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Abstract— Text classification, which determines the label of a 

document based on cues such as the co-occurrence of words and 

their frequency of occurrence, has been studied in various 

approaches to date. Conventional text classification methods 

using graph structure data express the relationship between 

words, the relationship between words and documents, and the 

relationship between documents in terms of the weights of edges 

between each node. They are then trained by inputting into a 

graph neural network. However, text classification methods 

using those graph-structured data require a very large amount 

of memory, and therefore, in some environments, they do not 

work properly or cannot handle large data. In this study, we 

propose a graph structure that is more compact than 

conventional methods by removing words that appear in only 

one document and are considered unnecessary for text 

classification. In addition to save memory, the proposed method 

can use a larger trained model by utilizing the saved memory. 

The results showed that the method succeeded in saving 

memory while maintaining the accuracy of the conventional 

method. By utilizing the saved memory, the proposed method 

succeeded in using larger trained models, and the classification 

accuracy of the proposed method was dramatically improved 

compared to the conventional method. 

Keywords- text classification; graph convolutional neural 

network; semi-supervised learning. 

I.  INTRODUCTION 

Text classification is the task of estimating the appropriate 
label for a given document from a predefined set of labels. 
This text classification technique has been applied in the real 
world to automate the task of classifying documents by 
humans. Many researchers are interested in developing 
applications that take advantage of text classification 
techniques, such as spam classification, topic labeling, and 
sentiment analysis. 

Recently, Graph Convolutional Neural networks (GCNs) 
[1], which can take advantage of data in graph structures, have 
been used to solve text classification tasks. TextGCN [2], 
VGCN-BERT [3], and BertGCN [4] are examples of text 
classification methods that utilize data from graph structures. 
In TextGCN [2], word and document nodes are represented 
on the same graph (heterogeneous graph), which is input into 
GCNs for learning. VGCN-BERT [3] constructs a graph 
based on the word embedding and word co-occurrence 
information in Bidirectional Encoder Representations from 
Transformers (BERT), and learns by inputting the graph into 
Vocabulary Graph Convolutional Network (VGCN). 
BertGCN [4] is a text classification method that combines the 

advantages of transductive learning of GCNs with the 
knowledge obtained from large-scale prior learning of BERT. 
The graphs produced by these graph-based text classification 
methods use relations between words and between words and 
documents, but do not use relations between documents, and 
are prone to topic drift. Therefore, in [5], we proposed a graph 
structure that uses relations between documents to solve this 
problem. The method of [5] boasts the best performance 
among existing methods for text classification on three 
datasets (20NG, R8, and Ohsumed). However, a new problem 
arises from the addition of relationships between documents 
to the graph, which increases the size of the graph and requires 
a lot of memory space. Therefore, we considered that 
compacting the size of the graph would reduce the memory 
requirement and allow the use of larger data and larger trained 
models. 

The purpose of this study is twofold. The first is to 
successfully save memory by constructing a graph structure 
that removes words considered unnecessary in text 
classification to solve the problem of insufficient memory. 
The second is to improve classification accuracy over 
conventional methods by utilizing the reduced memory and 
using larger trained models. Specifically, words that appear in 
only one document are removed from the graph, reducing both 
the weights of edges between word nodes and the weights of 
edges between word nodes and document nodes, thereby 
saving memory. We believe that this will result in a graph that 
is more compact than the graphs created by conventional 
methods, saving memory and improving the accuracy of text 
classification by using a larger trained model. 

This paper is organized as follows. In Section 2, we first 
describe graph neural networks used for text classification and 
existing research on text classification using graphs. After that, 
the structure of graphs created in conventional methods is 
described. In Section 3, we describe the graph structure of the 
proposed method and the processing after graph construction. 
In Section 4, we describe the experiments we conducted to 
evaluate the proposed method and show the experimental 
results. In Section 5, we discuss the experimental results 
presented in Section 4 and conclude in Section 6. 

II. RELATED WORKS 

A. Text Classification Using Graph Neural Networks 

Graph Neural Network (GNN) [6] is a neural network that 
learns relationships between graph nodes via the edges that 
connect them. There are several types of GNNs depending on 
their form. Graph Convolutional Neural networks (GCNs) [1] 
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is a neural network that takes a graph as input and learns the 
relationship between nodes of interest and their neighbors 
through convolutional computation using weights assigned to 
the edges between the nodes. Graph Autoencoder (GAE) [7] 
is an extension of autoencoder, which extracts important 
features by dimensionality reduction of input data, to handle 
graph data as well. Graph Attention Network (GAT) [8] is a 
neural network that updates and learns node features by 
multiplying the weights of edges between nodes by Attention, 
a coefficient representing the importance of neighboring 
nodes. GNNs are used in a wide range of tasks in the field of 
machine learning, such as relation extraction, text generation, 
machine translation, and question answering, and have 
demonstrated high performance. The success of GNNs in 
these wide-ranging tasks has motivated researchers to study 
text classification methods based on GNNs, and in particular, 
many text classification methods based on GCNs have been 
proposed. In TextGCN [2], document and word nodes are 
represented on the same graph (heterogeneous graph), which 
is input into GCNs for training. In recent years, text 
classification methods that combine large-scale pre-trained 
models such as BERT with GCNs have also been studied 
extensively. VGCN-BERT [3] constructs a graph based on 
word co-occurrence information and BERT's word 
embedding, and inputs the graph into GCNs for learning. In 
BertGCN [4], a heterogeneous graph of words and documents 
is constructed based on word co-occurrence information and 
BERT's document embedding, and the graph is input into 
GCNs for learning. In [5] we propose a graph structure that 
exploits relationships between documents. 

The detailed description of BertGCN and the graph 
structure proposed in [5] is given in the Section Ⅱ-B. 

B. Graph Structure of Conventional Methods 

BertGCN is a text classification method that combines the 
knowledge of BERT obtained by large-scale pre-training 
utilizing large unlabeled data with the transductive learning of 
GCNs, and was proposed by Lin et al. in July 2021. In 
BertGCN, each document is input into BERT, the document 
vector is extracted from its output, and it is input into GCNs 
as an initial representation of document nodes together with a 
heterogeneous graph of documents and words for training. 

Lin et al. distinguish the names of the training models 
according to the pre-trained model of BERT and the type of 
GNN used. The correspondence between pre-trained models 
and model names is shown in Table Ⅰ. In this study, 
RoBERTaGCN, a model employing roberta-base and GCNs, 
is the target of improvement. 

TABLE I.  NAMES OF THE MODELS. 

Pre-Trained Model GNN Name of Model 

bert-base GCN BertGCN 

roberta-base GCN RoBERTaGCN 
bert-base GAT BertGAT 

roberta-base GAT RoBERTaGAT 

 
RoBERTaGCN defines weights between nodes on 

heterogeneous graphs of words and documents as in (1). 

𝐴𝑖,𝑗 =

{
 

 

  
𝑃𝑃𝑀𝐼(𝑖, 𝑗),

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),
1,
0,

   

𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1) 

 
Positive point-wise mutual information (PPMI) is used to 

weight edges between word nodes. PPMI is a measure of the 
degree of association between two events and can be viewed 
as word co-occurrence in natural language processing. Term 
frequency-inverse document frequency (TF-IDF) values are 
used for the weights of edges between word nodes and 
document nodes; TF-IDF values are larger for words that 
occur more frequently in a document but less frequently in 
other documents, i.e., words that characterize that document. 

In [5], weights between nodes on heterogeneous graphs of 
words and documents are defined as in (2). 

 

𝐴𝑖,𝑗 =

{
 
 

 
 
𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗),

𝑃𝑃𝑀𝐼(𝑖, 𝑗),
  

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),
1,
0,

   

𝑖, 𝑗 𝑎𝑟𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2) 

 
As shown in (1), RoBERTaGCN considered relations 

between words and relations between words and documents 
in the form of weights of edges between nodes, but did not 
consider relations between documents. Therefore, we have 
improved RoBERTaGCN to consider the relationship 
between documents by expressing the relationship between 
documents in the form of weights of edges between document 
nodes. 𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗) in (2) is the weight of edges between 
document nodes and represents the cosine similarity. Each 
document is tokenized and input into BERT to obtain a 
embedding for each document. The Cosine similarity is 
calculated between the obtained vectors, and if the Cosine 
similarity exceeds a predefined threshold value, the Cosine 
similarity is added as weights of edges between corresponding 
document nodes. 

III. METHOD 

This section describes the details of the proposed method. 

Figure 1 shows a schematic diagram of the proposed method. 

First, a heterogeneous graph of words and documents is 

constructed from documents. Next, the graph information 

(weight matrix and initial node feature matrix) is input into 

the GCN, and the document vector is input into the feed-

forward neural network. Finally, a linear interpolation of the 

two predictions is computed and the result is used as the final 

prediction. 

 

Figure 1.  Schematic Diagram of the Proposed Method.  
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A. Build Heterogeneous Graph 

First, a heterogeneous graph containing word and 
document nodes is constructed. The weights of edges between 
nodes 𝑖 and 𝑗 are defined as in (3). 𝑑𝑓 indicates the number of 
documents in which the word appears. The difference between 
(2) and (3) is that the words that appear in only one document 
are removed. This reduces both the weights of edges between 
word nodes and the weights of edges between word nodes and 
document nodes, thus saving memory. PPMI is used for the 
weights of edges between word nodes, and TF-IDF values are 
used for the weights of edges between word and document 
nodes. 
 

𝐴𝑖,𝑗 =

{
 
 
 
 

 
 
 
 
𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗),

𝑃𝑃𝑀𝐼(𝑖, 𝑗),
  

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),

1,
0,

   

𝑖, 𝑗 𝑎𝑟𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗

𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗

𝑑𝑓(𝑖) > 1, 𝑑𝑓(𝑗) > 1 
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑑𝑓(𝑗) > 1
𝑖 = 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 

 
The process from Section B to E below is based on 

RoBERTaGCN [4]. 

B. Creating the Initial Node Feature Matrix 

Next, we create the initial node feature matrix to be input 
into the GCNs. We use BERT to obtain the document 
embeddings and treat them as the input representations of the 
document nodes. The embedded representation 𝑋𝑑𝑜𝑐  of a 

document node is represented by 𝑋𝑑𝑜𝑐 ∈ ℝ
𝑛𝑑𝑜𝑐×𝑑 , where 

𝑛𝑑𝑜𝑐  is the number of documents and 𝑑  is the number of 
embedding dimensions. Overall, the initial node feature 
matrix is given by (4). 

 

𝑋 = (
𝑋𝑑𝑜𝑐
0
)
(𝑛𝑑𝑜𝑐+𝑛𝑤𝑜𝑟𝑑)×𝑑

(4) 

C. Input into GCN and Learning by GCN 

The weights of the edges between nodes and the initial 

node feature matrix are input into GCNs for training. The 

output feature matrix 𝐿(𝑖) of layer 𝑖 is computed by (5). 

 

𝐿(𝑖) = 𝜌(�̃�𝐿(𝑖−1)𝑊(𝑖)) (5) 
 

𝜌  is the activation function and �̃�  is the normalized 

adjacency matrix. 𝑊𝑖 ∈ ℝ𝑑𝑖−1×𝑑𝑖  is the weight matrix at 

layer 𝑖. 𝐿(0) is 𝑋, the input feature matrix of the model. The 

dimension of the final layer of 𝑊 is (number of embedded 

dimensions) × (number of output classes). The output of the 

GCNs is treated as the final representation of the document 

node, and its output is input into the softmax function for 

classification. The prediction by the output of the GCNs is 

given by (6). 𝑔  represents the GCNs model. The cross-

entropy loss in labeled document nodes is used to 

cooperatively optimize the parameters of BERT and GCNs. 

 

𝑍𝐺𝐶𝑁 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑋, 𝐴)) (6) 

D. Input into Feedforward Neural Network and Learning 

by Feedforward Neural Network 

Optimizing GCNs with an auxiliary classifier that directly 

handles BERT-embedded representations leads to faster 

convergence and improved performance. Specifically, a 

document embedded representation 𝑋  is input into a 

Feedforward Neural Network. The output is then fed directly 

into a softmax function with a weight matrix 𝑊 to create an 

auxiliary classifier with BERT. The prediction by the 

auxiliary classifier is given by (7). 

 

𝑍𝐵𝐸𝑅𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑋) (7) 

E. Interpolation of Predictions with BERT and GCN 

A linear interpolation is computed with 𝑍𝐺𝐶𝑁 , the 

prediction from RoBERTaGCN, and 𝑍𝐵𝐸𝑅𝑇 , the prediction 

from BERT, and the result of the linear interpolation is 

adopted as the final prediction. The result of the linear 

interpolation is given by (8). 

 

𝑍 = 𝜆𝑍𝐺𝐶𝑁 + (1 − 𝜆)𝑍𝐵𝐸𝑅𝑇 (8) 
 

𝜆 controls the trade-off between the two predictions. 𝜆 =
1 means using the full RoBERTaGCN model, while 𝜆 = 0 

means using only the BERT module. When 𝜆 ∈ (0, 1), the 

predictions from both models can be balanced, making the 

RoBERTaGCN model more optimal. Experiments by Lin et 

al. using the graph structure in (1) show that 𝜆 = 0.7 is the 

optimal value of 𝜆. 

IV. EXPERIMENTS 

In this study, two experiments were conducted. 
 

Experiment 1: Experiment to confirm the effectiveness of the 
graphs of the proposed method. 

In Experiment 1, the classification performance of the 
proposed method using compact graphs was compared with 
other methods. The parameter λ, which controls the balance 
between predictions from BERT and predictions from GCNs, 
was fixed at 0.7. Preliminary experiments were conducted on 
the validation data, and the optimal values of the threshold of 
the cosine similarity for each dataset are shown in Table Ⅱ. 
We used the values in Table Ⅱ as our threshold values. The 
trained model used was roberta-base. Accuracy was used to 
evaluate the experiment. Positive is the label of the correct 
answer, negative is the label of the incorrect answer, and 
negative is all the remaining labels except the correct label. 
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TABLE II.  OPTIMAL VALUE FOR COSINE SIMILARITY THRESHOLD. 

Dataset  Optimal Threshold Value 

20NG 0.99 

R8 0.975 

R52 0.96 

Ohsumed 0.965 

MR 0.97 

 
Experiment 2: Experiment to check classification accuracy 
when changing to a larger trained model. 

In Experiment 2, we take advantage of the memory 
savings and check the accuracy of the proposed method by 
applying a larger trained model. Specifically, the learned 
model is changed from roberta-base to roberta-large. λ and 
cosine similarity values are set to the same values as in 
Experiment 1. 

A. Data Set 

We evaluated the performance of the proposed method by 
conducting experiments using the five data sets shown in 
Table Ⅲ. We used the same data used in RoBERTaGCN. 
Each dataset was already divided into training and test data, 
which we used as is. The ratio of training data to test data is 
about 6:4 for 20NG, about 7:3 for R8 and R52, about 4.5:5.5 
for Ohsumed, and about 6.5:3.5 for MR. 

TABLE III.  INFORMATION OF EACH DATA SET. 

Dataset Number of Documents Average of Words 

20NG 18846 206.4 

R8 7674 65.7 

R52 9100 69.8 

Ohsumed 7400 129.1 

MR 10662 20.3 

 

・20-Newsgroups (20NG) 

20NG is a dataset in which each document is categorized 
into 20 news categories, and the total number of documents is 
18846. In our experiments, we used 11314 documents as 
training data and 7532 documents as test data. 

 

・R8, R52 

Both R8 and R52 are subsets of the dataset provided by 
Reuters (total number is 21578). R8 has 8 categories and R52 
has 52 categories. The total number of documents in R8 is 
7674, and we used 5485 documents as training data and 2189 
documents as test data. The total number of documents in R52 
is 9100, and we used 6532 documents as training data and 
2568 documents as test data. 

 

・Ohsumed 

This is a dataset of medical literature provided by the U.S. 
National Library of Medicine, and total number of documents 
is 13929. Every document has one or more than two related 
disease categories from among the 23 disease categories. In 
the experiment, we used documents that had only one relevant 
disease category, and the number of documents is 7400. We 

used 3357 documents as training data and 4043 documents as 
test data. 

 

・Movie Review (MR) 

This is a dataset of movie reviews and is used for 
sentiment classification (negative-positive classification). The 
total number of documents was 10662. We used 7108 
documents as training data and 3554 documents as test data. 
 

B. Experimental Environment 

The experiments were conducted using Google 
Colaboratory Pro+, an execution environment for Python and 
other programming languages provided by Google. The 
details of the specifications of Google Colaboratory Pro+ are 
shown in Table Ⅳ. 

TABLE IV.  DETAILS OF THE SPECIFICATIONS OF GOOGLE 

COLABORATORY PRO+. 

GPU 
Tesla V100（SXM2） 

／A100（SXM2） 

Memory 

12.69GB（standard） 

／51.01GB（CPU／GPU (high memory)） 

／35.25GB（TPU (high memory)） 

Disk 
225.89GB（CPU／TPU） 

／166.83GB（GPU） 

C. Result of Experiment 

TABLE V.  CLASSIFICATION PERFORMANCE OF THE PROPOSED 

METHOD. 

 20NG R8 R52 
Ohsume

d 
MR 

Text GCN 86.34 97.07 93.56 68.36 76.74 

Simplified 

GCN 
88.50 - - 68.50 - 

LEAM 81.91 93.31 91.84 58.58 76.95 

SWEM 85.16 95.32 92.94 63.12 76.65 

TF-IDF 

+LR 
83.19 93.74 86.95 54.66 74.59 

LSTM 65.71 93.68 85.54 41.13 75.06 

fastText 79.38 96.13 92.81 57.70 75.14 

BERT 85.30 97.80 96.40 70.50 85.70 

RoBERTa 83.80 97.80 96.20 70.70 89.40 

RoBERTa 

GCN 
89.15 98.58 94.08 72.94 88.66 

[5] 89.82 98.81 94.16 74.13 89.00 

Proposed 

method

（base） 

90.02 98.58 96.88 73.53 89.65 

Proposed 

method

（large） 

89.95 98.58 96.81 76.08 91.50 

 
Table Ⅴ compares the classification performance of the 

proposed method with the conventional methods. [5] shows 
the classification performance when using the graph structure 
in (2). proposed method (base) is the result of Experiment 1, 
and proposed method (large) is the result of Experiment 2.  
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Comparing the results of the Proposed method (base) with 
the other methods, the accuracy of 20NG, R52, and MR 
improved. The accuracy of the other datasets also maintains a 
high level. Even with a compact graph in which words that 
appear only in one document are removed, the classification 
performance remains high. Therefore, it can be said that the 
proposed method succeeds in saving memory. 

Comparing the results of the Proposed method (large) with 
the other methods, the accuracy is significantly improved for 
Ohsumed and MR. The classification performance of 
Ohsumed was 76.08%, 1.95% higher than that of [5], and that 
of MR was 91.50%, 1.85% higher than that of the Proposed 
method (base). 

V. DISCUSSION 

Table Ⅵ shows the number of word types that appear in 
each dataset and the number of words that are removed in the 
graph structure of (3). Table Ⅶ shows the number of PPMI 
edges added in the original graph structure and the number of 
PPMI edges removed in the graph structure of (3). Table Ⅷ 
shows the number of TF-IDF edges added in the original 
graph structure and the number of TF-IDF edges removed in 
the graph structure of (3). Since TF-IDF edges are added 
between word and document nodes, the number of edges 
removed is the same as the number of words removed. From 
these three tables, it can be seen that the graph of the proposed 
method reduces the number of edges by 1 to 20%. 
Experimental results show that the classification performance 
of the proposed method maintains performance of the method 
using the original graph structure. Therefore, it can be said that 
the proposed method succeeds in saving memory because it 
reduces the number of edges on the graph while maintaining 
the accuracy. 

We believe that the reason why the accuracy was 
maintained even with a compact graph is because the words 
to be removed were limited to words that appear only in a 
single document. Words that appear in only one document do 
not propagate document topic information through the word 
node, and thus text classification performance is maintained 
even if those words are removed. 

This study also confirmed the document classification 
performance when the trained model was changed to a larger 
one, taking advantage of the memory savings. When the 
learned model was changed from roberta-base to roberta-large, 
the accuracy improved significantly. It is thought that the 
change to roberta-large improved the accuracy because it was 
able to acquire embedded representations that better reflect the 
characteristics of the documents. 

 

TABLE VI.  NUMBER OF WORDS REMOVED. 

Dataset Number of Words 
Number of Words 

Removed 

20NG 42757 755 

R8 7688 225 

R52 8892 245 

Ohsumed 14157 851 
MR 18764 8687 

TABLE VII.  NUMBER OF PPMI EDGES REMOVED. 

Dataset Number of PPMI Edges 
Number of Edges 

Removed 

20NG 22413246 127662 
R8 2841760 32954 

R52 3574162 36138 

Ohsumed 6867490 129938 

MR 1504598 314950 

TABLE VIII.  NUMBER OF TF-IDF EDGES REMOVED. 

Dataset Number of TF-IDF Edges 
Number of Edges 

Removed 

20NG 2276720 755 
R8 323670 225 

R52 407084 245 

Ohsumed 588958 851 

MR 196826 8687 

VI. CONCLUSION AND FUTURE WORK 

To solve the memory-consuming problem of 

conventional text classification methods based on graph 

structures, this paper proposes the text classification method 

using compact graphs in which words that appear only in one 

document are removed. Experiments confirmed that the 

proposed method can maintain the accuracy of the 

conventional method while saving a lot of memory. 

Experiments also showed that the acuracy of text 

classification improves when the learned model is changed to 

a larger one, taking advantage of the saved memory. 

Future work includes comparing the accuracy with the 

proposed method when other features are used instead of 

cosine similarity and optimizing the parameter λ for each data. 
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