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Abstract—The rise of complex financial fraud in banking 
demands sophisticated detection solutions capable of near real-
time operations, delivering rapid responses on fresh data. 
Traditional architectures that connect Online Transactional 
Processing (OLTP) and Online Analytical Processing (OLAP) 
through Extract-Transform-Load (ETL) pipelines often fail to 
satisfy these requirements, particularly when both data 
consistency and rapid response times are critical. This paper 
examines how Hybrid Transactional/Analytical Processing 
(HTAP) architectures can address these limitations by 
consolidating transactional and analytical workloads within a 
single system. To assess HTAP’s suitability for Fraud Detection 
in near real-time scenarios, the paper employs HyBench, a 
benchmarking framework that measures data freshness in 
centralised HTAP systems, augmented with a custom-made 
external harness. This setup allows for systematic scenario 
exploration and detailed performance tracking under realistic 
banking workloads. Across 48 hours, the evaluation executes 96 
parameterised runs at multiple data volumes, with database 
configurations optimised for the available hardware. Results 
indicate that an HTAP platform can sustain continuous access 
to fresh data, achieving sub-20 ms freshness, even under mixed 
OLTP and OLAP loads, while maintaining high transactional 
throughput. Although there are efficiency trade-offs compared 
to standalone OLTP or OLAP deployments, proper system 
configuration and tuning prove critical for balancing 
performance and freshness. Furthermore, the flexible 
benchmarking harness developed here enables practitioners to 
define custom metrics and integrate additional processing logic 
into the pipeline, extending beyond HyBench’s capabilities. 

Keywords–HTAP System; Near Real-Time Fraud Detection; 
Database Architecture; Data Freshness; DBMS Benchmarking. 

I.  INTRODUCTION 
Effective Fraud Detection in the financial sector hinges 

on the availability of relevant, timely and high-quality data 
[1]. By scrutinising transaction records for distinctive 
patterns and anomalies, modern systems can distinguish 
legitimate activities from suspicious or malicious behaviour. 
The efficacy of these systems depends on computational 
capabilities that guarantee near real-time data freshness, 
enabling rapid anomaly detection, and swift pattern 
recognition across vast datasets. The ultimate objective is to 
classify each transaction accurately and immediately, 
preventing fraud without impeding business operations. 

In practice, Fraud Detection platforms must ingest data 
from a variety of heterogeneous sources. Each source 

contributes unique attributes that, when integrated, offer a 
comprehensive view of user behaviour. However, differences 
in data formats, transmission frequencies and endpoint 
capabilities can introduce synchronisation challenges. Data 
arrival is often asynchronous, leading to temporary 
mismatches between sources that must be reconciled to 
preserve analytical accuracy. Ensuring consistent data quality 
and low-latency access under such dynamic conditions 
requires robust strategies for data ingestion, harmonisation 
and error handling. Without adaptive synchronisation 
mechanisms, systems risk suffering latency spikes, 
incomplete data views or compliance gaps that undermine 
detection performance. 

Many organisations have adopted architectures that 
separate Online Transactional Processing (OLTP) from 
Online Analytical Processing (OLAP), which are linked by 
Extract-Transform-Load (ETL) workflows. While this 
paradigm maintains a clear boundary between transactional 
consistency and analytical throughput, it introduces inherent 
latency and operational overheads. Batch-oriented ETL 
processes can struggle to satisfy the stringent low-latency 
requirements of fraud detection and prevents OLTP systems 
from directly leveraging the most recent analytical insights 
during transaction authorisation. 

This paper explores Hybrid Transactional/Analytical 
Processing (HTAP) systems as a unified architecture capable 
of addressing these limitations. HTAP platforms merge 
transactional and analytical workloads, offering continuous, 
low-latency access to up-to-date data without the need for 
discrete ETL cycles. By running analytics directly on live 
transactional feeds, HTAP can enhance both responsiveness 
and detection accuracy, reducing the window of vulnerability 
to fraud. We present a detailed evaluation of HTAP 
performance in a banking context, measuring data freshness, 
throughput and anomaly-detection latency under realistic 
workload scenarios. To evaluate HTAP’s effectiveness for 
near real-time Fraud Detection, we select a benchmarking 
suite that defines and measures freshness on a centralised 
HTAP system and extends it with a custom-built external 
harness. This setup allows for systematic scenario 
enumeration and detailed performance tracking across 
realistic banking workloads. Our findings demonstrate that, 
with careful configuration and tuning, HTAP systems can 
sustain sub-20 ms data freshness while processing high 
transaction volumes, outperforming OLTP/OLAP 
deployments in near real-time fraud detection. 
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Despite their advantages, HTAP systems also come with 
limitations. Running transactional and analytical workloads 
concurrently can cause resource contention, especially under 
heavy loads. Tuning performance requires expertise, and 
some platforms may lack support for strong consistency or 
scalability. Upgrading from traditional architectures also 
involves significant cost and complexity. 

This paper begins with Section I, which introduces the 
problem and motivation. Section II sets out the research aims 
and objectives. Section III provides background on fraud 
detection in banking, system development, the role of 
Database Management Systems (DBMSs), database 
architectures, HTAP technologies, and benchmarking. 
Section IV details the schema, benchmarking suite, and 
experimental setup. Section V presents the results, focusing 
on the main Key Performance Indicators (KPIs). Finally, 
Section VI summarises the findings and outlines directions 
for future work. 

II. AIMS AND OBJECTIVES 
The Fraud Detection System (FDS) aims to enable near 

real-time classification of fraudulent transactions by ensuring 
data freshness, and facilitating ad hoc pattern recognition, 
thereby addressing the operational limitations of traditional 
FDSs. In achieving this aim, a set of objectives was laid 
down: 

1) Choosing and adapting an HTAP benchmarking 
suite, including setting up both separate OLTP and 
OLAP components for testing. 

2) Seamlessly running both operational and analytical 
operations on an HTAP computational set-up. 

3) Evaluating the performance of various runs using 
the chosen HTAP configuration and different data 
movement scenarios. 

III. LITERATURE REVIEW 

A. Fraud Detection in Banking 
Fraud is defined as any activity that relies on deception to 

achieve a gain. Banks are among the most obvious targets for 
fraudsters seeking financial gain. Given the complexity of 
modern fraud schemes and the sophistication of fraudulent 
behaviour, the financial industry faces some of the toughest 
detection and prevention challenges, necessitating advanced 
systems that monitor multiple sources of data. 

A recent study revealed that fraud in the banking industry 
has become a matter of grave concern for almost all countries 
across the globe, causing significant financial and non‐
financial damages to banks, customers, other stakeholders 
and economies [2]. Fraud in banking also results in 
reputational damage and compliance challenges. Regulatory 
compliance further necessitates robust Fraud Detection 
frameworks to protect sensitive data and ensure adherence to 
legal standards and frameworks. 

B. Fraud Detection Systems Development 
Traditional FDS primarily rely on rule‐based approaches, 

which flag suspicious activities based on predefined criteria, 
such as unusually high transaction amounts, frequent 

transactions, or geographical discrepancies [3]. These static 
rules struggle to adapt to the continuously evolving tactics 
employed by fraudsters. 

Machine Learning (ML) techniques are increasingly 
being integrated into traditional FDS to address some of these 
limitations, as discussed by Minastireanu [4]. These models 
typically employ supervised learning models trained on 
historical data [5]. They exhibit reduced efficacy against 
novel fraud schemes that deviate significantly from historical 
fraudulent patterns. Additionally, these ML approaches often 
require substantial time and resources for periodic retraining 
and validation to maintain their relevance. 

A further notable limitation of traditional systems is the 
separation of the transactional data, which is used in day‐to‐
day activities, from the analytical data utilised in reporting 
and analysis. These distinct operational environments are 
often optimised differently, as discussed by Camilleri et al. 
[16], impeding the integration of real‐time transaction 
analysis with historical data evaluation. Lastly, the broader 
advancement of Fraud Detection methodologies suffers due 
to restricted knowledge‐sharing within the public domain. 

C. Database Management Systems for Fraud Detection 
DBMSs are critical components in Fraud Detection 

architectures, serving as the backbone for processing large 
volumes of transactional and analytical data. As banks 
grapple with increasing transaction volumes and 
sophisticated fraud schemes, traditional DBMSs face 
limitations, prompting the exploration of more advanced 
DBMS architectures that can provide near-real‐time 
responses, robust scalability, and comprehensive data 
integration. 

A DBMS ensures that data remains available to users and 
applications, handles increasing volumes of data without loss 
of data consistency, and can scale to meet rising demand. 
DBMSs play an increasingly crucial role in supporting Fraud 
Detection mechanisms in banking. The ability of a DBMS to 
process, store, and retrieve data efficiently in a structured 
manner can significantly improve the quality of Fraud 
Detection efforts. 

At its core, an FDS must rapidly ingest large volumes of 
heterogeneous data, enforce stringent data quality and 
integrity constraints, and support ad hoc analytical queries. 
Nevertheless, relational DBMSs have encountered 
bottlenecks in performance and scalability, especially in 
transactional processing [6]. Detecting patterns of suspicious 
transactions requires the ability to query and analyse 
historical data alongside real‐time transactions. 

To address these challenges, the DBMS landscape has 
diversified into multiple directions. Noticeably, columnar 
with in‐memory analytical platforms are enabling HTAP by 
integrating OLTP and OLAP workloads within a single 
engine. By maintaining online materialised views or 
employing Multi‐Version Concurrency Control (MVCC) 
optimised for mixed workloads, HTAP systems permit on‐
the‐fly computation of fraud scores without the latency 
penalties of ETL pipelines [7]. 

Practical performance depends heavily on real‐world data 
patterns, which are driven not just by the underlying schema 

19Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-293-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DATA ANALYTICS 2025 : The Fourteenth International Conference on Data Analytics



 

 

but by unpredictable end‐user behaviour, which make static 
optimisation insufficient. This unpredictability creates 
additional challenges in scaling transactional throughput 
while preserving data consistency guarantees. 

D. Database Architecture for Fraud Detection 
In many architectures, OLTP and OLAP systems operate 

and are set-up in isolation. OLTP databases are optimised for 
light transactions with few tuples in its scope, handling 
inserts, updates and deletes with ACID (Atomicity, 
Consistency, Isolation and Duration) guarantees, whereas 
OLAP engines are tuned for complex, read‐heavy queries 
against large datasets. To bridge these worlds, ETL pipelines 
are constructed to periodically move data from OLTP 
systems into purpose-built Data Warehouses (DWH) to 
support OLAP. This also introduces latency: data freshness 
is bounded by the ETL cadence, and the overhead of 
maintaining dual schemas with the pipeline code can be 
substantial [8]. 

There are two major challenges organisations face to 
maintain a data infrastructure that caters for their data driven 
decision making, namely; (i) performance in terms of query 
response time, transactional throughput, and resilience to 
computational failures, and (ii) moving data from internal and 
external data sources to build an integrated, synchronised, 
business‐process focused, and time‐variant data repository, 
i.e., a Data Warehouse [9]. 

If data freshness becomes a requirement, as in a banking 
FDS, then the architecture with ETL does not meet it. HTAP 
architectures seek to collapse the boundary between OLTP 
and OLAP by introducing a computational set-up that 
supports both workloads within a single, integrated engine 
and instance.  

This unified approach can dramatically reduce data 
movement overheads, eliminate ETL‐induced data staleness, 
and simplify system maintenance. However, it does demand 
advanced engine optimisations and comes at a loss of the 
decoupling and staging flexibility offered by ETL pipelines. 
DWHs and OLAP asynchronous updates are typically not 
suitable for real‐time Fraud Detection, as they are designed 
to process large datasets in batches, resulting in delays that 
could allow fraudsters to act before fraud is detected, as 
OLAP is querying stale (i.e., not fresh) data [10]. 

E. HTAP Architectures and Techniques 
HTAP, attributed to Gartner in 2014 by Zhang et al. [8], 

describes a database architecture that unifies transaction 
processing and analytics in near real-time, allowing OLTP 
and OLAP workloads to run side by side without undue 
interference, as seen in Figure 1. By collapsing separate 
systems and eliminating complex ETL pipelines [11], HTAP 
simplifies data management. However, supporting both 
transactional and analytical demands simultaneously remains 
challenging, given their inherently different performance and 
resource requirements. 

Overall, supporting both transactional and analytical 
queries on the same dataset increases the risk of data 
contention in HTAP systems, necessitates careful 

management of isolation levels, concurrency controls, and 
workload balancing strategies is essential. 

HTAP remains a conceptual model rather than a formally 
standardised architecture, and there is currently no broad 
consensus on the best way to implement it. One common 
architecture is the primary row store with an in‐memory 
column store, where the primary storage is a row‐oriented 
database optimised for transactional operations, and an in-
memory column store used to handle analytical queries. This 
design facilitates real‐time analytics without compromising 
transactional performance. 

The choice of architecture depends on specific application 
requirements, workload characteristics and resources 
available. For instance, high-volume transactional systems 
favour OLTP for fast, consistent writes, while analytics-
heavy workloads benefit from OLAP’s read-optimized 
design. Hybrid systems like HTAP are more suitable when 
near real-time insights are needed without sacrificing 
transactional integrity, such as in fraud detection scenarios. 
Additionally, resource constraints (e.g., limited memory or 
compute power) may dictate the use of simpler architectures, 
whereas larger organizations with more capacity can adopt 
in-memory or distributed architectures for greater 
responsiveness and scale. 

 
Figure 1.  HTAP System Overview [15]. 

The primary challenge in an HTAP system is to facilitate 
the smooth flow of data from all these different sources into 
a unified platform where both transactional and analytical 
operations can occur. Ensuring that transactional updates and 
analytical views remain tightly consistent is critical for 
applications that demand ACID guarantees, such as Fraud 
Detection in banking. Thus, HTAP platforms in banking must 
implement strong consistency mechanisms to synchronise 
updates from OLTP to OLAP stores with minimal latency 
and without sacrificing throughput. 

F. Benchmarking 
Benchmarking database systems underpins objective 

performance assessment, offering repeatable tests that 
measure metrics, such as throughput, latency or completion 
time against standardised workloads [11]. A typical 
benchmark defines a data schema, data volume, workloads 
(queries and transactions) and an evaluation criterion. These 
tests serve multiple purposes: identifying raw horsepower 
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through intensive tuning; comparing enhancements or 
configuration changes; and contrasting architectures or 
hardware choices under controlled conditions. Fairness, 
consistency and conservatism in benchmark design are 
essential to yield meaningful insights. 

Several HTAP-specific benchmarks have emerged [13]. 
Early efforts, such as CH-benCHmark extend the Transaction 
Processing Performance Council’s (TPC) benchmarks TPC-
C and TPC-H by executing transactional and analytical 
workloads on the same dataset, thereby revealing workload 
contention effects [14]. However, these benchmarks still lack 
the depth required for domains like banking, where anomaly 
detection and time-sensitive analytics are paramount. 

HyBench [15] was developed to address these precise 
challenges. It integrates realistic banking transactions 
alongside analytical tasks like trend analysis. Its workload 
comprises 18 transactional operations and 13 analytical 
queries executed under mixed scenarios, mirroring real-
world HTAP use cases more closely than its predecessors. By 
focusing on financial workloads and anomaly-driven 
scenarios, HyBench offers a comprehensive evaluation 
framework that blends transactional throughput, analytical 
query performance and data freshness. Its extensible design 
allows practitioners to adjust parameters, incorporate new 
metrics or inject domain-specific logic, making it a versatile 
tool for advancing HTAP research and guiding production 
deployments in latency-sensitive environments. 

IV. DESIGN, IMPLEMENTATION AND TESTING 

G. System Design 
HyBench forms the foundation of our evaluation 

framework, simulating both transactional and analytical 
workloads on a unified schema mimicking typical banking 
entity, such as customers, accounts, transactions, loans and 
companies, with SFs of 1x, 10x and 100x factors to 
approximate 1 GB, 10 GB and 100 GB of base data, 
respectively. A harness orchestrates the workflow: it restores 
a clean database snapshot, vacuums and analyses tables to 
eliminate fragmentation, pre-warms the cache using a 
representative query, then launches concurrent clients for: 

● Transactional Processing (TP) workloads, with 
high-volume, short-lived OLTP operations 

● Analytical Processing (AP) workloads, with long-
running, scan-intensive OLAP-style queries 

● Hybrid Processing (XP) mixed workloads, 
combining both TP and AP workloads 

All tests were conducted on a standalone machine 
(macOS, M3 Pro, 16 GB RAM, 500 GB SSD), using 
PostgreSQL 16, with pg_stat_statements enabled to record 
detailed query metrics. The Python 3.13.2 harness performed 
orchestration and monitoring, while Java components (via 
OpenJDK 21) drove the HyBench workload. Key 
PostgreSQL configurations were tuned, allowing up to 100 
concurrent connections, allocating 4 GB each to 
shared_buffers and effective_cache_size, disabling 
autovacuum, and setting work_mem to 64 MB. These 
configurations were chosen based on the available hardware 
capacity and industry best practices. 

During each benchmark, we gathered metrics from both 
HyBench logs and the Python harness, e.g., query 
performance data—including total and mean execution times 
(ms), execution counts, rows returned, shared block hits and 
reads, and the query text—table activity counts for inserts, 
updates and deletes, lock information detailing lock types and 
their frequencies, transactional throughput figures for 
committed transactions per table, as well as total transactions 
(committed plus rolled back), and storage statistics listing 
schema and table names alongside total table and index sizes. 

Together, these KPIs offer a comprehensive view on 
resource use and contention under concurrent OLTP/OLAP 
conditions. To unify these dimensions, HyBench’s creators 
introduced the H-Score. This unified metric incorporates 
Transactions Per Second (TPS), Queries Per Second (QPS), 
mixed workload throughput (XPS = TPS + QPS for mixed 
workloads), data freshness (fs) and Scale Factor (SF) to yield 
an overall performance rating. The H-Score is defined as the 
geometric mean of all throughputs, multiplied by the SF and 
divided by the freshness metric, as in (1). 

 
  𝐻	𝑆𝑐𝑜𝑟𝑒	 = 	𝑆𝐹	 × 	 "#$%	×	'$%×($%	!

)"*+
               (1) 

 
H-Score is beneficial as solely relying on one aspect 

cannot reflect the true HTAP performance. The five 
components in H‐Score are widely recognised by 
benchmarking suites as the most important factors for 
quantifying the HTAP performance [10]. 

H. Implementation 
We defined 11 core parameter dimensions to explore 

various workload mixes and data volumes, producing 144 
unique configurations, as seen in Table 1, but we ultimately 
retained only 96 combinations (i.e., the 1x and 10x SF ones) 
after observing inconsistent KPI behaviour at 100x, namely 
scalability limits in HyBench’s threading and PostgreSQL’s 
I/O performance on given computer set-up. 

By adjusting these parameters, we could evaluate 
scenarios with standard transactional-heavy loads (3:1 
TP:AP) and more analytics-intensive mixes (3:2 TP:AP), as 
well as stress-test at 100x SF.  

A Python harness was built to minimize manual 
intervention. The script handled the below process: 

1) Generate the HyBench ‘.props’ files 
programmatically for every parameter combination. 

2) Restore and reset the database from a known backup 
via ‘pg_restore’ utility, then execute VACUUM 
FULL ANALYZE on all tables to rebuild storage 
and refresh Data Dictionary (DD) statistics. 

3) Prewarm the cache using a realistic query that joins 
key tables and exercises index and sequential scans 
in parallel, ensuring relevant pages are memory‐
resident. 

4) Launch HyBench with a ‘.props’ configuration file, 
while a background process queries the DD views, 
pg_stat_statements, pg_locks, pg_stat_user_tables 
and pg_stat_database every 60s for live metrics. 

5) Parse the logs and plot key performance indicators. 
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TABLE I.  HYBENCH PARAMETER CHOICES 

Parameter Set Value Description 

sf 1x, 10x, 100x Scale factors for the table 
data 

at_percentages 
(35,25,15,15,7,3), 
(3,7,15,15,25,35), 
(10,10,20,20,20,20) 

AT Ratio (sum = 100%) 

apclient 10 AP concurrency 

tpclient 15, 30 TP concurrency 

fresh_interval 150 Freshness evaluation is done 
every (xpRunMins/150) s 

apRunMins 5, 10 AP evaluation time 

tpRunMins 5, 10 TP evaluation time 

xpRunMins 5, 10 XP evaluation time 

xapclient 10 XP-ATS concurrency 

xtpclient 15, 30 XP-IQS concurrency 

distribution Uniform Data distribution at 
generation phase 

 

I. Testing 
We began with unit tests of individual harness modules 

(e.g., DB housekeeping, monitoring). Next, integration 
tests ran end-to-end workflows using varied ‘.props’ files 
to validate the sequence: restore → housekeeping → 
prewarm → workload → monitoring. Logs from 
PostgreSQL and HyBench were cross verified to ensure 
consistency, accounting for differences in granularity (e.g., 
DBMS internal vs. atomic operations launched by HyBench). 
All runs were performed in a controlled environment with 
server resource prioritisation to avoid external interference. 
Three main scenarios were executed – each taking 24 hours: 

1) 1x: Establish expected performance and tune 
PostgreSQL parameters to avoid configuration‐
induced artefacts. 

2) 10x: Stress test concurrency, observe degradation in 
freshness and throughput, and validate that HTAP 
sustains desired freshness under mixed workloads. 

3) 100x: Identify limits of the harness and the hardware 
set-up available for the DBMS, revealing thread‐
management issues, Java Database Connectivity 
termination overheads, and I/O saturation that 
rendered metrics unreliable (consequently it was 
discarded for evaluation). 

For each run, we generated data (via HyBench’s gendata 
module), created indexes and tables, and ran the full 
benchmark cycles. Post-run validation included checking 
table and index sizes, transaction counts and comparing 
relative throughput trends against published HyBench with 
PostgreSQL baselines to confirm that our findings aligned 
qualitatively with prior results. 

V. EVALUATION 
Across both 1x and 10x data volumes, the HTAP setup 

consistently delivered sub-20 ms data freshness, 

demonstrating its ability to service the latest transactional 
changes to analytical queries almost instantaneously. At 1x 
scale, the F-Score typically ranged from 2 ms to 12 ms, with 
occasional peaks near 12 ms under high contention; at 10x, 
peaks rose only slightly—up to around 15 ms—confirming 
robust freshness even under heavier mixed loads. This 
encouraging performance underpins real‐time use cases 
where even small delays can blindside FDS. 

 
Figure 2.  TPS vs QPS vs H-Score over all 1x Runs. 

The composite H-Score further highlights the trade-offs 
inherent in unified HTAP processing. At 1x, H-Scores were 
higher but volatile, spanning 180 to 260, reflecting bursts of 
transactional and analytical contention (see the sharp ridges 
and valleys in Figure 2). Conversely, 10x runs yielded lower 
but much more stable H-Scores (about 18–28), indicating that 
increased data volume smooths performance variability 
through more effective MVCC snapshot isolation and 
adaptive resource scheduling (as shown by the more 
compressed surface in Figure 3). 

 
Figure 3.  TPS vs QPS vs H-Score over all 10x Runs. 

Although running OLTP and OLAP workloads 
independently on the same system can yield higher raw TPS 
or QPS in isolation, this approach still lacks the integration 
needed for real-time analytics and introduces delays when 
used in sequence. In contrast, the HTAP unified architecture 
eliminates these delays by supporting concurrent 
transactional and analytical workloads within a single engine. 
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Mixed-mode throughput in our HTAP configuration was 
approximately 3.5x lower than the sum of isolated workloads 
at SF 1x, and around 4x lower at SF 10x, due to shared 
resource contention under mixed loads. However, these 
throughput trade-offs are more than offset by the removal of 
data staleness, pipeline complexity, and maintenance 
overhead, resulting in a streamlined, low-latency platform 
ideally suited to modern, mission-critical analytics. 

VI. CONCLUSION 
The overall objective of our evaluation was to investigate 

the feasibility of employing an HTAP architecture capable of 
handling mixed workloads, while also delivering near real-
time data insights within a fraud detection scenario. The 
technique to evaluate this feasibility was by using an HTAP 
benchmarking suite, while simultaneously building a harness 
in order to be able to orchestrate the entire process, keeping 
reproducibility and fairness across all runs. 

Our runs show that, with proper configuration, HTAP 
systems can consistently uphold demanding Service Level 
Agreements by keeping sub-second data freshness while 
handling heavy mixed workloads at scale. The benchmarking 
methodology offers a practical guide for rolling out HTAP in 
live environments. However, one must take into 
consideration contention between long-running analytical 
queries and high-frequency transactions which led to latency 
spikes–highlighting the need for fine-grained concurrency 
control and adaptive resource scheduling. Early attempts 
using default database configurations significantly 
underperformed, reinforcing the necessity of tailored tuning 
and proactive monitoring. To capitalise on these advantages, 
data architects should start incorporating HTAP-aware access 
patterns and concurrency controls starting from the 
application design phase. 

Future research could expand in several directions. 
Pushing tests to HyBench’s higher scale factors would shed 
light on I/O behaviour, buffer management and concurrency 
under extreme loads and therefore better sizing of the 
instance. Exploring in-memory databases with persistent 
Non-Volatile RAM logging, as well as evaluating DBMS 
auto-tuning features for adaptive query optimisation, could 
further improve low-latency analytics. Standardising 
HyBench and adding support for varied data distributions, 
refining freshness metrics, and harmonising threading 
models is a critical need. Finally, extending the harness 
presented here for domain-specific microbenchmarks would 
create a unified framework for HTAP evaluation across 
sectors. 

Looking ahead, the full adoption of HTAP architectures 
holds significant promise, but not without challenges. On the 
one hand, HTAP offers a path to simpler architectures, 
fresher data, and faster insights extraction, aligning closely 
with modern regulatory, operational, and customer 
expectations. On the other hand, widespread adoption will 
require rethinking application patterns, retraining 
engineering teams, and overcoming vendor lock-in as HTAP 
maturity varies across platforms. Moreover, while HTAP 

simplifies data pipelines, it shifts complexity into query 
optimisation, workload isolation, and configuration 
management; domains that still require advanced expertise 
and careful management. If these challenges can be 
addressed, HTAP could become a cornerstone for near real-
time, data-driven decision-making in finance and beyond. 
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