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Abstract—Tail biting is one of the biggest problems in pig
livestock farming. One indicator that can be observed before an
outbreak is the change in tail posture. Studies have shown that
days before a tail biting outbreak, a steady increase in hanging
tail postures can be observed. A continuous monitoring of this
indicator could, therefore, be used to inform farmers of potential
problems arising within respective pens. This paper presents a
first step in the development of automated monitoring systems
for early detection of tail biting indicators by evaluating different
approaches for tail posture detection using image data and Deep
Learning. Using a dataset consisting of 1000 annotated images,
different YOLOv5 object detection models were trained to detect
upright and hanging tail postures. The results show that there
are significant differences in performance for the detection of
upright and hanging class. To further investigate the problem, an
EfficientNetv2 image classification model was trained to examine
if similar performance differences for the two classes could be
observed. Considered in isolation, these differences could be
mitigated. However, potentials could not be utilized, as the results
of the comparison of the one-step detection of tail posture using
YOLOv5 and the introduced two-step detection using YOLOv5
for tail detection and EfficientNetv2 for tail posture classification
shows. Based on the discussion of the possible explanations for
the inferior performance as well as the summary of the key
findings of this paper, we present approaches that can be used
as a basis for future research.

Keywords—precision livestock farming; tail biting; tail posture;
deep learning; computer vision.

I. INTRODUCTION

Structures of modern pig livestock farming, and pork pro-
duction have been undergoing major changes in recent years.
Data from the Federal Statistical Office in Germany shows
the contrary trend of steadily decreasing numbers of farms [1]
with simultaneously increasing numbers of animals per farm
[2], which makes individual animal management and welfare
monitoring increasingly difficult. Meanwhile, the slaughter
price has remained volatile for several years [3], making it also
more challenging for farmers to maintain pig livestock farming
economically viable. At the same time, politics and society
alike are calling for more sustainable and more animal-friendly
husbandry [4], putting additional pressure on the farmer. These
challenges cannot be met with conventional methods, which
is why new and innovative solutions are needed. As a result,
research in the domain of Precision Livestock Farming (PLF)
has increased in recent years. PLF describes systems that

utilize modern camera and sensor technologies to enable
automatic real-time monitoring in livestock production to
supervise animal health, welfare, and behavior [4] [5]. This
involves the automated acquisition, processing, analysis, and
evaluation of sensor-based data like temperature, ammonia,
or CO2 concentration [6] as well as video data [7] [8]. The
combination of these different types of information and data
sources hold the potential to enable data-driven assistance
systems that support farmers in their daily work, creating more
time again for more animal- and welfare-oriented husbandry.

One of the biggest problems in conventional pig livestock
farming is tail biting [9]. Tail biting describes a behavioral
disorder in pigs and is defined as the intentional damaging of
the tail of one pig by another pig, which can result in injuries
of varying severity [10]. Not only can this have significant
consequences for the health and welfare of the individual pig,
but the farmer can also suffer economic damage as a result.
Tail biting can negatively impact the growth of affected pigs,
which, in addition to incurring additional veterinary costs and
labor, also has adverse economic consequences for the farmer
[11]. Tail biting is a multifactorial problem that potentially
results from a number of different internal as well as external
factors and can be separated into two phases: the pre-injury
phase and the post-injury phase [12]. To detect tail biting
before the actual outbreak, the indicators of the pre-injury
phase are of particular importance. In their literature review,
Schukat and Heise aggregated animal-specific indicators ob-
served in different studies prior to the onset of tail biting [9].
They concluded that especially the change in tail postures
was a consistent indicator that could be observed before an
outbreak of tail biting. In each of the investigated studies, it
was examined that the number of stuck tails increased steadily
in the course leading up to the outbreak and that the ratio of
curled and lowered or stuck tails shifted strongly [9].

Current developments in Deep Learning (DL) and Computer
Vision (CV) could provide the tools to potentially detect
and analyze these indicators automatically using video data.
Video data is already being used as a basis for a variety
of comparable use cases in pig PLF, many of which can be
found in literature. Considering practical applications such as
the counting of pigs [13], the tracking of pigs over specific
time intervals [14], the detection of aggressive behavior among
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group housed pigs [7], or the automatic weight estimation
[15], there are a number of use cases which are addressed
by utilizing image data based on camera recordings. For
this reason, this paper will present a method for automated
recognition of tail posture based on video data.

The paper is structured as follows: In Section II, the
current state of the art in the field of tail posture detection
and classification is presented. The primary focus lies on
papers that apply DL models and architectures, their respective
performance as well as the general state of research regarding
the observation of pre-injury indicators aside from the DL
and CV domain. In Section III, materials and methods are
presented. This section covers the data acquisition, model
selection, definition of classes as well as label strategy, dataset
description and creation as well as the description of the gen-
eral test environment and setup. In Section IV, the results are
presented based on quantitative evaluation metrics, applying
standard evaluation metrics for bounding box prediction. The
results of the trained tail posture detection models are also
examined and evaluated in this section. Section V offers a
discussion of the obtained results and Section VI summarizes
the key findings of this paper and presents an outlook on how
further research can be conducted on the topic of tail posture
classification in the future.

II. RELATED WORK

Tail biting is a subject that has been extensively researched
in the literature. Already in 1969, van Putten investigated
tail biting among fattening pigs and concluded, that tail
biting is induced by various factors and hence describes a
multi-factorial problem [16]. Since then, other studies have
investigated the issue in greater depth. In 2001, Schrøder-
Petersen and Simonsen summarized the research published on
the issue of tail biting up to that time. It gives an additional
overview of both internal and external risk factors that could
induce tail biting [12]. In a similar study, Moinard, Mendl,
Nicol and Green also investigated different risk factors that
can increase the likelihood of tail biting as well as factors
that can potentially reduce it [17]. However, tail posture as
a potential indicator for early detection of tail biting is not
mentioned in any of the previous referenced studies. Schukat
and Heise provide the most recent overview of indicators that
can be observed prior to the onset of tail biting [9]. In addition
to a general increase in activity inside the pen, an increase in
various behaviors such as chewing or other hostile interactions
and other specific behaviors such as the tail-in-mouth behavior,
the change in tail posture prior to the onset of tail biting was
particularly observed in the examined studies.

Although many different use cases have already been in-
vestigated in the context of pig PLF using methods from
the field of DL and CV, the issue of tail biting or the tail
detection in general appears to be a vastly underrepresented
subject compared to other topics in that domain. In our
literature search, we were only able to identify six papers that
investigated the prediction of tail biting or other related topics
such as tail detection or tail posture classification based on

methods from the field of machine learning (ML), DL and
CV. The query that was used to search the scorpus literature
database can be found in Table I. During review of the obtained

TABLE I
SEARCH QUERY

TITLE-ABS-KEY((”pig” OR ”piglet”) AND (”tail biting”
OR ”tail detection” OR ”tail posture”) AND (”deep learn-
ing” OR ”computer vision” OR ”machine learning” OR
”machine vision”))

papers based on the literature search, one paper was discarded
as it only presented a concept for developing an early warning
system for tail biting and did not yet present results regarding
the performance of different models in detecting tails and their
posture [18]. The remaining five papers could be categorized
into two groups depending on the type of data that has been
used in the respective use case: sensor-based and image-based
approaches. In the following, the results of the papers of the
respective category are presented.

A. Sensor-based use cases

Domun and Pedersen used sensor data like water consump-
tion of individual pigs, pen level temperatures and different
indoor climate data like ventilation, cooling, heating, and
humidity to train an algorithm based on a bidirectional Long
Short-Term Memory (LSTM) and feedforward neural network
architecture to predict tail biting with an Area under the
Curve (AUC) of 0.782 [19]. Larsen and Pedersen adopted a
similar approach and achieved comparable results by using
water consumption of individual pigs and temperature data
at pen level to train an Artificial Neural Network (ANN) to
predict the outbreak of tail biting with an AUC of 0.75, while
producing false alarms in 30% of the days [20]. The authors
concluded that future research should focus on more event-
specific predictors like the tail posture and the development
of systems to monitor these indicators, which we adopt in the
scope of this paper.

B. Camera-based use cases

Two different approaches for data collection and data usage
can be found in this category. In [5], 3D cameras in combi-
nation with Linear Mixed models were used to classify tail
posture of individual pigs. The cameras were located above
the feeder and pointed vertically down, covering one third
of the pen. Validated against human observers, the proposed
algorithm did best in the detection of tucked tails with an
accuracy of 88.4%. However, the detection accuracy for curly
tails, which was the most commonly observed class in the
dataset, resulted in a score of 41.7%, which leaves room for
improvement. It should also be noted that 3D camera systems
are much more expensive than conventional 2D cameras,
which also makes it difficult to transfer these systems into
agricultural practice. Ocepek et al. [21] present the only
research that is comparable to the approach followed in this
paper. Using 2D cameras mounted under the roof for data
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collection, they applied a YOLOv4 object detection model
to detect straight and curled tail postures with an Average
Precision (AP) of 90%. However, the model was only trained
on 30 images and other important metrics for performance
evaluation of object detection models such as Precision (P),
Recall (R) and mean Average Precision (mAP) for different
Intersection over Union (IoU) thresholds are missing, which
makes the results not representative in our opinion.

Based on the identified and analyzed literature, clear re-
search gaps can be identified in the area of tail detection,
tail posture detection, and general use cases in the field of
tail biting, especially when using image data. Therefore, this
paper will address the following research gaps:

a) Usage of a larger, more representative data set consisting
of 1000 manually annotated images.

b) Provision of relevant metrics that allow for a better
evaluation of model performance.

c) Evaluation of differently complex model architectures
in terms of size and number of parameters and their
influence on performance.

III. MATERIALS AND METHODS

A. Data acquisition

Data collection was conducted within the DigiSchwein
project at the agricultural research farm for pig husbandry
of the Chamber of Agriculture Lower Saxony in Wehnen.
Within the project, video recordings from both piglet rearing
and fattening were collected and stored for analysis. An AXIS
M3 16-live network camera was used for video recording in

the piglet rearing pens, while the VIVOTEK IB9367-H model
was used for the fattening pens. In both cases, the cameras
were mounted beneath the ceiling to capture the entire pen
from a top-down view. Since piglets in piglet rearing are
much more active, move much faster compared to pigs in
fattening pens and are also a lot smaller, recording within
piglet rearing was conducted with 30 Frames Per Second
(FPS) and a resolution of 2688 × 15120, while in fattening
pens recording was done with 10 FPS and a resolution of
1920× 1080. The higher resolution enabled us to capture the
more rapid and spontaneous movements of the piglets, and
to provide the necessary level of detail to ensure that the tails
were always clearly visible in the images. Since the pigs in the
fattening are much larger and slower, we lowered resolution as
well as the number of FPS to reduce the amount of memory
needed to store the videos. Figure 1 shows some example
images that were extracted from the video recordings.

B. Model selection

The model selection for the task of tail posture detection
was conducted based on defined selection criteria. These
criteria were derived based on models and architectures that
were already used in pig PLF literature as well as on the
requirements for PLF systems that have been mentioned in
the PLF literature. The following criteria were defined:

1) Prediction accuracy: The prediction of the respective
models should be as accurate as possible [22].

2) Prediction speed: Model inference should be in real-time
[23].

Fig. 1. Example images.
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3) Cost efficiency: The respective models should be as
resource efficient as possible to allow a potential deploy-
ment to low-cost hardware [24].

Since the YOLO architecture has already been used in the
PLF literature, matches the established criteria by balancing
performance, speed, and resource requirements, and has an
extensively documented repositories as well as an active
community, YOLO was chosen as a baseline architecture for
further analysis. YOLOv5 is the latest instalment of the YOLO
architecture, but there is currently no official paper for this
release. The latest paper release is related to YOLOv4 [25].
YOLOv4 applies specific methods and concepts summarized
under the terms bag of freebies and bag of specials to improve
accuracy and execution speed compared to YOLOv3 and
other architectures such as EfficientDet. The performance was
further improved by introducing a network scaling approach
by modifying model depth, width, resolution, and structure
[26]. The comparison of the two official implementations
of YOLOv4 and YOLOv5 resulted in the selection of the
YOLOv5 implementation, as it was more suitable for the
context of this paper.

C. Label strategy

Before we started to create the dataset, we defined a label
strategy in which we specified class selection, image selection
and other aspects regarding dataset annotation. To select the
label classes, we first identified and compared the different
tail postures previously mentioned in the literature and sub-
sequently validated them by an expert group consisting of
farmers, veterinarians, and researchers within the DigiSchwein
project. Schukat and Heise [9] mention the curled, hanging,
and stuck tail posture [9]. D’Eath et al. [5] defined similar
tail postures, with the difference that instead of hanging they
specified the class loose, which was further separated into
the classes low loose and high loose. Ocepek et al. [21]
distinguish tail posture into straight and curled, with the
straight class including tucked tails as well. Furthermore,
it is described that both classes were only annotated if the
respective pig in the image was standing. If it was lying, the
respective pig was not annotated. After a discussion in the
expert group of the DigiPig project, it was initially decided
to separate the posture classes into three classes similar to [9]
and [5]: upright, hanging and stuck. Figure 2 shows examples
for each defined class. However, unlike [21], we decided to
annotate every visible tail object and its respective posture
on the images, regardless of whether it is lying or standing.
Reason for this is the assumption that the distinction of the
pigs’ posture and hence the decision whether to annotate an
object or not is not being represented in the training dataset.
Thus, there is a possibility that the algorithm may also not
learn these relationships. Furthermore, if the tail objects are
labelled inconsistently without a reason for the distinction
being represented in the dataset, it could negatively impact the
performance of the model. The raw images used for dataset
creation were extracted from the video recordings that were

upright

hanging

stuck

Fig. 2. Tail posture examples.

captured inside the DigiSchwein project. For video and frame
selection, we specified the following guidelines:

1) Inclusion of images from piglet rearing and fattening
as well as different camera angles, backgrounds, and
perspectives to ensure as much data heterogeneity as
possible.

2) Inclusion of images with different activity levels within
the respective pens to ensure a balanced ratio of standing
and lying pigs and a balanced distribution of pig positions
and locations inside the pen to further increase data
heterogeneity.

3) Balancing the number of each defined tail posture so that
none of the defined classes are over- or underrepresented.

Especially the last point caused problems during the data col-
lection and annotation process. The class stuck was extremely
underrepresented in the extracted images and it was difficult
to find additional video recordings in which the respective
class could be identified. Additionally, initial results based on
a prototypically trained model showed that the class stuck was
difficult to detect because of this class imbalance. Based on
a dataset containing 400 images, a YOLOv5m model trained
with an image size of 1280 × 1280 achieved a mAP0.5:0.95
of 0.277, which also improved just slightly as the number of
images increased. To deal with this imbalance, we decided to
merge the stuck class into the hanging class, creating a better
balance between the defined classes.

Another challenge that emerged during the annotation pro-
cess was the annotation of the tails of lying pigs. In some
cases, it could not be clearly determined to which class
the respective tail could be assigned to. Figure 3 shows
some examples for these cases. Even after discussing the
issue within the expert group of the DigiSchwein project, no
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Fig. 3. Difficult to distinguish classes.

clear consensus could be reached. In essence, two separate
approaches have emerged when explaining the determination
of the class: One group argued that lying pigs, as the ones
shown in Figure 3, must have a hanging tail posture because,
when in a relaxed or almost relaxed state, the tail would have a
hanging position due to gravity alone. The other group argues
based on the orientation of the tail of the lying pigs and tends
to classify these tail postures as upright. It was difficult to
decide how to translate the results of this discussion into the
label strategy, as both ways of reasoning are comprehensible.
Ultimately, it was decided to assign these instances to the
hanging class.

D. Dataset description

A dataset consisting of 1000 images with a total of 12802
high quality bounding box annotations was created. By fol-
lowing the data extraction and label strategy, a proper class
balance of 6391 upright and 6412 hanging annotations was
ensured. The open-source tool Labelme was used to annotate
the images for model training and evaluation [27]. Images
were extracted from video recordings that were collected in
the DigiSchwein project and subsequently annotated according
to defined label strategy described in Section III-C. To reduce
the overall annotation time, the dataset creation process was
divided into different phases:

1) A sample of 200 out of the total 1000 images were
manually annotated. This sample was first randomly
extracted from the overall data pool and then inspected
to ensure data variety was sufficient in the sample

2) A pretrained YOLOv5 model based on the YOLOv5m
checkpoint was trained using the annotated sample. The
model was subsequently applied on the unlabeled data to
generate predictions.

3) The predictions of the model were transformed into the
Labelme JSON format and loaded into the annotation
tool, where the predictions were subsequently checked
by a human annotator. If the given annotations for the
respective image were inaccurate or incorrect, they were
adjusted manually within the Labelme tool. After the 200
images were reviewed, the model was re-trained with the
additional data and the process re-started from step 1)
until all 1000 images were annotated. This ultimately
reduced the amount of manual label work.

E. Test environment

Model training was performed on a desktop workstation
with two Nvidia RTX 3090 with 24 GB VRAM each, a
Threadripper 3960X and 64 GB RAM. For the object detection
task of detecting tail postures of pigs, the YOLOv5 implemen-
tation of Jocher et al. [28] was applied. Standard parameters
were used for training of each selected model variant. Data
augmentation is applied in form of image mosaic and mix-up,
random image flip, image rotation, image scaling as well as
hue saturation value augmentation. Each model was trained
for a maximum of 300 epochs with a batch size of 64 for
the 640× 640 models and 16 for the 1280× 1280 image size
models. The YOLOv5 model checkpoints s, m and l as well as
the updated versions s6, m6 and l6 of the respective variants
were selected for training and evaluation. Training was stopped
early if performance did not improve over several epochs or if
validation losses was increasing over several epochs to avoid
overfitting. For each trained model, the epoch with the best
result on the validation set was saved and used for evaluation.
We used an 80-20 split for train and test data.

IV. RESULTS

A. Evaluation metrics

The commonly used metric for evaluation and
benchmarking object detection models is the mAP, which is
the mean of the AP averaged over all defined classes based
on a set of different IoU thresholds [29]. IoU is defined as
the similarity between the ground truth annotation and the
predicted annotation present in the image and is determined
by dividing the intersection with the area of union [30].
Common thresholds to calculate the mAP are values in
the range 0.5 to 0.95 with a threshold step size of 0.05,
represented in this paper as mAP0.5:0.95 [31]. The higher the
IoU threshold, the less margin is allowed in the deviation of
the ground truth bounding box and predicted bounding box
to be labelled as correct, so the AP is usually lower at higher
thresholds. P and R for each tested model variant are also
provided, describing what portion of the positive predictions
were correct and what portion of the positive predictions was
detected correctly, respectively. We also included inference
time as well as the number of parameters for each tested
model variant. The number of parameters describes the
model size and can affect the required hardware to train and
operationalize the respective model, having direct effect on
the inference time.

B. Quantitative results

The results are shown in Table II, while Table III shows the
inference time of each evaluated model variant as well as their
number of parameters. The old and updated model variants
showed a similar inference time within the experiments when
using the 1280 image size, which is why they are merged
with the updated variants. During testing, different inference
times were observed when performing the same evaluation
run multiple times. The table, therefore, shows the respective
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TABLE II
RESULTS TAIL POSTURE DETECTION.

Tail Posture Detection
640 1280

Class M P R mAP0.5 mAP:0.95 M P R mAP0.5 mAP:0.95 M P R mAP0.5 mAP:0.95
all 0.802 0.675 0.716 0.301 0.875 0.813 0.857 0.459 0.865 0.813 0.852 0.460

upright 0.849 0.778 0.822 0.356 0.923 0.862 0.911 0.505 0.906 0.853 0.802 0.511
hanging

s
0.755 0.572 0.610 0.246

s6
0.827 0.763 0.803 0.412

s
0.824 0.772 0.802 0.410

all 0.835 0.755 0.801 0.394 0.861 0.840 0.872 0.486 0.883 0.838 0.867 0.491
upright 0.907 0.827 0.884 0.445 0.901 0.883 0.919 0.526 0.922 0.887 0.915 0.540
hanging

m
0.763 0.684 0.718 0.342

m6
0.822 0.797 0.825 0.446

m
0.845 0.789 0.819 0.443

all 0.850 0.720 0.790 0.366 0.871 0.828 0.857 0.487 0.885 0.844 0.879 0.511
upright 0.897 0.816 0.879 0.424 0.906 0.876 0.903 0.531 0.919 0.885 0.922 0.552
hanging

l
0.803 0.624 0.700 0.309

l6
0.836 0.780 0.811 0.444

l
0.85 0.803 0.836 0.469

TABLE III
NUMBER OF PARAMETERS AND INFERENCE TIME.

Model Parameter (m) Inference (ms)
s 7.2 1.2
m 21.2 2.9
l 46.5

640
4.4

s6 12.6 5.2
m6 35.7 9.3
l6 76.8

1280
17.9

mean of the observed inference times. Each trained model
was evaluated three times after we noticed the problem in
order to investigate the deviations in the inference times in
more detail. However, an exact cause could not be determined.
Overall, it can be observed that, with one exception, the
performance of tail posture detection can be increased when
a greater image size and a larger model variation is used.
The training of the YOLOv5l model with an image size of
640 had to be stopped early because performance did not
improve after several epochs as well as overfitting that could
be observed after around 100 epochs, which subsequently
resulted in an overall reduction of the measured performance
compared to the YOLOv5m variant. This could be due to the
fact that the YOLOv5l model is too complex and too big
for the considered use case, which is why this model and
image size combination seems unsuitable. In general, it can
be observed that the performance results for the s, m and l
model variants trained on a 640 image size are insufficient.
With an mAP0.5:0.95 of 0.394 a P and R of 0.835 and 0.755
over all classes, the YOLOv5m achieves the best results in
this image size category. Although this combination has the
fastest inference time with 2.9 ms per frame as well as the
lowest number of parameters and, therefore, has the lowest
hardware requirements, the results are not sufficient enough
to further investigate this combination of model and image
size. However, an improvement in all measured metrics can
be observed when using the 1280 image size for the s, m and l
model variants. Compared to the YOLOv5s 640 combination,

a mAP0.5:0.95 of 0.46 can be achieved when increasing
the image size to a 1280 × 1280 resolution, resulting in an
overall increase in performance of almost 52% in terms of
mAP0.5:0.95. This also significantly increases the number if
parameters of the model as well as the inference time, which
increases to 9.3 ms in comparison to the 2.9 ms. Despite this,
real time inference can still be ensured when using appropriate
hardware, which is why the YOLOV5m with an image size of
1280× 1280 offers the best balance between accuracy, speed,
and hardware requirements out of the tested model variants.
When comparing the performances of the s, m and l versions
with the updated s6, m6 and l6 variants, it is noticeable
that the updated models are, with the exception of minimal
improvements in P and partial R in some cases, consistently
lower than the measured performances of the older variants.
For this reason, the updated variants are not further considered
in the quantitative analyzes of the results. Overfitting, which
was previously observed for the YOLOv5l 640 variant, does
not occur when using the larger image resolution. In fact, using
the larger model variant improved performance in all measured
metrics, but the difference is much smaller than when changing
from the YOLOv5s to the YOLOv5m variant. This might mean
that in terms of parameter number and model complexity,
a bottleneck has been reached and further performance im-
provements cannot be achieved by just using more complex
models, but rather by providing better training data, more
training data, or different approaches for tail posture detection
in general. This becomes even more evident when comparing
the performance of the upright and hanging class. For each
model variation evaluated, P, R, mAP, and mAP0.5:0.95 are
significantly lower for the hanging class compared to the
upright class, although both classes are relatively balanced in
the train and test set. This may be due to the higher complexity
of the hanging class caused by the merging of the hanging and
stuck class, previously discussed in Section III-C as part of the
label strategy.

To further investigate this problem, the method presented
in [32] was adapted by separating the tail posture detection
into two separate stages: A detection step, where only the
tail class is detected and an subsequent image classification
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step, where the detected bounding boxes of the tail detection
model are classified into the defined posture classes upright
and hanging. The idea behind this is that by further merging
the classes upright and hanging into the class tail, the highest
possible level of representation could be obtained, so that
the classes would no longer be considered disjoint from each
other and thus performance in tail detection could potentially
increase. The actual classification of the posture will then be
moved to an image classification model, which will eventually
also be used to investigate whether the same differences in
performance can be observed for the upright and hanging
classes as with the tested YOLOv5 model variants. In the
final step, the two presented methods of one-step tails posture
detection and two-step tail posture detection consisting of
an object detection and image classification model will be
compared and benchmarked based on their performance. The
results are presented in the following sections.

C. Results image classification

We first wanted to determine whether image classification
models have similar problems in classifying the hanging class.
Based on the selection criteria defined in Section III-B as well
as in [32], we selected the EfficientNetV2-B0 model for train-
ing. Based on the annotated object detection dataset described
in Section III-D, we created an image classification dataset
by extracting the bounding boxes from the object detection
dataset using the annotated coordinates and subsequently saved
them as separate files. For model training, the official Keras
implementation of EfficientNetV0 has been used. Transfer
learning was applied by first freezing all but the top layers
when initializing the model and utilizing pre-trained ImageNet
weights. Second, the layers were unfrozen to fit the model
on the new data. In both steps, the model was trained for 30
epochs with a batch size of 128 and an input size of 224×224.
Data augmentation was applied in form of random horizontal
flipping, random zoom, random rotation as well as random
crops and random contrast changes. Training was stopped
early when accuracy and validation accuracy intersected, and
accuracy continued to increase while validation accuracy stag-
nated or decreased to avoid overfitting. Sigmoid activation
function was used in the last layer while Adam was used
as optimizer. Binary cross entropy was specified as the loss
function. The results are shown in Table V. Performance in
terms if P, R and F1 are almost identical for both classes. With
a P of 0.970, the hanging class even achieves a slightly higher
performance than the upright class, while R is still slightly

lower for the hanging class. Unlike the YOLOv5 model, the
problem of distinguishing and classifying the hanging class
do not seem to be present here, but to ultimately verify
whether the approach of separating tail posture detection into
an object detection and image classification step can improve
performance, the entire process must be considered. Therefore,
the following presents the results of the object detection model,
which only detects the merged tail class and that serves as a
preceding step before the image classification step.

D. Results tail detection

To create the data set for detecting the higher-level class
tail, the upright and hanging labels of the object detection data
set were merged and overwritten in the label files. To ensure
a direct comparison, the same combinations of YOLOv5
model variants and image sizes were applied as in Section
II for model training and evaluation. The results, presented in
Table IV, show that merging the two classes can improve the
performance of every measured metric. Comparing the two
YOLOv5m 1280 variants, a mAP0.5:0.95 of 0.530 can be
achieved compared to the mAP0.05:0.95 of 0.491, resulting
in a significant increase in performance. P and R can also
be improved, while R still remains lower than P. Up to this
point, it can be concluded that separating the tail posture
detection into an object detection and an image classification
step can, in isolation, lead to performance improvements in the
respective tasks. However, the results are only beneficial if the
combination of the tail object detection model and the image
classification model translate into a performance improvement
that surpasses the results of the model presented in SectionII.
This will be examined in the following section.

E. Comparison

In order to verify whether the presented approach can lead
to performance improvements, we compared the performance

TABLE V
RESULTS TAIL CLASSIFICATION.

Tail Classification
224

Class Model Precision Recall F1
all 0.965 0.970 0.970

upright B0 0.960 0.980 0.970
hanging 0.970 0.960 0.970

TABLE IV
RESULTS TAIL DETECTION

Tail Detection
640 1280

Class M P R mAP0.5 mAP0:0.95 M P R mAP0.5 mAP:0.95 M P R mAP0.5 mAP:0.95
tail s 0.879 0.778 0.831 0.381 s6 0.905 0.848 0.898 0.474 s 0.919 0.861 0.905 0.493
tail m 0.879 0.813 0.851 0.418 m6 0.899 0.880 0.916 0.522 m 0.926 0.877 0.918 0.530
tail l 0.888 0.805 0.857 0.422 l6 0.917 0.881 0.921 0.531 l 0.921 0.884 0.924 0.547
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of the one-step YOLOv5m and YOLOv5l tail posture detection
trained on a 1280×1280 image size with the two-step approach
consisting of the YOLOv5m and YOLOv5l model for tail
detection and the EfficientNetV2-B0 model for subsequent
image classification of the detected bounding boxes into up-
right and hanging. Since the YOLOv5m variant offers the best
balance of performance, speed, and hardware requirements
and the YOLOv5l variant gives the best overall performance
when disregarding speed as well as hardware requirements,
these model variations were selected for comparison. We use
a customized version of the val.py script of the YOLOv5
repository, which we adapted to integrate the tail detection
model as well as the EfficientNetV2-B0 model for image
classification in the evaluation pipeline.

The comparison of both approaches, presented in Table
VI, shows that the combination of the object detection and
image classification methods cannot improve the performance
for tail posture detection. The opposite is true, as the direct
comparison of the results of the YOLOv5m model variants
reveals a decrease in performance for all measured metrics.
The difference in performance between the upright and hang-
ing class is also still present, it even increased in direct
comparison. The same observations apply when comparing the
results for the YOLOv5l model variations. However, it can also
be observed that, as the accuracy of the predicted bounding
boxes of the tail object detection model used in the pipeline
increases, the overall classification of tail posture can also be
increased. Although the difference between the map0.5:0.95
of 0.530 and 0.547 for tail detection with YOLOv5m and
YOLOv5l respectively is not significant, it can lead to a
similar performance increase for the two-step tail posture
detection based on the combination of object detection and
image classification. This results in almost identical perfor-
mance of the YOLOv5l model variant in combination with
the EfficientNetv2-B0 compared to the YOLOv5m variant for
one-step tail posture classification.

V. DISCUSSION

Given that, in isolation, both the merging of the upright
and hanging class into the tail class led to a more accurate
detection and that the subsequent image classification for tail
posture classification into upright and hanging was able to
avert the problems regarding the detecting of the hanging

class presented in Section IV-B, it was surprising that the
combination of the two approaches achieved inferior results
in comparison. However, a closer look at the data as well
as the results reveals a possible explanation, which will be
discussed in the following. The results of Section IV-E already
demonstrated that the accuracy of the object detection and
image classification pipeline is dependent on the accuracy
of the object detection model. The more accurate the object
detection is, the more accurate the final classification by the
image classification model will be. Possible explanation for
the inferior performance is that the image classification model
was trained using perfectly cropped image data for the upright
and hanging classes, which cannot be provided in that form
in inference mode due to the currently existing inaccuracy
of the tail detection. The image crops provided by the tail
detection, on the basis of which the posture classification
model is supposed to categorize the tail posture, are in terms of
the mAPO.5:0.95 of 0.530 and 0.547 for the YOLOv5m model
and the YOLOv5l model insufficiently accurate, which is why
the image classification model is provided with input images
that may not fully capture the targeted tail object. Thus, the
provided input data by the object detection model may deviate
from the actual training data, in which the targeted tail object
could be represented under ideal conditions. This discrepancy
in the data may lead to inferior results when comparing the
two approaches. However, this will need to be further validated
in future research.

VI. CONCLUSION

In summary, the following findings can be derived from
the results obtained in this paper. Table IV as well as the
examination of the results in Section IV-B each show, that
performance for one-step tail posture classification based on
the YOLOv5 object detection architecture can be increased
when larger models and larger image sizes are used for
training. However, this performance increase does not scale
infinitely, but seems to decrease as the number of model
parameters increases. Thus, performance cannot simply be
increased by using larger models and larger image sizes. It
was also observed that there are large performance differences
between the upright and hanging class. The results in Section
IV-C show that, in isolation, the observed differences in
performance can be mitigated by using image classification

TABLE VI
COMPARISON OF APPROACHES.

Tail Posture Detection
Object Detection Object Detection + Image Classification

Class M P R mAP0.5 mAP:0.95 M P R mAP0.5 mAP:0.95
all 0.883 0.838 0.867 0.491 0.851 0.803 0.808 0.473

upright 0.922 0.887 0.915 0.540 0.853 0.886 0.862 0.522
hanging

m
0.845 0.789 0.819 0.443

m + B0
0.849 0.720 0.754 0.424

all 0.885 0.844 0.879 0.511 0.847 0.807 0.823 0.492
upright 0.919 0.885 0.922 0.552 0.846 0.892 0.869 0.537
hanging

l
0.850 0.803 0.836 0.469

l + B0
0.848 0.722 0.778 0.447
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for tail posture classification. In general, tail detection, as
the results in Section IV-D show, can also be improved by
merging the upright and hanging class into the higher-level
class tail. However, when considered as a whole, the indicated
potentials of the object detection model for tail detection and
the image classification model for tail posture classification
cannot be utilized, as the comparison of the results of the one-
step and two-step tail posture classification approach in Table
VI revealed. The hanging class is not only a problem in terms
of detection, but also in terms of annotation, which is also
reflected in the obtained model results in Table II. Especially
lying pigs seem to aggravate this problem, since it is not
always evident to which class the object under consideration
can be assigned to. In general, it is questionable whether the
tail posture of lying pigs should be included at all as a relevant
indicator for tail posture monitoring or, if included, how to
properly handle them.

One approach to deal with the identified problems could
be to simply include more training data, more diverse training
data, better training data or, if the previous solution approaches
indicate that the problem is not data related, to find or select
a different approach for tail posture detection. The former
could particularly help to improve the performance of the
presented two-step tail posture classification approach, since
the performance of the two-step approach is positively corre-
lated with the performance of the tail detection model, so that
an improvement in accuracy for the tail detection model can
lead to a better classification of the cropped bounding boxes.
However, it is also possible that the problem in detecting the
hanging class cannot be solved by simply adding more training
data. This is where the latter of the mentioned approaches
comes into play. One solution approach could be to exclude
lying pigs from the tail posture detection process or treat
them separately. However, the exclusion of lying pigs is not a
trivial task, as it cannot be achieved by simply not annotating
lying pigs and their respective tail postures, since for object
detection tasks, every object of a defined target class should
be annotated in the training set. Thus, the exclusion must be
realized in form of a preceding or subsequent step within
the tail posture detection process. In future work, we will
investigate the approaches of excluding lying pigs from the tail
posture detection process or separate handling them based on
a preceding pig posture classification step, where we classify
detected pigs into lying and notLying and examine whether
performance improvements can be achieved in that way.
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