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Abstract—Heterogeneous graph neural networks have achieved
remarkable success in modeling multi-relational data. However,
the risks associated with backdoor attack have largely gone
unexplored. In this paper, we present a new structure-based
backdoor attack method for heterogeneous graph neural networks.
Our method uses a set of designed trigger nodes in the graph
connected to semantically related parts of the graph using
clustering-based trigger node selection. Triggering nodes cause
the model to misclassify certain target nodes as an attacker-
specified class while still keeping a high accuracy on the clean
data. Preliminary experiments on publicly available benchmark
datasets show that our proposed backdoor attack is effective
and stealthy. This shows that there is a clear need for security
awareness in heterogeneous graph learning.
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I. INTRODUCTION

Heterogeneous Graph Neural Networks (HGNNs) have
quickly become prominent for leveraging multi-typed relational
data, such as through recommendation [1], social analysis [2]
and financial intelligence applications [3]. While HGNNs have
gained much success in applications, there has been a lack of
investigation into their security. Just like their homogeneous
counterparts, HGNNs are susceptible to backdoor attacks;
intentional corruption of a model such that the model will
perform incorrectly when using a certain trigger. Backdoor
attacks are serious attacks that have been overlooked by many
researchers.

Unlike traditional adversarial attacks, backdoor attacks
implant a hidden pattern during training that causes abnormal
responses to specific triggers. While such attacks can target var-
ious graph-based tasks, this work focuses on the classification
setting, where at inference time the model behaves normally on
clean data but misclassifies target nodes into attacker-specified
classes when the input contains the trigger.

Numerous notable approaches have been proposed for
homogeneous graph backdoor attack, such as Unnoticeable
Graph Backdoor Attack (UGBA) [4] and Clean-label Graph
Backdoor Attack (CGBA)[5]. Specifically, UGBA employs
structure-level triggers by optimizing the triggering structure’s
topological similarity with benign substructures, with the goal
of minimizing the visibility of perturbation, and avoiding
structural detection. Alternatively, CGBA utilizes a clean-
label approach by injecting feature-based triggers into nodes
belonging to the target class, without any modifications to the
labels or graph structure. In general, both methods assume
same node types with homogeneous edge semantics, and
lack modeling mechanisms to adequately represent semantic

Figure 1. Backdoor process.

constraints in heterogeneous graphs, such that their overall
attack effectiveness cannot be fully realized.

Our method achieves target-specific misclassification without
compromising the overall performance of the model. This is
accomplished by adding carefully selected trigger nodes and
forming edges that are consistent with the types of the key
regions. The preliminary results suggest that these assaults are
highly effective and difficult to detect, raising concerns over
the security of HGNN-based systems. This method has several
problems because it needs the capacity to change the network
topology and a complete understanding of graph schemas,
which makes it less useful in black-box situations.

The remainder of this extended abstract is organized as fol-
lows. Section II introduces the proposed backdoor attack frame-
work designed for heterogeneous graphs. Section III presents
experimental results on the IMDB dataset(a comprehensive
online databases of movies, TV shows, actors, and production
crew information), which shows the relationships between
movies, actors and directors, to validate the effectiveness and
stealthiness of the attack. Section IV provides a comparative
discussion with existing methods, and Section V concludes the
paper with future directions.

II. METHODS

We propose Heterogeneous Backdoor Attack (HeteroBA),
a structure-manipulating backdoor attack framework tailored
for heterogeneous graphs. The core idea is to insert a node of
a type that can legally connect to the target node type, and
generate semantically coherent features for it using a Feature
Generator. To provide coherence with the relational constraints
of heterogeneous graphs, an Edge Generator links this trigger
node to other present nodes in a type-consistent manner. This
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TABLE I. BACKDOOR ATTACK EFFECTIVENESS ON IMDB DATASET

Dataset Victim Model Class Trigger ASR CAD
HeteroBA-C HeteroBA-R CGBA UGBA HeteroBA-C HeteroBA-R CGBA UGBA

IMDB

HAN
0

director
0.9953 0.6791 0.5618 0.2087 0.0307 0.0265 0.0037 0.0364

1 0.9984 0.8458 0.4523 0.2991 -0.0031 -0.0094 -0.0119 0.0037
2 1.0000 0.9003 0.4992 0.3582 0.0068 -0.0068 0.0010 0.0067

HGT
0

director
0.8473 0.7975 0.4851 0.5109 0.0036 0.0021 -0.0104 0.0291

1 0.9299 0.8878 0.4147 0.7757 0.0182 −0.0146 0.0130 0.0026
2 0.8894 0.8193 0.4523 0.6807 0.0026 -0.0099 -0.0015 0.0182

SimpleHGN
0

director
0.9533 0.7679 0.3881 0.8443 -0.0047 0.0015 -0.0244 0.0005

1 0.9502 0.9486 0.3850 0.9595 0.0047 0.0052 -0.0130 0.0291
2 0.9720 0.8255 0.3474 0.9330 -0.0052 −0.0166 0.0156 0.0078

enables the injected node to propagate misleading information
to the target node while maintaining high stealthiness.

The overall attack pipeline is illustrated in Figure 1. The
Feature Generator and Edge Generator work together to insert
a crafted trigger node (e.g., the red node) into the graph,
connecting it to semantically relevant regions. During training,
the trigger is embedded into the model without degrading
clean performance. At test time, when the same structural
pattern reappears and connects to a target node, it activates the
backdoor behavior, causing the target to be misclassified into
the attacker-specified class.

In order to provide stealth for the implanted trigger nodes,
the Feature Generator gives them feature vectors with properties
close to those of benign nodes of the same type. This is done
by modeling the feature distribution in relation to the trigger
node type using Kernel Density Estimation (KDE) [6]. KDE is
a non-parametric method of estimating the probability density
function of a random variable. In our case, it captures the
empirical feature distribution of clean nodes from the target
class.

For a given set of clean nodes of a certain type (e.g., "author"
nodes in an academic network), we apply Kernel Density
Estimation (KDE) to get a smoothed estimate of their feature
space. We then sample new feature vectors for trigger nodes
from this estimated distribution. This method guarantees that
the generated features are statistically indistinguishable from
those of valid nodes, thereby rendering it hard to identify
trigger nodes via feature-based anomaly detection methods.

To enhance the influence of the trigger and improve its
stealthiness within the graph structure, the Edge Generator in
HeteroBA adopts a clustering-based strategy to determine how
the trigger node is connected. Specifically, we first identify
a subset of nodes that are legally allowed to connect to the
target node type according to the schema of the heterogeneous
graph. We then perform clustering within this subset based on
node feature information, dividing the candidates into several
semantically coherent and structurally compact regions.

After clustering, we select some influential nodes and connect
the trigger node to them. Not only does this approach ensure
legitimate edge types, but it also inserts the trigger into a
meaningful local context. Compared to random, clustering-
driven edge selection improves the attack effectiveness while
preserving the graph’s overall structure, making the backdoor
harder to detect.

III. RESULTS

We evaluate our method on the widely used IMDB dataset,
which is a heterogeneous graph composed of three node types:
movies, directors, and actors, with edges representing semantic
relations such as directed-by and acted-in. In our attack setting,
director nodes are injected as trigger nodes to manipulate the
classification results of movie nodes. A visual comparison of
the graph before and after trigger injection is presented in
Figure 1.

To measure attack effectiveness, we employ two conventional
evaluation metrics. The Attack Success Rate (ASR) is the ratio
of poisoned target nodes that are misclassified into an attacker-
chosen label at inference. The Clean Accuracy Drop (CAD)
shows how much test accuracy goes down on clean data, which
shows how stealthy the attack is [4].

As shown in Table I, under the HAN model [7], our
proposed method HeteroBA-C (which uses clustering-based
edge injection) achieves over 99% ASR across all target
classes, significantly outperforming baselines such as CGBA
and UGBA. The CAD, on the other hand, stays within ±0.01,
which means that clean data is not affected much.

To further validate the effectiveness of the clustering-based
edge injection strategy, we compare HeteroBA-C with a
variant called HeteroBA-R, in which the injected trigger node
connects to randomly selected legal-type nodes instead of
semantically coherent clusters. Table I shows that HeteroBA-R
has a much lower ASR, while CAD is similar to HeteroBA-C.
This contrast shows that clustering-based structural placement
greatly improves the effectiveness of attacks without sacrificing
stealthiness.

IV. DISCUSSION

The comparison of the IMDB dataset indicates that HeteroBA
works far more effectively when dealing with graphs that have
multiple types of nodes and connections. By incorporating type-
compatible trigger nodes and semantically consistent edges, our
approach attains better attack efficacy with minimal disturbance
to accurate predictions.

In terms of computational cost, the dominant overhead of
HeteroBA lies in the clustering-based auxiliary node selection.
Let p denote the number of target nodes and naux the number
of auxiliary nodes. For each target node, HeteroBA performs
a clustering operation with complexity O(naux log naux), re-
sulting in an overall time complexity of O(p · naux log naux).
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Other steps such as feature sampling and edge insertion incur
negligible cost. This demonstrates that HeteroBA balances both
attack performance and computational scalability, making it
feasible for practical use in real-world heterogeneous graphs.

CGBA, on the other hand, only foucuses on feature-
level modification by finding the most discriminative feature
dimension and using it as a trigger in the poisoned nodes.
This method is simple, it lacks structural adaptability. More
importantly, in real-world applications such as social networks
or recommendation systems, directly altering node features
(e.g., modifying user profiles or item attributes) is often
impractical or easily detectable. HeteroBA’s method of adding
additional nodes or edges, on the other hand, is both achievable
and undetected, making it easier to fit into existing graph
structures.

UGBA, on the other hand, employes a bi-level optimization
strategy: The inner loop increases the classification confidence
of the poisoned nodes, while the outer loop uses cosine distance
to make sure that the features are similar at the feature level.
This design works well in homogeneous environments, but it
does not quite capture the complex semantics of different node
types and relationships found in heterogeneous graphs. As a
result, its triggers lack contextual compatibility, reducing both
effectiveness and stealth.

The consistently low CAD values across multiple classes
and models confirm that HeteroBA is not too noticeable.
These findings clearly demonstrate that HGNNs are particularly
susceptible to backdoor attacks that exploit their structural
awareness. They stress the urgent need to create targeted
protection mechanisms that are tailored to the specific semantics
and realistic structures present in these models.

V. CONCLUSION AND FUTURE WORK

In this work, we propose HeteroBA, a heterogeneous
graph neural network backdoor attack framework that perturbs
structure specifically crafted for the task. By co-designing
feature and edge generators according to the graph schema,
HeteroBA is able to inject semantically plausible triggers that
cause targeted misclassification with minimal negative impact
on clean data. Experiments on the IMDB dataset validate its
high attack success rate and remarkable stealth capabilities
over baselines with demonstrated performance.

For future work, We intend to expand HeteroBA toa broader
range of heterogeneous graph datasets in different domain,
including academic networks (e.g., DBLP-a computer science
bibliography website) [8], e-commerce networks (e.g., Amazon)
[9], and extensive bibliographic graphs (e.g., OAG-a large
knowledge graph unifying two billion-scale academic graphs)
[10]. To solve scalability problems in such large graphs, we will

look into more efficient versions of our approach, including
clustering with sampling or mini-batch KDE-based feature
generation, to reduce the amount of computing resources
needed without lowering performance. We also intend to eval-
uate our method under more diverse victim models, including
Graph Attention Networks (GAT) based [11] and transformer-
based heterogeneous Graph Neural Networks (GNNs) [12].
In addition, we aim to explore adaptive defense mechanisms
capable of detecting or neutralizing structure-aware backdoors
in heterogeneous settings.
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