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Abstract—Explainable Artificial Intelligence (XAI) methods, 

such as partial dependency plots, or individual conditional 

expectation plots, help to understand the impact of feature 

values on the output of an Artificial Intelligence (AI) model. 

However, these techniques can only analyze the concepts 

manifested in a single feature. This makes it hard to investigate 

the impact of higher-level concepts, spanning across multiple 

features (for example, a model prediction may depend on the 

morbidity of a patient, while morbidity is only indirectly 

reflected through features about symptoms). In this paper, we 

present and test a concept for getting insight into model 

dependency on aspects on a higher semantic level. This enables 

an understanding of how a model output changes based on 

meaningful higher-level concepts and aids data scientists in 

analyzing machine learning models.  

Keywords-Interpretability, Understandability; Explainability; 

explainable AI; XAI; human-centered AI; black-box models. 

I. INTRODUCTION  

Due to increasing computational power, improving 
algorithms and access to big-data, Artificial Intelligence (AI) 
models gained popularity in recent years. Applications range 
from healthcare (Lee et al. [15]; Chen et al. [6]), credit risk 
(Szepannek and Lübke [23]), autonomous driving 
(Grigorescu et al. [14]; Feng et al. [9]), image classifications 
(Sahba et al. [20]), audio processing (Panwar et al. [19]), 
among others. 

The large number of parameters and complex interactions 
make most AI models (in particular deep neural networks) 
hard to understand and difficult to interpret the results. For 
many applications, it is required not only to have a model with 
high accuracy but also to explain the outcomes. Regulators 
(European Commission [8]) require the understandability of 
these models, in particular to increase their trust (Lui and 
Lamb [17]) and assess potential biases (Challen et al. [5]).  

What “explainability” means is not well defined and might 
be misleading (Rudin [27]). It further depends on the context 
of the application. For an MRI scan, the explanation might be 
a heat map of relevant areas for the model. For sentiment 
analysis of user feedback, the explanation might be relevant 
words of the text. Surrogate models such as decision trees may 
give an insight into more complex models.  

In general, explainability methods can be distinguished 
into either global explainability on the model level such as 
variable importance (Breiman, [4]), Partial Dependency Plots 

(PDP) (Friedman [10]), or Accumulated Local Effects (ALE) 
(Apley and Zhu [1]), or local explainability on the level of 
individual predictions such as Shapley values (SHAP, 
Shapley [21] or Strumbelj and Kononenko [22]), or Local 
Interpretable Model Explanations (LIME) (Ribeiro et al. 
[24]). 

We lean on the notion of Partial Dependency Plots (PDP). 
However, unlike PDPs, we capture the dependency on a 
higher-level concept, and not a single feature (e.g., a concept 
that manifests in many features or the combination of many 
feature values). The analysis shows the model output if a 
certain concept is more or less present. E.g., one may analyze 
if a medical model leans more or less towards a certain 
recommendation, dependent on the morbidity of a patient. 
Yet, morbidity may not be an explicit input of the model but 
indirectly reflected in a set of features about certain 
symptoms. Another example is an image classifier. Existing 
methods analyze the impact of pixels or regions in specific 
figures (see, e.g., Bulat and Tzimiropoulos [3]). However, 
reasoning about the semantics of these regions is up to the 
analyst and must be done instance by instance. With our 
method, one gains an understanding of how presence of a 
certain concept impacts the model output. To the best of our 
knowledge, this constitutes a new approach. In this context, 
we refer to the approach as semantic dependency analysis (not 
to be confused with semantic dependency in NLP). As an 
illustrative example, we analyze how the presence of 
vegetation impacts the classification of an image as showing 
a city or rural area. 

 
Our main contributions are the following 

• We present a new general concept which we call 
Semantic Dependency Analysis (SDA). 

• We provide formalisms to define two 
fundamental ways of implementing SDA. 

• We describe a specific implementation along a 
sample case. 

• We present experimental results that demonstrate 
the working and utility of the approach. 

 
The remainder of the paper is structured as follows. The 

introduction is followed by Section 2 presenting the current 
state of literature and how our approach fits into the related 
work. Section 3 defines the concept of Sematic Dependency 
Analysis (SDA) and presents a possible implementation for 
generators as well as prediction models. Section 4 shows how 
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SDA can be used for an illustrative image classification 
example. Section 5 summarizes and provides conclusions. 

II. RELATED WORK 

White box models, also known as transparent or 
interpretable models, offer humans a clear understanding of 
the underlying decision-making process. White box models 
are algorithms such as linear regression, decision trees, or 
logistic regression. On the other hand, there are black box 
models such as deep neural networks. They have a vast 
number of parameters and can therefore account for complex 
interactions. While these models often exhibit remarkable 
performance, their decision-making processes are difficult to 
understand. This lack of interpretability raises concerns 
regarding trust, fairness, accountability, and potential biases 
within the model (see Riberio et al. [24]). Explainable 
Artificial Intelligence (XAI) is needed to establish trust of the 
user and the AI model (Arrieta et al. [2]). Users want to have 
information why the model proposed a certain decision (Wang 
et al. [28] or Gandi and Mishra [12]). Further, XAI is needed 
to detect and mitigate biases to promote fairness (Ridley [25]). 
Recent regulation requires the “right to explanation” for 
individuals affected by AI-driven decisions (Gallese [11]). 
Another prominent application area of XAI is the medical 
domain, due to the often-sensitive nature of AI decisions (see 
[29] for a survey). PDPs (see Friedman [10]) have long been 
used to understand the impact of a certain feature. PDPs have 
computational advantages and are easier to understand for a 
layman compared to most alternative XAI methods (Dwivedi 
et al. [7]). However, PDPs do not properly take feature 
interactions into account (Linardatos et al. [16]). To account 
for the interaction effects, individual conditional expectation 
plots (ICE, see Goldstein et al. [13]) were developed. An 
alternative approach is Accumulated Local Effect plots (ALE) 
(Apley and Zhu [1]). While PDPs are based on marginal 
distribution, ALE plots are based on conditional distribution. 
All those PDPs related methods show the impact of a certain 
feature given in the dataset. Higher-level concepts which are 
often of interest but not included in the data, therefore, cannot 
be analyzed. Consider, for example, patient data, such as age, 
sick days, therapy, income. The higher-level concept of 
interest “morbidity” is however not the data. To analyze the 
impact of such a higher-level concept, we introduce the 
semantic dependency analysis.  

III. SEMANTIC DEPENDENCY ANALYSIS 

In this section, we introduce the concept of Semantic 
Dependency Analysis (SDA). We lean on the notion of partial 
dependency plots that are defined as follows (see Molnar 
[18]):  

𝑓𝑆(𝑥𝑆) = 𝐸𝑋𝐶
[𝑓(𝑥𝑆, 𝑋𝐶)] = ∫ 𝑓 (𝑥𝑆, 𝑋𝐶)𝑑𝑃(𝑋𝐶). 

Here, 𝑥𝑆 is the feature value of the analyzed feature S, 𝑋𝐶 

are the other features in the model, and  𝑓(𝑥𝑆, 𝑋𝐶)  the AI 
model applied on the complete feature vector (containing 𝑥𝑆 
and 𝑋𝐶 ). Intuitively, the partial dependence function 
represents the average prediction if all data points have the 
given feature value 𝑥𝑆.  

In SDA, we do not analyze a single feature S but a higher-
level concept 𝐻  where 𝑥𝐻 ∈  𝐻  are values reflecting the 
presence (or degree of presence) of that concept (i.e. for 
elements in 𝐻 we expect an order relation with respect to the 
presence of the semantic concept 𝐻). We define the analysis 
for a given higher-level concept 𝐻 (𝑆𝐷𝐻) as  

          𝑆𝐷𝐻(𝑥𝐻)  =  𝐸𝑋[𝑓(𝑔(𝑥𝐻 , 𝑋))]. 
Here, 𝑔(𝑥𝐻 , 𝑋) is a random variable that returns feature 

vectors for the model 𝑓  in accordance to 𝑥𝐻 , and in 
compliance with 𝑋. That is, the resulting values stem from the 
distribution of 𝑋 and also have concept 𝑥𝐻. We subsequently 
discuss two concepts of the implementation of 𝑔. 

A. Implementation with generators 

One way to implement 𝑔  is to use synthetic data 
generators. Values of 𝑥𝐻 in 𝐻 and the distribution of 𝑋 drive 
the generation of data points in accordance with 𝑥𝐻 . For 
instance, 𝑥𝐻 may be mapped to a prompt in a text to image 
model. The distribution of 𝑋  may be reflected by further 
elements of the prompt (i.e. a prompt describing 𝑋). Note that 
there are further options to account for the distribution of 𝑋. 
This includes the use of image-to-image models, taking 
samples from 𝑋 as input, or training the generator on 𝑋. 

Alternative implementations may use rule-based data 
generators (in particular for tabular data) or 3D engines for 
image generation. The feasibility of different data generation 
approaches depends heavily on the use case. In our sample 
case, we use a diffusion model for illustration (see Section 4). 

B. Implementation with prediction models 

Another way of implementing 𝑔  is to use a prediction 
model 𝑑(𝑥, 𝑥𝐻) that can detect the presence of 𝑥𝐻  in a data 
point 𝑥 in 𝑋. The advantage is that data points can be sampled 
from real data with the distribution of 𝑋 . Assuming that 𝑑 
returns a score for the presence of 𝑥𝐻 in 𝑥, we can implement 
𝑔(𝑥𝐻 , 𝑋) by drawing from {𝑥 ∈  𝑋 |𝑑(𝑥, 𝑥𝐻) ≥  𝑡}, where 𝑡 
is a threshold denoting the minimum probability that 𝑥𝐻  is 
present. Note, that using 𝑑  also allows for an alternative 
definition of 𝑆𝐷𝐻 as continuous function, dependent on the 𝜀-
environment around the presence score 𝑠 , denoting the 
presence of 𝑋𝐻 in a data point 𝑥: 

 𝑆𝐷𝐻(𝑥𝐻 , 𝑠)  =  𝐸𝑋[𝑓({𝑥 |𝑑(𝑥, 𝑥𝐻) ∈ [𝑠 − 𝜀, 𝑠 + 𝜀]})]. 

IV. EXPERIMENTS 

In this section, we describe experiments that demonstrate 
along an example the viability of the approach and illustrate a 
possible instantiation of the concept.  

A. Experimental Setup 

We use a sample application as proof of concept and test 
for the SDA approach. As sample task, we use a binary 
classification task for images. That is, we aim to classify 
images in either class A (showing a city) or class B (showing 
a rural landscape).  

For our test application we used synthetic data, generated 
with stable diffusion version 2 (see Rombach et al. [26]). We 
used default parameters, except for the sampling steps of 100. 
The prompts for generating the different classes are: 
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Class A: 
Positive prompt: Photograph a city, high quality 

photography, Canon EOS R3 
Negative prompt: digital art, drawing 
 
Class B:  
Positive prompt: Photograph of a rural landscape, high 

quality photography, Canon EOS R3 
Negative prompt: digital art, drawing 
 
For the training data, we generated images of 512×512 

pixels. Figures 8 and 9 show examples from the training set of 
both classes. For the experiments, we use an arbitrary 
classification network generated by ChatGPT 4.0. The 
network architecture is shown in Figure 1. In each test run, we 
trained the model using 5 epochs and batch size 32. We then 
analyzed the resulting networks with SDA. 

 
For the SDA, we implement 𝑔(𝑥𝐻 , 𝑋) by adding to the 

prompt of class A. That is, we limit the analysis to the 
recognition of class A. By keeping the prompt for class A, we 
realize the compliance to 𝑋 in the data generation. Note that 
this is only an approximate solution, as the control over the 
diffusion model’s output is limited. By adding to the prompt 
of A, we implement the presence of 𝑥𝐻. By using in total 4 
different prompt additions, we implement an order over the 
total of 4 elements 𝑥𝐻  in 𝐻 . Specifically, we used the 
following prompts. 

 
Data set “cityNoTrees”: 
Same prompt as for class A but with “trees” in negative 

prompt. See  
Figure 10. Images in this data set contain some trees but 

less than the data sets “City”, “cityTrees”, “TreesCity”. 
Positive prompt: Photograph a city, high quality 

photography, Canon EOS R3 
Negative prompt: digital art, drawing, trees 
 
Data set “City”: 
Same prompts as for as class A. Images in this data set 

contain more trees than the data sets “cityNoTrees”, but less 
than in “cityTrees” and “TreesCity”. 

 
Data set “cityTrees”: 
Same as class A but with “trees” added after “city” to the 

positive prompt (giving more importance to “city” than to 
“trees”). See Figure 11. Images in this data set contain more 
trees than the data sets “cityNoTrees”, and “City”, but less 
than in “TreesCity”. 

Positive prompt: Photograph a city, trees, high quality 
photography, Canon EOS R3 

Negative prompt: digital art, drawing 
 

      Data set “TreesCity”: 
      Same as class A but with “trees” added before “city” to the 
positive prompt (giving more importance to “trees” than to 
“city”). See Figure 12. Images in this data set contain more 
trees than all the other data sets but are still generated to show 
locations within cities. 

Positive prompt: Photograph trees, city, high quality 
photography, Canon EOS R3 

Negative prompt: digital art, drawing 
 

 

 
 

Figure 1. Network architecture for experiments. 

 
The prompts for the different data sets are given in the 

order of presence of the concept “trees”. Although the 
exercised control over the diffusion networks is limited, 
manual inspection of the resulting images verifies the intended 
outcome. (The test set for “city” is not shown, as the prompt 
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was the same as for the training set and the results are of 
similar appearance). 

We trained 6 different networks with the given 
architecture on the training set containing classes A and B. 
(The choice of 6 networks is arbitrary and driven by the length 
of the paper). We used 800 images for each class. For the SDA 
we used 800 images for each of the 4 prompts “cityNoTrees”, 
“City”, “cityTrees” and “TreesCity”. With the SDA, we aim 
to investigate if the presence of the concept “trees” makes the 
model less confident about class A, that is, if increased 
presence of trees leads to a lower probability for detecting 
class A (city). 

B. Results 

Figures 2-7 show the results of the tests for six different 
networks. The results show box plots of the probabilities 
assigned by different models to the images for the data sets 
“cityNoTrees”, “City”, “cityTrees” and “TreesCity”. The 
probability shown is the determined probability of not 
showing a city. The mean values in the box plots are the values 
intended for the SDA, according to our definition in Section 
3. However, the additional information from the box plots 
gives additional insights about the distribution. 

If the presence of trees causes models to deem the label 
“city” less likely, we expect to see increasing means from left 
to right in the plots. That is because the “cityNoTrees”, “City”, 
“cityTrees” and “TreesCity” are ordered according to that 
presence of the higher-level concept “Tree”. We observe that 
this is the case for all analyzed networks. (Note that, although 
“City” used the same prompt as the training set, the models 
have an even higher confidence for “cityNoTrees“ than for 
“City”). 

Analysts learn from the SDA that the trained models are 
impacted by the higher-level concept of trees, as well as the 
nature of that impact. The behavior of the networks and the 
SDA results are plausible. Hence, the experiments verify the 
viability and utility of our approach.  

 
 

Figure 2. SDA for network 1. 

 

 

 
Figure 3. SDA for network 2. 

 
Figure 4. SDA for network 3. 

 
Figure 5. SDA for network 4. 

 
 

Figure 6. SDA for network 5. 
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Figure 7. SDA for network 6. 

 

V. CONCLUSIONS 

Our article introduces the concept of Semantic 
Dependency Analysis (SDA), which goes beyond traditional 
Partial Dependency Plots (PDPs) by capturing dependencies 
on higher-level concepts rather than individual features. The 
analysis showcases how the output of a model changes based 
on the presence or absence of a specific concept.  

As an illustrative example, we analyzed how the presence 
of vegetation affects the classification of an image as a city or 
rural area. The results of the analysis demonstrate that the 
trained models are influenced by the higher-level concept of 
trees and provide insights into the nature of this impact. The 
observed behavior of the networks aligns with expectations 
and supports the viability and utility of the approach employed 
in the experiments. Analysis can use such insight to reason 
about the working of their models. 

Future work will address further options for implementing 
𝑔(𝑥𝐻 , 𝑋) and the challenge that implementations may only 
approximate the intended behavior. In particular, with the 
generative approach, reflecting 𝑥𝐻 to the desired degree is a 
challenge in implementing g. However, our illustrative 
example shows its viability.  

By moving beyond individual features and focusing on 
broader concepts, SDA provides valuable insights into how a 
higher-level concept influences predictions or classifications. 
The formalisms and implementation described in the text 
provide a foundation for conducting SDA and analyzing 
various domains, ranging from medical models to image 
classifiers. Overall, SDA has the potential to enhance 
interpretability and decision-making in AI systems, 
contributing to advancements in explainable AI and fostering 
trust in AI-driven solutions. 
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Figure 8. Samples from training set for label "City". 

 

 
 

Figure 9. Sample from training data set for label “Landscape”. 

 

 
 

Figure 10. Sample from test set with “City” in positive and “Trees” in 
negative prompt (cityNoTrees). 

 

 
 

Figure 11. Sample from test set with first “City” and then “Trees” in 

positive prompt (cityTrees). 

 

 
 

Figure 12. Sample from test set with first “Trees” and then “City” in 
positive prompt (TreesCity). 
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