
Text Classification Using a Word-Reduced Graph

Hiromu Nakajima

Major in Computer and Information Sciences

Graduate School of Science and Engineering,

Ibaraki University

Hitachi, Ibaraki, Japan

e-mail: 22nm738g@vc.ibaraki.ac.jp

Minoru Sasaki

Dept. of Computer and Information Sciences

Faculty of Engineering, Ibaraki University

Hitachi, Ibaraki, Japan

e-mail: minoru.sasaki.01@vc.ibaraki.ac.jp

Abstract— Text classification, which determines the label of a

document based on cues such as the co-occurrence of words and

their frequency of occurrence, has been studied in various

approaches to date. Conventional text classification methods

using graph structure data express the relationship between

words, the relationship between words and documents, and the

relationship between documents in terms of the weights of edges

between each node. They are then trained by inputting into a

graph neural network. However, text classification methods

using those graph-structured data require a very large amount

of memory, and therefore, in some environments, they do not

work properly or cannot handle large data. In this study, we

propose a graph structure that is more compact than

conventional methods by removing words that appear in only

one document and are considered unnecessary for text

classification. In addition to save memory, the proposed method

can use a larger trained model by utilizing the saved memory.

The results showed that the method succeeded in saving

memory while maintaining the accuracy of the conventional

method. By utilizing the saved memory, the proposed method

succeeded in using larger trained models, and the classification

accuracy of the proposed method was dramatically improved

compared to the conventional method.

Keywords- text classification; graph convolutional neural

network; semi-supervised learning.

I. INTRODUCTION

Text classification is the task of estimating the appropriate
label for a given document from a predefined set of labels.
This text classification technique has been applied in the real
world to automate the task of classifying documents by
humans. Many researchers are interested in developing
applications that take advantage of text classification
techniques, such as spam classification, topic labeling, and
sentiment analysis.

Recently, Graph Convolutional Neural networks (GCNs)
[1], which can take advantage of data in graph structures, have
been used to solve text classification tasks. TextGCN [2],
VGCN-BERT [3], and BertGCN [4] are examples of text
classification methods that utilize data from graph structures.
In TextGCN [2], word and document nodes are represented
on the same graph (heterogeneous graph), which is input into
GCNs for learning. VGCN-BERT [3] constructs a graph
based on the word embedding and word co-occurrence
information in Bidirectional Encoder Representations from
Transformers (BERT), and learns by inputting the graph into
Vocabulary Graph Convolutional Network (VGCN).
BertGCN [4] is a text classification method that combines the

advantages of transductive learning of GCNs with the
knowledge obtained from large-scale prior learning of BERT.
The graphs produced by these graph-based text classification
methods use relations between words and between words and
documents, but do not use relations between documents, and
are prone to topic drift. Therefore, in [5], we proposed a graph
structure that uses relations between documents to solve this
problem. The method of [5] boasts the best performance
among existing methods for text classification on three
datasets (20NG, R8, and Ohsumed). However, a new problem
arises from the addition of relationships between documents
to the graph, which increases the size of the graph and requires
a lot of memory space. Therefore, we considered that
compacting the size of the graph would reduce the memory
requirement and allow the use of larger data and larger trained
models.

The purpose of this study is twofold. The first is to
successfully save memory by constructing a graph structure
that removes words considered unnecessary in text
classification to solve the problem of insufficient memory.
The second is to improve classification accuracy over
conventional methods by utilizing the reduced memory and
using larger trained models. Specifically, words that appear in
only one document are removed from the graph, reducing both
the weights of edges between word nodes and the weights of
edges between word nodes and document nodes, thereby
saving memory. We believe that this will result in a graph that
is more compact than the graphs created by conventional
methods, saving memory and improving the accuracy of text
classification by using a larger trained model.

This paper is organized as follows. In Section 2, we first
describe graph neural networks used for text classification and
existing research on text classification using graphs. After that,
the structure of graphs created in conventional methods is
described. In Section 3, we describe the graph structure of the
proposed method and the processing after graph construction.
In Section 4, we describe the experiments we conducted to
evaluate the proposed method and show the experimental
results. In Section 5, we discuss the experimental results
presented in Section 4 and conclude in Section 6.

II. RELATED WORKS

A. Text Classification Using Graph Neural Networks

Graph Neural Network (GNN) [6] is a neural network that
learns relationships between graph nodes via the edges that
connect them. There are several types of GNNs depending on
their form. Graph Convolutional Neural networks (GCNs) [1]

25Copyright (c) IARIA, 2023. ISBN: 978-1-68558-111-4

DATA ANALYTICS 2023 : The Twelfth International Conference on Data Analytics

is a neural network that takes a graph as input and learns the
relationship between nodes of interest and their neighbors
through convolutional computation using weights assigned to
the edges between the nodes. Graph Autoencoder (GAE) [7]
is an extension of autoencoder, which extracts important
features by dimensionality reduction of input data, to handle
graph data as well. Graph Attention Network (GAT) [8] is a
neural network that updates and learns node features by
multiplying the weights of edges between nodes by Attention,
a coefficient representing the importance of neighboring
nodes. GNNs are used in a wide range of tasks in the field of
machine learning, such as relation extraction, text generation,
machine translation, and question answering, and have
demonstrated high performance. The success of GNNs in
these wide-ranging tasks has motivated researchers to study
text classification methods based on GNNs, and in particular,
many text classification methods based on GCNs have been
proposed. In TextGCN [2], document and word nodes are
represented on the same graph (heterogeneous graph), which
is input into GCNs for training. In recent years, text
classification methods that combine large-scale pre-trained
models such as BERT with GCNs have also been studied
extensively. VGCN-BERT [3] constructs a graph based on
word co-occurrence information and BERT's word
embedding, and inputs the graph into GCNs for learning. In
BertGCN [4], a heterogeneous graph of words and documents
is constructed based on word co-occurrence information and
BERT's document embedding, and the graph is input into
GCNs for learning. In [5] we propose a graph structure that
exploits relationships between documents.

The detailed description of BertGCN and the graph
structure proposed in [5] is given in the Section Ⅱ-B.

B. Graph Structure of Conventional Methods

BertGCN is a text classification method that combines the
knowledge of BERT obtained by large-scale pre-training
utilizing large unlabeled data with the transductive learning of
GCNs, and was proposed by Lin et al. in July 2021. In
BertGCN, each document is input into BERT, the document
vector is extracted from its output, and it is input into GCNs
as an initial representation of document nodes together with a
heterogeneous graph of documents and words for training.

Lin et al. distinguish the names of the training models
according to the pre-trained model of BERT and the type of
GNN used. The correspondence between pre-trained models
and model names is shown in Table Ⅰ. In this study,
RoBERTaGCN, a model employing roberta-base and GCNs,
is the target of improvement.

TABLE I. NAMES OF THE MODELS.

Pre-Trained Model GNN Name of Model

bert-base GCN BertGCN

roberta-base GCN RoBERTaGCN
bert-base GAT BertGAT

roberta-base GAT RoBERTaGAT

RoBERTaGCN defines weights between nodes on

heterogeneous graphs of words and documents as in (1).

𝐴𝑖,𝑗 =

{

𝑃𝑃𝑀𝐼(𝑖, 𝑗),

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),
1,
0,

𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

Positive point-wise mutual information (PPMI) is used to

weight edges between word nodes. PPMI is a measure of the
degree of association between two events and can be viewed
as word co-occurrence in natural language processing. Term
frequency-inverse document frequency (TF-IDF) values are
used for the weights of edges between word nodes and
document nodes; TF-IDF values are larger for words that
occur more frequently in a document but less frequently in
other documents, i.e., words that characterize that document.

In [5], weights between nodes on heterogeneous graphs of
words and documents are defined as in (2).

𝐴𝑖,𝑗 =

{

𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗),

𝑃𝑃𝑀𝐼(𝑖, 𝑗),

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),
1,
0,

𝑖, 𝑗 𝑎𝑟𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

As shown in (1), RoBERTaGCN considered relations

between words and relations between words and documents
in the form of weights of edges between nodes, but did not
consider relations between documents. Therefore, we have
improved RoBERTaGCN to consider the relationship
between documents by expressing the relationship between
documents in the form of weights of edges between document
nodes. 𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗) in (2) is the weight of edges between
document nodes and represents the cosine similarity. Each
document is tokenized and input into BERT to obtain a
embedding for each document. The Cosine similarity is
calculated between the obtained vectors, and if the Cosine
similarity exceeds a predefined threshold value, the Cosine
similarity is added as weights of edges between corresponding
document nodes.

III. METHOD

This section describes the details of the proposed method.

Figure 1 shows a schematic diagram of the proposed method.

First, a heterogeneous graph of words and documents is

constructed from documents. Next, the graph information

(weight matrix and initial node feature matrix) is input into

the GCN, and the document vector is input into the feed-

forward neural network. Finally, a linear interpolation of the

two predictions is computed and the result is used as the final

prediction.

Figure 1. Schematic Diagram of the Proposed Method.

26Copyright (c) IARIA, 2023. ISBN: 978-1-68558-111-4

DATA ANALYTICS 2023 : The Twelfth International Conference on Data Analytics

A. Build Heterogeneous Graph

First, a heterogeneous graph containing word and
document nodes is constructed. The weights of edges between
nodes 𝑖 and 𝑗 are defined as in (3). 𝑑𝑓 indicates the number of
documents in which the word appears. The difference between
(2) and (3) is that the words that appear in only one document
are removed. This reduces both the weights of edges between
word nodes and the weights of edges between word nodes and
document nodes, thus saving memory. PPMI is used for the
weights of edges between word nodes, and TF-IDF values are
used for the weights of edges between word and document
nodes.

𝐴𝑖,𝑗 =

{

𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗),

𝑃𝑃𝑀𝐼(𝑖, 𝑗),

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),

1,
0,

𝑖, 𝑗 𝑎𝑟𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗

𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗

𝑑𝑓(𝑖) > 1, 𝑑𝑓(𝑗) > 1
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑑𝑓(𝑗) > 1
𝑖 = 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

The process from Section B to E below is based on

RoBERTaGCN [4].

B. Creating the Initial Node Feature Matrix

Next, we create the initial node feature matrix to be input
into the GCNs. We use BERT to obtain the document
embeddings and treat them as the input representations of the
document nodes. The embedded representation 𝑋𝑑𝑜𝑐 of a

document node is represented by 𝑋𝑑𝑜𝑐 ∈ ℝ
𝑛𝑑𝑜𝑐×𝑑 , where

𝑛𝑑𝑜𝑐 is the number of documents and 𝑑 is the number of
embedding dimensions. Overall, the initial node feature
matrix is given by (4).

𝑋 = (
𝑋𝑑𝑜𝑐
0
)
(𝑛𝑑𝑜𝑐+𝑛𝑤𝑜𝑟𝑑)×𝑑

(4)

C. Input into GCN and Learning by GCN

The weights of the edges between nodes and the initial

node feature matrix are input into GCNs for training. The

output feature matrix 𝐿(𝑖) of layer 𝑖 is computed by (5).

𝐿(𝑖) = 𝜌(�̃�𝐿(𝑖−1)𝑊(𝑖)) (5)

𝜌 is the activation function and �̃� is the normalized

adjacency matrix. 𝑊𝑖 ∈ ℝ𝑑𝑖−1×𝑑𝑖 is the weight matrix at

layer 𝑖. 𝐿(0) is 𝑋, the input feature matrix of the model. The

dimension of the final layer of 𝑊 is (number of embedded

dimensions) × (number of output classes). The output of the

GCNs is treated as the final representation of the document

node, and its output is input into the softmax function for

classification. The prediction by the output of the GCNs is

given by (6). 𝑔 represents the GCNs model. The cross-

entropy loss in labeled document nodes is used to

cooperatively optimize the parameters of BERT and GCNs.

𝑍𝐺𝐶𝑁 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑋, 𝐴)) (6)

D. Input into Feedforward Neural Network and Learning

by Feedforward Neural Network

Optimizing GCNs with an auxiliary classifier that directly

handles BERT-embedded representations leads to faster

convergence and improved performance. Specifically, a

document embedded representation 𝑋 is input into a

Feedforward Neural Network. The output is then fed directly

into a softmax function with a weight matrix 𝑊 to create an

auxiliary classifier with BERT. The prediction by the

auxiliary classifier is given by (7).

𝑍𝐵𝐸𝑅𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑋) (7)

E. Interpolation of Predictions with BERT and GCN

A linear interpolation is computed with 𝑍𝐺𝐶𝑁 , the

prediction from RoBERTaGCN, and 𝑍𝐵𝐸𝑅𝑇 , the prediction

from BERT, and the result of the linear interpolation is

adopted as the final prediction. The result of the linear

interpolation is given by (8).

𝑍 = 𝜆𝑍𝐺𝐶𝑁 + (1 − 𝜆)𝑍𝐵𝐸𝑅𝑇 (8)

𝜆 controls the trade-off between the two predictions. 𝜆 =
1 means using the full RoBERTaGCN model, while 𝜆 = 0

means using only the BERT module. When 𝜆 ∈ (0, 1), the

predictions from both models can be balanced, making the

RoBERTaGCN model more optimal. Experiments by Lin et

al. using the graph structure in (1) show that 𝜆 = 0.7 is the

optimal value of 𝜆.

IV. EXPERIMENTS

In this study, two experiments were conducted.

Experiment 1: Experiment to confirm the effectiveness of the
graphs of the proposed method.

In Experiment 1, the classification performance of the
proposed method using compact graphs was compared with
other methods. The parameter λ, which controls the balance
between predictions from BERT and predictions from GCNs,
was fixed at 0.7. Preliminary experiments were conducted on
the validation data, and the optimal values of the threshold of
the cosine similarity for each dataset are shown in Table Ⅱ.
We used the values in Table Ⅱ as our threshold values. The
trained model used was roberta-base. Accuracy was used to
evaluate the experiment. Positive is the label of the correct
answer, negative is the label of the incorrect answer, and
negative is all the remaining labels except the correct label.

27Copyright (c) IARIA, 2023. ISBN: 978-1-68558-111-4

DATA ANALYTICS 2023 : The Twelfth International Conference on Data Analytics

TABLE II. OPTIMAL VALUE FOR COSINE SIMILARITY THRESHOLD.

Dataset Optimal Threshold Value

20NG 0.99

R8 0.975

R52 0.96

Ohsumed 0.965

MR 0.97

Experiment 2: Experiment to check classification accuracy
when changing to a larger trained model.

In Experiment 2, we take advantage of the memory
savings and check the accuracy of the proposed method by
applying a larger trained model. Specifically, the learned
model is changed from roberta-base to roberta-large. λ and
cosine similarity values are set to the same values as in
Experiment 1.

A. Data Set

We evaluated the performance of the proposed method by
conducting experiments using the five data sets shown in
Table Ⅲ. We used the same data used in RoBERTaGCN.
Each dataset was already divided into training and test data,
which we used as is. The ratio of training data to test data is
about 6:4 for 20NG, about 7:3 for R8 and R52, about 4.5:5.5
for Ohsumed, and about 6.5:3.5 for MR.

TABLE III. INFORMATION OF EACH DATA SET.

Dataset Number of Documents Average of Words

20NG 18846 206.4

R8 7674 65.7

R52 9100 69.8

Ohsumed 7400 129.1

MR 10662 20.3

・20-Newsgroups (20NG)

20NG is a dataset in which each document is categorized
into 20 news categories, and the total number of documents is
18846. In our experiments, we used 11314 documents as
training data and 7532 documents as test data.

・R8, R52

Both R8 and R52 are subsets of the dataset provided by
Reuters (total number is 21578). R8 has 8 categories and R52
has 52 categories. The total number of documents in R8 is
7674, and we used 5485 documents as training data and 2189
documents as test data. The total number of documents in R52
is 9100, and we used 6532 documents as training data and
2568 documents as test data.

・Ohsumed

This is a dataset of medical literature provided by the U.S.
National Library of Medicine, and total number of documents
is 13929. Every document has one or more than two related
disease categories from among the 23 disease categories. In
the experiment, we used documents that had only one relevant
disease category, and the number of documents is 7400. We

used 3357 documents as training data and 4043 documents as
test data.

・Movie Review (MR)

This is a dataset of movie reviews and is used for
sentiment classification (negative-positive classification). The
total number of documents was 10662. We used 7108
documents as training data and 3554 documents as test data.

B. Experimental Environment

The experiments were conducted using Google
Colaboratory Pro+, an execution environment for Python and
other programming languages provided by Google. The
details of the specifications of Google Colaboratory Pro+ are
shown in Table Ⅳ.

TABLE IV. DETAILS OF THE SPECIFICATIONS OF GOOGLE

COLABORATORY PRO+.

GPU
Tesla V100（SXM2）

／A100（SXM2）

Memory

12.69GB（standard）

／51.01GB（CPU／GPU (high memory)）

／35.25GB（TPU (high memory)）

Disk
225.89GB（CPU／TPU）

／166.83GB（GPU）

C. Result of Experiment

TABLE V. CLASSIFICATION PERFORMANCE OF THE PROPOSED

METHOD.

 20NG R8 R52
Ohsume

d
MR

Text GCN 86.34 97.07 93.56 68.36 76.74

Simplified

GCN
88.50 - - 68.50 -

LEAM 81.91 93.31 91.84 58.58 76.95

SWEM 85.16 95.32 92.94 63.12 76.65

TF-IDF

+LR
83.19 93.74 86.95 54.66 74.59

LSTM 65.71 93.68 85.54 41.13 75.06

fastText 79.38 96.13 92.81 57.70 75.14

BERT 85.30 97.80 96.40 70.50 85.70

RoBERTa 83.80 97.80 96.20 70.70 89.40

RoBERTa

GCN
89.15 98.58 94.08 72.94 88.66

[5] 89.82 98.81 94.16 74.13 89.00

Proposed

method

（base）

90.02 98.58 96.88 73.53 89.65

Proposed

method

（large）

89.95 98.58 96.81 76.08 91.50

Table Ⅴ compares the classification performance of the

proposed method with the conventional methods. [5] shows
the classification performance when using the graph structure
in (2). proposed method (base) is the result of Experiment 1,
and proposed method (large) is the result of Experiment 2.

28Copyright (c) IARIA, 2023. ISBN: 978-1-68558-111-4

DATA ANALYTICS 2023 : The Twelfth International Conference on Data Analytics

Comparing the results of the Proposed method (base) with
the other methods, the accuracy of 20NG, R52, and MR
improved. The accuracy of the other datasets also maintains a
high level. Even with a compact graph in which words that
appear only in one document are removed, the classification
performance remains high. Therefore, it can be said that the
proposed method succeeds in saving memory.

Comparing the results of the Proposed method (large) with
the other methods, the accuracy is significantly improved for
Ohsumed and MR. The classification performance of
Ohsumed was 76.08%, 1.95% higher than that of [5], and that
of MR was 91.50%, 1.85% higher than that of the Proposed
method (base).

V. DISCUSSION

Table Ⅵ shows the number of word types that appear in
each dataset and the number of words that are removed in the
graph structure of (3). Table Ⅶ shows the number of PPMI
edges added in the original graph structure and the number of
PPMI edges removed in the graph structure of (3). Table Ⅷ
shows the number of TF-IDF edges added in the original
graph structure and the number of TF-IDF edges removed in
the graph structure of (3). Since TF-IDF edges are added
between word and document nodes, the number of edges
removed is the same as the number of words removed. From
these three tables, it can be seen that the graph of the proposed
method reduces the number of edges by 1 to 20%.
Experimental results show that the classification performance
of the proposed method maintains performance of the method
using the original graph structure. Therefore, it can be said that
the proposed method succeeds in saving memory because it
reduces the number of edges on the graph while maintaining
the accuracy.

We believe that the reason why the accuracy was
maintained even with a compact graph is because the words
to be removed were limited to words that appear only in a
single document. Words that appear in only one document do
not propagate document topic information through the word
node, and thus text classification performance is maintained
even if those words are removed.

This study also confirmed the document classification
performance when the trained model was changed to a larger
one, taking advantage of the memory savings. When the
learned model was changed from roberta-base to roberta-large,
the accuracy improved significantly. It is thought that the
change to roberta-large improved the accuracy because it was
able to acquire embedded representations that better reflect the
characteristics of the documents.

TABLE VI. NUMBER OF WORDS REMOVED.

Dataset Number of Words
Number of Words

Removed

20NG 42757 755

R8 7688 225

R52 8892 245

Ohsumed 14157 851
MR 18764 8687

TABLE VII. NUMBER OF PPMI EDGES REMOVED.

Dataset Number of PPMI Edges
Number of Edges

Removed

20NG 22413246 127662
R8 2841760 32954

R52 3574162 36138

Ohsumed 6867490 129938

MR 1504598 314950

TABLE VIII. NUMBER OF TF-IDF EDGES REMOVED.

Dataset Number of TF-IDF Edges
Number of Edges

Removed

20NG 2276720 755
R8 323670 225

R52 407084 245

Ohsumed 588958 851

MR 196826 8687

VI. CONCLUSION AND FUTURE WORK

To solve the memory-consuming problem of

conventional text classification methods based on graph

structures, this paper proposes the text classification method

using compact graphs in which words that appear only in one

document are removed. Experiments confirmed that the

proposed method can maintain the accuracy of the

conventional method while saving a lot of memory.

Experiments also showed that the acuracy of text

classification improves when the learned model is changed to

a larger one, taking advantage of the saved memory.

Future work includes comparing the accuracy with the

proposed method when other features are used instead of

cosine similarity and optimizing the parameter λ for each data.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks.” In ICLR, 2017.

[2] L. Yao, C. Mao and Y. Luo, “Graph convolutional networks for text
classification.” In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 7370-7377, 2019.

[3] Z. Lu, P. Du and J. Y. Nie, “Vgcn-bert: augmenting bert with graph
embedding for text classification.” In European Conference on
Information Retrieval, pp. 369-382, 2020.

[4] Y. Lin, Y. Meng, X. Sun, Q. Han, K. Kuang, J. Li and F. Wu,
“BertGCN: Transductive Text Classification by Combining GCN and
BERT” In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pp. 1456–1462, 2021.

[5] H. Nakajima and M. Sasaki, “Text Classification Using a Graph Based
on Relationships Between Documents.” In Proceedings of the 36th
Pacific Asia Conference on Language, Information and Computation,
pp. 119–125, Manila, Philippines. De La Salle University. 2022.

[6] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G. Monfardini,
"The graph neural network model," IEEE Transactions on Neural
Networks, vol.20, no.1, pp.61-80, 2008.

[7] T. N Kipf and M. Welling, “Variational graph auto-encoders.” arXiv
preprint arXiv:1611.07308. 2016b.

[8] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y.
Bengio, “Graph attention networks.” arXiv preprint arXiv:1710.10903.
2017.

[9] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani and K. S. An, “Graph
convolutional encoders for syntax-aware neural machine translation.”
In Proceedings of the 2017 Conference on Empirical Methods in

29Copyright (c) IARIA, 2023. ISBN: 978-1-68558-111-4

DATA ANALYTICS 2023 : The Twelfth International Conference on Data Analytics

Natural Language Processing, pp. 1957-1967, Copenhagen, Denmark.
Association for Computational Linguistics. 2017.

[10] L. Huang, D. Ma, S. Li, X. Zhang and H. Wang, “Text level graph
neural network for text classification.” In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 3444–3450, 2019.

[11] R. K. Bakshi, N. Kaur, R. Kaur and G. Kaur, “Opinion mining and
sentiment analysis.” In 2016 3rd International Conference on
Computing for Sustainable Global Development (INDIACom), pp.
452-455, IEEE. 2016.

[12] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu
and J. Gao, “Deep Learning Based Text Classification: A
Comprehensive Revie.” ACM Computing Surveys, vol.54, Issue 3,
no.62, pp.1-40, 2021.

[13] X. Liu, X. You, X. Zhang, J. Wu and P. Lv, “Tensor graph
convolutional networks for text classification” arXiv:2001.05313v1.
pp.8409-8416, 2020.

[14] G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao
and L. Carin, “Joint embedding of words and labels for text
classification.” In ACL, pp.2321–2331, 2018.

[15] D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R.
Henao and L. Carin, “Baseline needs more love: On simple word-
embedding-based models and associated pooling mechanisms.” In
Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (vol. 1: Long Papers), pp. 440–450, 2018.

[16] P. Liu, X. Qiu and X. Huang, “Recurrent neural network for text
classification with multi-task learning.” In IJCAI, pp.2873–2879,
AAAI Press. 2016.

[17] A. Joulin, E. Grave, P. Bojanowski and T. Mikolov, “Bag of tricks for
efficient text classification.” In EACL, pp.427–431, Association for
Computational Linguistics. 2017.

[18] J. Devlin, M. W. Chang, K. Lee and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding.” Proceedings of NAACL-HLT 2019, pp. 4171–4186,
2019.

[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer and V. Stoyanov, “RoBERTa: A Robustly Optimized
BERT Pretraining Approach.” arxiv:1907.11692v1. 2020.

30Copyright (c) IARIA, 2023. ISBN: 978-1-68558-111-4

DATA ANALYTICS 2023 : The Twelfth International Conference on Data Analytics

