MySQL projects choose the default
data-unsafe MyISAM engine, hence incur a penalty. Also, the
multiplicity of MySQL back-ends allows the user to mix them
unintentionally, what is not possible with PostgreSQL. When
all MySQL-specific advices are removed, the quality measure
is about the same for both databases. However, as PostgreSQL
schemas provide more information about referential integrity
constraints, they are also penalized as more advices can be
raised based on the provided additional information.

Table IV shows the projects per quality decile. The Post-
greSQL project quality is more spread than MySQL projects
(marginally sure). Table V compares the quality of projects
according to size, where small is up to 9 tables, medium up to
29, and large otherwise. The quality is quite evenly distributed
among sizes, which suggests that our effort to devise a size-
neutral grading succeeded. Table VI compares quality based on
the project categories. The number of projects in each category
is too small to draw deep conclusions. Table VII addresses the
technology used in the project: Java leads while PHP is near
bottom. PHP projects take less care of their relational design
(very sure). Finally, Table VIII shows that quality evaluation
is basically the same for recent and older projects.

V. CONCLUSION

This is the first survey on the quality of relational schemas
in open-source software. The overall quality results are worse
than envisioned at the beginning of the study. Although
we did not expect a lot of perfect projects, having so few
key declarations and referential integrity constraints came
as a surprise. We must acknowledge that our assumption
that data are precious, and that the database should help
preserve its consistency by enforcing integrity constraints and
implementing transactions, is not shared by most open-source
projects, especially when based on MySQL and PHP. This is
illustrated by bug report 15441 about missing keys on tables
in MEDIAWIKI: it had no visible effect after two years.

The first author contributed both to the best PostgreSQL
project (COMICS), and to one of the worst MySQL project
(SLXBBL), which is Salix executed on its own schema! This
deserves an explanation: COMICS is a small database used
for teaching SQL. The normalized schema emphasizes clarity
and cleanliness with a pedagogic goal in mind. Even so, the
two raised warnings deserve to be fixed, although one would
require an additional attribute. SLXBBL tables generate a lot of
errors, because they are views materialized for performance
issues. Also, they rely on MyISAM because some SQL create
table statements must be compatible with both MySQL and
PostgreSQL to ease the tool portability. Nevertheless, the
comparison of schemas allowed to find one bug: an attribute
had a different name, possibly because of a bad copy-paste.

We have released our Salix tool as a free software. As it is
fully relational and relies on standards, it may be installed in
any compliant database to help improve schemas.

Acknowledgement – Thanks to Pierre Jouvelot.

REFERENCES

[1] A. Deshpande and D. Riehle, “The Total Growth of Open Source,” in
4th Conference on Open Source Systems (OSS). Springer Verlag, 2008,
pp. 197–209.

[2] A. Hars, “Working for free? motivations for participating in open-source
projects,” International Journal of Electronic Commerce, vol. 6, pp. 25–
39, 2002, also IEEE 34th Hawaii International Conference on System
Sciences 2001.

[3] K. Crowston and H. Annabi, “Effective work practices for software
engineering: Free/libre open source software development,” in in Proc.
of WISER. ACM Press, 2004, pp. 18–26.

[4] D. M. Nichols and M. B. Twidale, “The usability of open source
software,” First Monday, vol. 8, 2003.

[5] B. Mishra, A. Prasad, and S. Raghunathan, “Quality and Profits Under
Open Source Versus Closed Source,” in ICIS, no. 32, 2002.

[6] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality
analysis in open-source software development,” Information Systems
Journal, 2nd Special Issue on Open-Source, vol. 12, no. 1, pp. 43–60,
Feb. 2002, blackwell Science.

[7] E. Capra, C. Francalanci, and F. Merlo, “En Empirical Study on the
Relationship among Software Design Quality, Development Effort and
Governance in Open Source Projects,” IEEE Software Engineering,
vol. 34, no. 6, pp. 765–782, nov-dec 2008.

[8] R. Gobeille, “The FOSSology Project,” in Working Conference on
Mining Software Repositories, no. 5, Leipzig, Germany, May 2008.

[9] Coverty, “Coverty scan open source report,” Coverty, White Paper, 2009.
[10] Veracode, Inc, “State of security report,” White paper, Mar. 2010.
[11] D. Litchfield, “The Database Exposure Survey 2007,” NGSSoftware

Insight Security Research (NISR), Nov. 2007.
[12] E. F. Codd, “A relational model for large shared databanks,” Communi-

cations of the ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.
[13] ISO/IEC, Ed., 9075-11:2003: Information and Definition Schemas

(SQL/Schemata). ISO/IEC, 2003.
[14] T. J. MacCabe, “A Complexity Measure,” IEEE Software Engineering,

vol. SE-2, no. 4, pp. 308–320, Dec. 1976.
[15] M. Piattini, M. Genero, C. Calero, and G. Alarcos, “Data model metrics,”

in In Handbook of Software Engineering and Knowledge Engineering:
Emerging Technologies, World Scientific, 2002.

[16] M. Genero, “A survey of Metrics for UML Class Diagrams,” Journal
of Object Technology, vol. 4, pp. 59–92, Nov. 2005.

[17] H. M. Sneed and O. Foshag, “Measuring legacy database structures,” in
European Software Measurement Conference (FESMA’98), Hooft and
Peeters, Eds., 1998.

[18] M. Piattini, C. Calero, and M. Genero, “Table Oriented Metrics for
Relational Databases,” Software Quality Journal, vol. 9, no. 2, pp. 79–
97, 2001.

[19] A. L. Baroni, C. Calero, F. Ruiz, and F. Brito e Abreu, “Formalizing
object-relational structural metrics,” in Conference of APSI, Lisbon,
no. 5, Nov. 2004.

[20] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World,”
Communication of the ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010.

[21] F. Coelho, “PG-Advisor: proof of concept SQL script,” Mailed to
pgsql-hackers, Mar. 2004.

[22] J. Currier, “SchemaSpy: Graphical database schema metadata browser,”
Source Forge, Aug. 2005.

[23] B. Schwartz and D. Nichter, “Maatkit,” Google Code, 2007, see
duplicate-key-checker and schema-advisor.

[24] J. Berkus, “Ten ways to wreck your database,” O’Reilly Webcast, Jul.
2009.

[25] A. M. Boehm, M. Wetzka, A. Sickmann, and D. Seipel, “A Tool for
Analyzing and Tuning Relational Database Applications: SQL Query
Analyzer and Schema EnHancer (SQUASH),” in Workshop über Grund-
lagen von Datenbanken, Jun. 2006, pp. 45–49.

[26] F. Coelho, “Database quality survey projects and results,” Nov. 2010,
detailed list of projects considered in A Field Analysis of Relational
Database Schemas in Open Source Software, report A/423/CRI.
[Online]. Available: http://www.coelho.net/salix/projects.html

15

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

http://www.coelho.net/salix/projects.html

	Introduction
	Methodology
	Information schema queries
	Advice classification and project grading
	Survey statistical validation

	Projects
	Project selection
	Overview of projects

	Survey results
	Primary keys
	Referential integrity
	Miscellaneous issues
	Overall quality

	Conclusion
	References

