

Achieving Near Real-Time Data Freshness in Fraud Detection: An HTAP Approach

Matteo G. Giorgino
Department of Computer Information Systems

Faculty of ICT, University of Malta
Msida, Malta

e-mail: matteo.giorgino.18@um.edu.mt

Joseph G. Vella
Department of Computer Information Systems

Faculty of ICT, University of Malta
Msida, Malta

e-mail: joseph.g.vella@um.edu.mt

Abstract—The rise of complex financial fraud in banking
demands sophisticated detection solutions capable of near real-
time operations, delivering rapid responses on fresh data.
Traditional architectures that connect Online Transactional
Processing (OLTP) and Online Analytical Processing (OLAP)
through Extract-Transform-Load (ETL) pipelines often fail to
satisfy these requirements, particularly when both data
consistency and rapid response times are critical. This paper
examines how Hybrid Transactional/Analytical Processing
(HTAP) architectures can address these limitations by
consolidating transactional and analytical workloads within a
single system. To assess HTAP’s suitability for Fraud Detection
in near real-time scenarios, the paper employs HyBench, a
benchmarking framework that measures data freshness in
centralised HTAP systems, augmented with a custom-made
external harness. This setup allows for systematic scenario
exploration and detailed performance tracking under realistic
banking workloads. Across 48 hours, the evaluation executes 96
parameterised runs at multiple data volumes, with database
configurations optimised for the available hardware. Results
indicate that an HTAP platform can sustain continuous access
to fresh data, achieving sub-20 ms freshness, even under mixed
OLTP and OLAP loads, while maintaining high transactional
throughput. Although there are efficiency trade-offs compared
to standalone OLTP or OLAP deployments, proper system
configuration and tuning prove critical for balancing
performance and freshness. Furthermore, the flexible
benchmarking harness developed here enables practitioners to
define custom metrics and integrate additional processing logic
into the pipeline, extending beyond HyBench’s capabilities.

Keywords–HTAP System; Near Real-Time Fraud Detection;
Database Architecture; Data Freshness; DBMS Benchmarking.

I. INTRODUCTION
Effective Fraud Detection in the financial sector hinges

on the availability of relevant, timely and high-quality data
[1]. By scrutinising transaction records for distinctive
patterns and anomalies, modern systems can distinguish
legitimate activities from suspicious or malicious behaviour.
The efficacy of these systems depends on computational
capabilities that guarantee near real-time data freshness,
enabling rapid anomaly detection, and swift pattern
recognition across vast datasets. The ultimate objective is to
classify each transaction accurately and immediately,
preventing fraud without impeding business operations.

In practice, Fraud Detection platforms must ingest data
from a variety of heterogeneous sources. Each source

contributes unique attributes that, when integrated, offer a
comprehensive view of user behaviour. However, differences
in data formats, transmission frequencies and endpoint
capabilities can introduce synchronisation challenges. Data
arrival is often asynchronous, leading to temporary
mismatches between sources that must be reconciled to
preserve analytical accuracy. Ensuring consistent data quality
and low-latency access under such dynamic conditions
requires robust strategies for data ingestion, harmonisation
and error handling. Without adaptive synchronisation
mechanisms, systems risk suffering latency spikes,
incomplete data views or compliance gaps that undermine
detection performance.

Many organisations have adopted architectures that
separate Online Transactional Processing (OLTP) from
Online Analytical Processing (OLAP), which are linked by
Extract-Transform-Load (ETL) workflows. While this
paradigm maintains a clear boundary between transactional
consistency and analytical throughput, it introduces inherent
latency and operational overheads. Batch-oriented ETL
processes can struggle to satisfy the stringent low-latency
requirements of fraud detection and prevents OLTP systems
from directly leveraging the most recent analytical insights
during transaction authorisation.

This paper explores Hybrid Transactional/Analytical
Processing (HTAP) systems as a unified architecture capable
of addressing these limitations. HTAP platforms merge
transactional and analytical workloads, offering continuous,
low-latency access to up-to-date data without the need for
discrete ETL cycles. By running analytics directly on live
transactional feeds, HTAP can enhance both responsiveness
and detection accuracy, reducing the window of vulnerability
to fraud. We present a detailed evaluation of HTAP
performance in a banking context, measuring data freshness,
throughput and anomaly-detection latency under realistic
workload scenarios. To evaluate HTAP’s effectiveness for
near real-time Fraud Detection, we select a benchmarking
suite that defines and measures freshness on a centralised
HTAP system and extends it with a custom-built external
harness. This setup allows for systematic scenario
enumeration and detailed performance tracking across
realistic banking workloads. Our findings demonstrate that,
with careful configuration and tuning, HTAP systems can
sustain sub-20 ms data freshness while processing high
transaction volumes, outperforming OLTP/OLAP
deployments in near real-time fraud detection.

18Copyright (c) IARIA, 2025. ISBN: 978-1-68558-293-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DATA ANALYTICS 2025 : The Fourteenth International Conference on Data Analytics

Despite their advantages, HTAP systems also come with
limitations. Running transactional and analytical workloads
concurrently can cause resource contention, especially under
heavy loads. Tuning performance requires expertise, and
some platforms may lack support for strong consistency or
scalability. Upgrading from traditional architectures also
involves significant cost and complexity.

This paper begins with Section I, which introduces the
problem and motivation. Section II sets out the research aims
and objectives. Section III provides background on fraud
detection in banking, system development, the role of
Database Management Systems (DBMSs), database
architectures, HTAP technologies, and benchmarking.
Section IV details the schema, benchmarking suite, and
experimental setup. Section V presents the results, focusing
on the main Key Performance Indicators (KPIs). Finally,
Section VI summarises the findings and outlines directions
for future work.

II. AIMS AND OBJECTIVES
The Fraud Detection System (FDS) aims to enable near

real-time classification of fraudulent transactions by ensuring
data freshness, and facilitating ad hoc pattern recognition,
thereby addressing the operational limitations of traditional
FDSs. In achieving this aim, a set of objectives was laid
down:

1) Choosing and adapting an HTAP benchmarking
suite, including setting up both separate OLTP and
OLAP components for testing.

2) Seamlessly running both operational and analytical
operations on an HTAP computational set-up.

3) Evaluating the performance of various runs using
the chosen HTAP configuration and different data
movement scenarios.

III. LITERATURE REVIEW

A. Fraud Detection in Banking
Fraud is defined as any activity that relies on deception to

achieve a gain. Banks are among the most obvious targets for
fraudsters seeking financial gain. Given the complexity of
modern fraud schemes and the sophistication of fraudulent
behaviour, the financial industry faces some of the toughest
detection and prevention challenges, necessitating advanced
systems that monitor multiple sources of data.

A recent study revealed that fraud in the banking industry
has become a matter of grave concern for almost all countries
across the globe, causing significant financial and non‐
financial damages to banks, customers, other stakeholders
and economies [2]. Fraud in banking also results in
reputational damage and compliance challenges. Regulatory
compliance further necessitates robust Fraud Detection
frameworks to protect sensitive data and ensure adherence to
legal standards and frameworks.

B. Fraud Detection Systems Development
Traditional FDS primarily rely on rule‐based approaches,

which flag suspicious activities based on predefined criteria,
such as unusually high transaction amounts, frequent

transactions, or geographical discrepancies [3]. These static
rules struggle to adapt to the continuously evolving tactics
employed by fraudsters.

Machine Learning (ML) techniques are increasingly
being integrated into traditional FDS to address some of these
limitations, as discussed by Minastireanu [4]. These models
typically employ supervised learning models trained on
historical data [5]. They exhibit reduced efficacy against
novel fraud schemes that deviate significantly from historical
fraudulent patterns. Additionally, these ML approaches often
require substantial time and resources for periodic retraining
and validation to maintain their relevance.

A further notable limitation of traditional systems is the
separation of the transactional data, which is used in day‐to‐
day activities, from the analytical data utilised in reporting
and analysis. These distinct operational environments are
often optimised differently, as discussed by Camilleri et al.
[16], impeding the integration of real‐time transaction
analysis with historical data evaluation. Lastly, the broader
advancement of Fraud Detection methodologies suffers due
to restricted knowledge‐sharing within the public domain.

C. Database Management Systems for Fraud Detection
DBMSs are critical components in Fraud Detection

architectures, serving as the backbone for processing large
volumes of transactional and analytical data. As banks
grapple with increasing transaction volumes and
sophisticated fraud schemes, traditional DBMSs face
limitations, prompting the exploration of more advanced
DBMS architectures that can provide near-real‐time
responses, robust scalability, and comprehensive data
integration.

A DBMS ensures that data remains available to users and
applications, handles increasing volumes of data without loss
of data consistency, and can scale to meet rising demand.
DBMSs play an increasingly crucial role in supporting Fraud
Detection mechanisms in banking. The ability of a DBMS to
process, store, and retrieve data efficiently in a structured
manner can significantly improve the quality of Fraud
Detection efforts.

At its core, an FDS must rapidly ingest large volumes of
heterogeneous data, enforce stringent data quality and
integrity constraints, and support ad hoc analytical queries.
Nevertheless, relational DBMSs have encountered
bottlenecks in performance and scalability, especially in
transactional processing [6]. Detecting patterns of suspicious
transactions requires the ability to query and analyse
historical data alongside real‐time transactions.

To address these challenges, the DBMS landscape has
diversified into multiple directions. Noticeably, columnar
with in‐memory analytical platforms are enabling HTAP by
integrating OLTP and OLAP workloads within a single
engine. By maintaining online materialised views or
employing Multi‐Version Concurrency Control (MVCC)
optimised for mixed workloads, HTAP systems permit on‐
the‐fly computation of fraud scores without the latency
penalties of ETL pipelines [7].

Practical performance depends heavily on real‐world data
patterns, which are driven not just by the underlying schema

19Copyright (c) IARIA, 2025. ISBN: 978-1-68558-293-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DATA ANALYTICS 2025 : The Fourteenth International Conference on Data Analytics

but by unpredictable end‐user behaviour, which make static
optimisation insufficient. This unpredictability creates
additional challenges in scaling transactional throughput
while preserving data consistency guarantees.

D. Database Architecture for Fraud Detection
In many architectures, OLTP and OLAP systems operate

and are set-up in isolation. OLTP databases are optimised for
light transactions with few tuples in its scope, handling
inserts, updates and deletes with ACID (Atomicity,
Consistency, Isolation and Duration) guarantees, whereas
OLAP engines are tuned for complex, read‐heavy queries
against large datasets. To bridge these worlds, ETL pipelines
are constructed to periodically move data from OLTP
systems into purpose-built Data Warehouses (DWH) to
support OLAP. This also introduces latency: data freshness
is bounded by the ETL cadence, and the overhead of
maintaining dual schemas with the pipeline code can be
substantial [8].

There are two major challenges organisations face to
maintain a data infrastructure that caters for their data driven
decision making, namely; (i) performance in terms of query
response time, transactional throughput, and resilience to
computational failures, and (ii) moving data from internal and
external data sources to build an integrated, synchronised,
business‐process focused, and time‐variant data repository,
i.e., a Data Warehouse [9].

If data freshness becomes a requirement, as in a banking
FDS, then the architecture with ETL does not meet it. HTAP
architectures seek to collapse the boundary between OLTP
and OLAP by introducing a computational set-up that
supports both workloads within a single, integrated engine
and instance.

This unified approach can dramatically reduce data
movement overheads, eliminate ETL‐induced data staleness,
and simplify system maintenance. However, it does demand
advanced engine optimisations and comes at a loss of the
decoupling and staging flexibility offered by ETL pipelines.
DWHs and OLAP asynchronous updates are typically not
suitable for real‐time Fraud Detection, as they are designed
to process large datasets in batches, resulting in delays that
could allow fraudsters to act before fraud is detected, as
OLAP is querying stale (i.e., not fresh) data [10].

E. HTAP Architectures and Techniques
HTAP, attributed to Gartner in 2014 by Zhang et al. [8],

describes a database architecture that unifies transaction
processing and analytics in near real-time, allowing OLTP
and OLAP workloads to run side by side without undue
interference, as seen in Figure 1. By collapsing separate
systems and eliminating complex ETL pipelines [11], HTAP
simplifies data management. However, supporting both
transactional and analytical demands simultaneously remains
challenging, given their inherently different performance and
resource requirements.

Overall, supporting both transactional and analytical
queries on the same dataset increases the risk of data
contention in HTAP systems, necessitates careful

management of isolation levels, concurrency controls, and
workload balancing strategies is essential.

HTAP remains a conceptual model rather than a formally
standardised architecture, and there is currently no broad
consensus on the best way to implement it. One common
architecture is the primary row store with an in‐memory
column store, where the primary storage is a row‐oriented
database optimised for transactional operations, and an in-
memory column store used to handle analytical queries. This
design facilitates real‐time analytics without compromising
transactional performance.

The choice of architecture depends on specific application
requirements, workload characteristics and resources
available. For instance, high-volume transactional systems
favour OLTP for fast, consistent writes, while analytics-
heavy workloads benefit from OLAP’s read-optimized
design. Hybrid systems like HTAP are more suitable when
near real-time insights are needed without sacrificing
transactional integrity, such as in fraud detection scenarios.
Additionally, resource constraints (e.g., limited memory or
compute power) may dictate the use of simpler architectures,
whereas larger organizations with more capacity can adopt
in-memory or distributed architectures for greater
responsiveness and scale.

Figure 1. HTAP System Overview [15].

The primary challenge in an HTAP system is to facilitate
the smooth flow of data from all these different sources into
a unified platform where both transactional and analytical
operations can occur. Ensuring that transactional updates and
analytical views remain tightly consistent is critical for
applications that demand ACID guarantees, such as Fraud
Detection in banking. Thus, HTAP platforms in banking must
implement strong consistency mechanisms to synchronise
updates from OLTP to OLAP stores with minimal latency
and without sacrificing throughput.

F. Benchmarking
Benchmarking database systems underpins objective

performance assessment, offering repeatable tests that
measure metrics, such as throughput, latency or completion
time against standardised workloads [11]. A typical
benchmark defines a data schema, data volume, workloads
(queries and transactions) and an evaluation criterion. These
tests serve multiple purposes: identifying raw horsepower

20Copyright (c) IARIA, 2025. ISBN: 978-1-68558-293-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DATA ANALYTICS 2025 : The Fourteenth International Conference on Data Analytics

through intensive tuning; comparing enhancements or
configuration changes; and contrasting architectures or
hardware choices under controlled conditions. Fairness,
consistency and conservatism in benchmark design are
essential to yield meaningful insights.

Several HTAP-specific benchmarks have emerged [13].
Early efforts, such as CH-benCHmark extend the Transaction
Processing Performance Council’s (TPC) benchmarks TPC-
C and TPC-H by executing transactional and analytical
workloads on the same dataset, thereby revealing workload
contention effects [14]. However, these benchmarks still lack
the depth required for domains like banking, where anomaly
detection and time-sensitive analytics are paramount.

HyBench [15] was developed to address these precise
challenges. It integrates realistic banking transactions
alongside analytical tasks like trend analysis. Its workload
comprises 18 transactional operations and 13 analytical
queries executed under mixed scenarios, mirroring real-
world HTAP use cases more closely than its predecessors. By
focusing on financial workloads and anomaly-driven
scenarios, HyBench offers a comprehensive evaluation
framework that blends transactional throughput, analytical
query performance and data freshness. Its extensible design
allows practitioners to adjust parameters, incorporate new
metrics or inject domain-specific logic, making it a versatile
tool for advancing HTAP research and guiding production
deployments in latency-sensitive environments.

IV. DESIGN, IMPLEMENTATION AND TESTING

G. System Design
HyBench forms the foundation of our evaluation

framework, simulating both transactional and analytical
workloads on a unified schema mimicking typical banking
entity, such as customers, accounts, transactions, loans and
companies, with SFs of 1x, 10x and 100x factors to
approximate 1 GB, 10 GB and 100 GB of base data,
respectively. A harness orchestrates the workflow: it restores
a clean database snapshot, vacuums and analyses tables to
eliminate fragmentation, pre-warms the cache using a
representative query, then launches concurrent clients for:

● Transactional Processing (TP) workloads, with
high-volume, short-lived OLTP operations

● Analytical Processing (AP) workloads, with long-
running, scan-intensive OLAP-style queries

● Hybrid Processing (XP) mixed workloads,
combining both TP and AP workloads

All tests were conducted on a standalone machine
(macOS, M3 Pro, 16 GB RAM, 500 GB SSD), using
PostgreSQL 16, with pg_stat_statements enabled to record
detailed query metrics. The Python 3.13.2 harness performed
orchestration and monitoring, while Java components (via
OpenJDK 21) drove the HyBench workload. Key
PostgreSQL configurations were tuned, allowing up to 100
concurrent connections, allocating 4 GB each to
shared_buffers and effective_cache_size, disabling
autovacuum, and setting work_mem to 64 MB. These
configurations were chosen based on the available hardware
capacity and industry best practices.

During each benchmark, we gathered metrics from both
HyBench logs and the Python harness, e.g., query
performance data—including total and mean execution times
(ms), execution counts, rows returned, shared block hits and
reads, and the query text—table activity counts for inserts,
updates and deletes, lock information detailing lock types and
their frequencies, transactional throughput figures for
committed transactions per table, as well as total transactions
(committed plus rolled back), and storage statistics listing
schema and table names alongside total table and index sizes.

Together, these KPIs offer a comprehensive view on
resource use and contention under concurrent OLTP/OLAP
conditions. To unify these dimensions, HyBench’s creators
introduced the H-Score. This unified metric incorporates
Transactions Per Second (TPS), Queries Per Second (QPS),
mixed workload throughput (XPS = TPS + QPS for mixed
workloads), data freshness (fs) and Scale Factor (SF) to yield
an overall performance rating. The H-Score is defined as the
geometric mean of all throughputs, multiplied by the SF and
divided by the freshness metric, as in (1).

 𝐻	𝑆𝑐𝑜𝑟𝑒	 = 	𝑆𝐹	 × 	 "#$%	×	'$%×($%	!

)"*+
 (1)

H-Score is beneficial as solely relying on one aspect

cannot reflect the true HTAP performance. The five
components in H‐Score are widely recognised by
benchmarking suites as the most important factors for
quantifying the HTAP performance [10].

H. Implementation
We defined 11 core parameter dimensions to explore

various workload mixes and data volumes, producing 144
unique configurations, as seen in Table 1, but we ultimately
retained only 96 combinations (i.e., the 1x and 10x SF ones)
after observing inconsistent KPI behaviour at 100x, namely
scalability limits in HyBench’s threading and PostgreSQL’s
I/O performance on given computer set-up.

By adjusting these parameters, we could evaluate
scenarios with standard transactional-heavy loads (3:1
TP:AP) and more analytics-intensive mixes (3:2 TP:AP), as
well as stress-test at 100x SF.

A Python harness was built to minimize manual
intervention. The script handled the below process:

1) Generate the HyBench ‘.props’ files
programmatically for every parameter combination.

2) Restore and reset the database from a known backup
via ‘pg_restore’ utility, then execute VACUUM
FULL ANALYZE on all tables to rebuild storage
and refresh Data Dictionary (DD) statistics.

3) Prewarm the cache using a realistic query that joins
key tables and exercises index and sequential scans
in parallel, ensuring relevant pages are memory‐
resident.

4) Launch HyBench with a ‘.props’ configuration file,
while a background process queries the DD views,
pg_stat_statements, pg_locks, pg_stat_user_tables
and pg_stat_database every 60s for live metrics.

5) Parse the logs and plot key performance indicators.

21Copyright (c) IARIA, 2025. ISBN: 978-1-68558-293-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DATA ANALYTICS 2025 : The Fourteenth International Conference on Data Analytics

TABLE I. HYBENCH PARAMETER CHOICES

Parameter Set Value Description

sf 1x, 10x, 100x Scale factors for the table
data

at_percentages
(35,25,15,15,7,3),
(3,7,15,15,25,35),
(10,10,20,20,20,20)

AT Ratio (sum = 100%)

apclient 10 AP concurrency

tpclient 15, 30 TP concurrency

fresh_interval 150 Freshness evaluation is done
every (xpRunMins/150) s

apRunMins 5, 10 AP evaluation time

tpRunMins 5, 10 TP evaluation time

xpRunMins 5, 10 XP evaluation time

xapclient 10 XP-ATS concurrency

xtpclient 15, 30 XP-IQS concurrency

distribution Uniform Data distribution at
generation phase

I. Testing
We began with unit tests of individual harness modules

(e.g., DB housekeeping, monitoring). Next, integration
tests ran end-to-end workflows using varied ‘.props’ files
to validate the sequence: restore → housekeeping →
prewarm → workload → monitoring. Logs from
PostgreSQL and HyBench were cross verified to ensure
consistency, accounting for differences in granularity (e.g.,
DBMS internal vs. atomic operations launched by HyBench).
All runs were performed in a controlled environment with
server resource prioritisation to avoid external interference.
Three main scenarios were executed – each taking 24 hours:

1) 1x: Establish expected performance and tune
PostgreSQL parameters to avoid configuration‐
induced artefacts.

2) 10x: Stress test concurrency, observe degradation in
freshness and throughput, and validate that HTAP
sustains desired freshness under mixed workloads.

3) 100x: Identify limits of the harness and the hardware
set-up available for the DBMS, revealing thread‐
management issues, Java Database Connectivity
termination overheads, and I/O saturation that
rendered metrics unreliable (consequently it was
discarded for evaluation).

For each run, we generated data (via HyBench’s gendata
module), created indexes and tables, and ran the full
benchmark cycles. Post-run validation included checking
table and index sizes, transaction counts and comparing
relative throughput trends against published HyBench with
PostgreSQL baselines to confirm that our findings aligned
qualitatively with prior results.

V. EVALUATION
Across both 1x and 10x data volumes, the HTAP setup

consistently delivered sub-20 ms data freshness,

demonstrating its ability to service the latest transactional
changes to analytical queries almost instantaneously. At 1x
scale, the F-Score typically ranged from 2 ms to 12 ms, with
occasional peaks near 12 ms under high contention; at 10x,
peaks rose only slightly—up to around 15 ms—confirming
robust freshness even under heavier mixed loads. This
encouraging performance underpins real‐time use cases
where even small delays can blindside FDS.

Figure 2. TPS vs QPS vs H-Score over all 1x Runs.

The composite H-Score further highlights the trade-offs
inherent in unified HTAP processing. At 1x, H-Scores were
higher but volatile, spanning 180 to 260, reflecting bursts of
transactional and analytical contention (see the sharp ridges
and valleys in Figure 2). Conversely, 10x runs yielded lower
but much more stable H-Scores (about 18–28), indicating that
increased data volume smooths performance variability
through more effective MVCC snapshot isolation and
adaptive resource scheduling (as shown by the more
compressed surface in Figure 3).

Figure 3. TPS vs QPS vs H-Score over all 10x Runs.

Although running OLTP and OLAP workloads
independently on the same system can yield higher raw TPS
or QPS in isolation, this approach still lacks the integration
needed for real-time analytics and introduces delays when
used in sequence. In contrast, the HTAP unified architecture
eliminates these delays by supporting concurrent
transactional and analytical workloads within a single engine.

22Copyright (c) IARIA, 2025. ISBN: 978-1-68558-293-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DATA ANALYTICS 2025 : The Fourteenth International Conference on Data Analytics

Mixed-mode throughput in our HTAP configuration was
approximately 3.5x lower than the sum of isolated workloads
at SF 1x, and around 4x lower at SF 10x, due to shared
resource contention under mixed loads. However, these
throughput trade-offs are more than offset by the removal of
data staleness, pipeline complexity, and maintenance
overhead, resulting in a streamlined, low-latency platform
ideally suited to modern, mission-critical analytics.

VI. CONCLUSION
The overall objective of our evaluation was to investigate

the feasibility of employing an HTAP architecture capable of
handling mixed workloads, while also delivering near real-
time data insights within a fraud detection scenario. The
technique to evaluate this feasibility was by using an HTAP
benchmarking suite, while simultaneously building a harness
in order to be able to orchestrate the entire process, keeping
reproducibility and fairness across all runs.

Our runs show that, with proper configuration, HTAP
systems can consistently uphold demanding Service Level
Agreements by keeping sub-second data freshness while
handling heavy mixed workloads at scale. The benchmarking
methodology offers a practical guide for rolling out HTAP in
live environments. However, one must take into
consideration contention between long-running analytical
queries and high-frequency transactions which led to latency
spikes–highlighting the need for fine-grained concurrency
control and adaptive resource scheduling. Early attempts
using default database configurations significantly
underperformed, reinforcing the necessity of tailored tuning
and proactive monitoring. To capitalise on these advantages,
data architects should start incorporating HTAP-aware access
patterns and concurrency controls starting from the
application design phase.

Future research could expand in several directions.
Pushing tests to HyBench’s higher scale factors would shed
light on I/O behaviour, buffer management and concurrency
under extreme loads and therefore better sizing of the
instance. Exploring in-memory databases with persistent
Non-Volatile RAM logging, as well as evaluating DBMS
auto-tuning features for adaptive query optimisation, could
further improve low-latency analytics. Standardising
HyBench and adding support for varied data distributions,
refining freshness metrics, and harmonising threading
models is a critical need. Finally, extending the harness
presented here for domain-specific microbenchmarks would
create a unified framework for HTAP evaluation across
sectors.

Looking ahead, the full adoption of HTAP architectures
holds significant promise, but not without challenges. On the
one hand, HTAP offers a path to simpler architectures,
fresher data, and faster insights extraction, aligning closely
with modern regulatory, operational, and customer
expectations. On the other hand, widespread adoption will
require rethinking application patterns, retraining
engineering teams, and overcoming vendor lock-in as HTAP
maturity varies across platforms. Moreover, while HTAP

simplifies data pipelines, it shifts complexity into query
optimisation, workload isolation, and configuration
management; domains that still require advanced expertise
and careful management. If these challenges can be
addressed, HTAP could become a cornerstone for near real-
time, data-driven decision-making in finance and beyond.

REFERENCES
[1] O. O. Elumilade, I. A. Ogundeji, G. O. Achumie, and H. E.

Omokhoa, “Enhancing Fraud Detection and forensic auditing
through data‐driven techniques for financial integrity and
security,” Journal of Advanced Education and Sciences, vol. 1,
no. 2, pp. 55–63, 2021.

[2] D. Mangala and L. Soni, “A systematic literature review on
frauds in banking sector,” Journal of Financial Crime, vol. 30,
no. 1, pp. 285–301, 2023.

[3] N. Faisal, J. Nahar, N. Sultana, and A. A. Mintoo, “Fraud
Detection in Banking Leveraging AI to Identify and Prevent
Fraudulent Activities in Real‐Time,” Journal of Machine
Learning, Data Engineering and Data Science, vol. 1, no. 01,
pp. 181–197, 2024.

[4] E. A. Minastireanu and G. Mesnita, “An Analysis of the Most
Used Machine Learning Algorithms for Online Fraud
Detection.,” Informatica Economica, vol. 23, no. 1, 2019.

[5] A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection
system: A Survey,” Journal of Network and Computer
Applications, vol. 68, pp. 90–113, 2016.

[6] S. A. Ionescu, V. Diaconita, and A. O. Radu, “Engineering
Sustainable Data Architectures for Modern Financial
Institutions,” Electronics, vol. 14, no. 8, p. 1650, 2025.

[7] Z. Zhang, A. Megargel, and L. Jiang, “Performance Evaluation
of NewSQL Databases in a Distributed Architecture,” IEEE
Access, 2025.

[8] C. Zhang, G. Li, J. Zhang, X. Zhang, and J. Feng, “HTAP
Databases: A Survey,” IEEE Transactions on Knowledge and
Data Engineering, 2024.

[9] W. Lehner, “Merging OLTP and OLAP–Back to the Future:
(Panel),” in International Workshop on Business Intelligence
for the Real‐Time Enterprise, Springer, 2009, pp. 171–173.

[10] R. Kimball, M. Ross, W. Thornthwaite, J. Mundy, and B.
Becker, The data warehouse lifecycle toolkit. J Wiley, 2008.

[11] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmarking:
Requirements and solutions,” Int. Journal on Software Tools
for Technology Transfer, vol. 21, no. 1, pp. 1–29, 2019.

[12] TPC‐C Homepage — tpc.org, https://www.tpc.ord/tpcc/.
[Retrieved: June, 2025]

[13] S. Leutenegger “A modeling study of the TPC‐C benchmark,”
ACM Sigmod Record, vol. 22, no. 2, pp. 22–31, 1993.

[14] R. Cole et al., “The mixed workload CH‐benCHmark,” in
Proceedings of the Fourth International Workshop on Testing
Database Systems, 2011, pp. 1–6.

[15] C. Zhang, G. Li, and T. Lv, “HyBench: A New Benchmark for
HTAP Databases,” Proceedings of the VLDB Endowment, vol.
17, no. 5, pp. 939–951, 2024.

[16] C. Camilleri, C. Vella and V. Nezval, “HTAP with Reactive
Streaming ETL,” JCIT, vol. 23, no. 4, pp. 1-9, 2021.

23Copyright (c) IARIA, 2025. ISBN: 978-1-68558-293-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DATA ANALYTICS 2025 : The Fourteenth International Conference on Data Analytics

