
Evaluation of Filter Methods for Feature Selection by

Using Real Manufacturing Data

Alexander Gerling

Business Informatics

Furtwangen University of Applied Science

Furtwangen, Germany

e-mail: alexander.gerlinghs-furtwangen.de

Ulf Schreier

Business Informatics

Furtwangen University of Applied Science

Furtwangen, Germany

e-mail: ulf.schreier@hs-furtwangen.de

Andreas Hess

Business Informatics

Furtwangen University of Applied Science

Furtwangen, Germany

e-mail: andreas.hess@hs-furtwangen.de

Holger Ziekow

Business Informatics

Furtwangen University of Applied Science

Furtwangen, Germany

e-mail: holger.ziekow@hs-furtwangen.de

Christian Seiffer

Business Informatics

Furtwangen University of Applied Science

Furtwangen, Germany

e-mail: christian.seiffer@hs-furtwangen.de

Djaffar Ould Abdeslam

IRIMAS Laboratory

Université de Haute-Alsace

Mulhouse, France

e-mail: djaffar.ould-abdeslam@uha.fr

Abstract— The importance of Machine Learning (ML) in the

domain of manufacturing has been increasing in recent years.

Especially, ML techniques are used to predict and explain

errors in the production. One challenge of using ML in this

domain is to deal with the often-high number of features in the

datasets. However, a product defect can in many cases be traced

back to a few relevant characteristics. In this paper, we

investigate methods for finding reduced feature sets in the

context of manufacturing. Here, the feature reduction promises

two key advantages. One improvement is the prediction quality

of the ML model. The second advantage concerns the

explainability of a product error. With a reduction of features

from the original dataset, we also reduce the search space for

the product error origin. We investigate three different filter

methods for feature selection based on 25 real manufacturing

datasets, which are highly unbalanced. We describe the

implementation of these and test them in three experimental

approaches. Furthermore, we optimize the feature selection

using a cost-based metric. Optimizing on the basis of the cost-

based metric is shown to be in several cases more useful for

reducing the number of features than well-established and

frequently used classification metrics. In various experiments,

we were able to improve the result and simultaneously reduce

the number of features with our cost-based metric.

Keywords: Filter-Based Feature Selection methods; Machine

Learning; Cost based Metric; Production; Production data.

I. INTRODUCTION

Machine Learning (ML) has been increasingly used in the
domain of manufacturing, particularly in the production line

to predict corrupted product parts [1][2]. Data scientists and
quality engineers are user roles in a company, which analyze
malfunctions in the production to eliminate production errors.
The task of these user roles is it to find the cause of a
production error. Highly advanced production lines result in
only few, but costly, errors. This is reflected in the data by just
few errors to analyze, which result as a main challenge for this
domain. A ML system can support data scientists and quality
engineers, e.g., by creating prediction models and identifying
relevant features in datasets from test stations. The evaluation
methods for feature selection methods can be divided into five
groups: embedded, hybrid, ensemble, wrapper and filter. In
this paper we investigate the effect of filter selection methods.
Filter methods have the advantage of better time performance
in comparison to wrapper methods and are classifier
independent [3]. Independence of classifier is particularly
important for the flexibility to choose a different classifier
regarding black box optimization. Another advantage of the
filter-based methods is the ability to scale up to high-
dimensional datasets [4]. This is particularly useful because a
large number of measurements are recorded in a production
line. Even a single test station in a production line can check
numerous features, but not every feature is equally important
for a classification. Unnecessary features in the dataset are
features, which are not related to a specific error message.
These features should be removed from the dataset to provide
(1) a better result and (2) to support the explainability of
resulting models. Such tasks could be solved automatically by
using Automated Machine Learning (AutoML) tools.
Different AutoML solutions emerged over the past few years

82Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

[5][6]. An AutoML tool can take over various steps of the data
science pipeline and prepare data or ML models for users. Our
work is part of the project PREFERML [7] that investigates
challenges and holistic system solutions in this context.
Within our project, we provide the user an optimized dataset
including only selected features from the original dataset. The
selection of features will help to reduce the error cause space
and support targeted analyses. We will test three different
forms of state-of-the-art filter methods on real manufacturing
data.

The following research questions (Q) emerge from the
above description:

 (Q1) Can state of the art filter methods provide a
benefit in the given use case?

 (Q2) Which is the best filter method in our use case?

 (Q3) Can further feature reductions be achieved by
using alternatives to standard metrics?

 (Q4) How long does the optimization of the model
take and is there a fastest filter method?

The paper is organized as follows: Section 2 describes our
use case and the challenges in this domain. In Section 3, we
describe related work. The fundamentals for our experiments
are described in Section 4; this includes the used metrics and
the filter methods. In Section 5, we describe the filter selection
algorithm. Our setup for the experiment and the different
experiment approaches are described in Section 6. Section 7
is dedicated for the evaluation of the results. Section 8
summarizes the work of this paper.

II. USE CASE

In this section, we provide basic information about the
manufacturing domain and describe our use case. Production
lines can be equipped with different numbers of test stations.
In a production line, many test stations can be arranged in
sequence or in parallel. Various production errors can be
detected at different test stations. While an error is detected at
a specific station, measurements from preceding stations may
contain clues about the error and thus it is possible to stop the
production of corrupted parts earlier in the production process
avoiding additional costs. To analyze this, it is important to
link data from several test stations and trace back the
individual products through the production line. A general
description of a production line can be found in [8]. Within
this scenario, we can use feature selection based on specific
product errors to investigate their causes. The objective is to
use machine learning on data from the test stations to predict
and prevent production errors. However, the number of
recorded test measurements is very high and only a fraction of
the data is useful to explain specific errors. Surplus data can
negatively impact the model performance. Therefore, it is
important to reduce the number of features to train the ML
model. Another reason to reduce the number of features is the
explainability of correlations between errors and their
underlying causes. After reduction, only a few features are left
from the origin dataset. Thus, we also have reduced the search
space for quality engineers that seek to understand error
causes. A quality engineer often just has simple tools to

investigate the data from the test stations. Without adjusted
analyzing tools for this task, a quality engineer must search in
a wide range of features for correlation with the product error.
After the reduction of the dataset with a feature selection
method, a quality engineer can analyze the product error with
better focus on the relevant data and easier find the root cause.
Another important point to be considered for ML training in
our use case are the highly unbalanced datasets. These can
severely impact the performance of a ML model, if not
accounted for. This could be solved by using various sampling
methods. Another method to tackle this challenge is to use
weight parameters in learning models. In our experiments, we
use weights and hyperparameter tuning to counteract the
unbalanced dataset by adjusting the associated parameter with
different ratios.

III. RELATED WORK

Zhang et al. [9] introduced a case study to optimize the
process of a production by using feature selection methods
was conducted. To do so, the authors used feature selection
methods based on acceptance testing strategies. As a result,
they show a reduction of 81% of inspection time while
keeping the same accuracy with current industrial strategies to
distinguish a non-qualified from a qualified product. An
industrial strategy is e.g., acceptance sampling, which is
commonly used as a statistical quality control method. The
objective of the case study was to reduce the total testing time
and optimize the production capability while still secure the
accuracy of quality inspection for industrial products.
Therefore, the reduction is not to meant to find an error cause,
as in our use case. What is not considered in this reduction is
that tests could be removed that would lead to the origin of a
product error.

Liu et al. [10] show the problem of feature selection
methods is investigated. They address the problem that
standard feature selection methods do not take into account
the imbalance of classes. During the selection process, the
majority class is taken into account to a greater extent, which
may lead to incorrectly selected features. To handle the
problem, the F-measure metric was used for optimization, as
it performs better on unbalanced data than accuracy does. For
the investigation of the cost-sensitive classification, they
generated and assigned various costs for the different classes
based on a rigorous theory guidance. As result, they could
reduce the number of features by optimizing with the F-
measure metric. This work is similar to ours in terms of
unbalanced data. [10] aim to reduce features in a cost-
optimized way. Unlike the discussed work, we use a cost-
based metric to optimize the results of real-world data and use
further filter selection methods for our experiments.

The subject of cost-sensitive classifier and MetaCost is
covered in [11]. Their approach uses a cost matrix with
different costs for the errors. Afterwards, the classifier is
adjusted based on this matrix. Due to the allocated costs of
different errors, this approach is well suited for imbalanced
datasets. A cost reduction can be accomplished with this
approach compared to the cost-blind classifier. In this cost
matrix the minority class was set to 0 and the majority class
set to 1, based on a two-class (fail, no fail) classification. The

83Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

error costs for the cost matrix was set to C(0,0) = C(1,1) = 0;
C(0,1) = 1000; C(1,0) = 1000 r. In our approach the C(0,0)
and C(0,1) cases are relevant, because they correspond to a
corrupted product, that is predicted as such (factor C(0,0)) and
a good product, that is predicted as bad product (factor
C(0,1)).

Huang et al. [12] investigate the correlation and
significance among labels for multi-label data. To handle this
problem, they introduce label significance into cost-sensitive
feature selection. Furthermore, they suggest a feature
selection algorithm, which utilize test cost based on label
significance. Three distributions (namely Uniform, Normal
and Pareto distribution) with positive region generate a test
cost matrix, which are combined with the suggest algorithm.
Moreover, by analyzing the feature cost integrated in the
positive region, they define a feature significance metric. As
result, they could validate the efficiency of the algorithm with
the influence of an additional parameter on various test costs
in their experiments and analysis of the suggested method on
four real datasets.

The subject of feature selection is a popular field in
different applications or domains [13][14]. One of the
important reasons to use feature selection is the reduction of
high dimensional data. Another reason is to select only
important features to explain a certain behavior or correlation.
Also, in the domain of manufacturing feature selection is also
an important aid [15][16]. Our work contributes to the case of
manufacturing. We are using feature selection to reduce the
original dataset, which helps us to identify the origin of error
causes. We are doing so by optimizing with a cost-based
metric. Further, we are using filter selection methods for our
experiment and use case. By using filter selection methods,
we can exchange the underlying algorithm without hesitation.
This characteristic helps us in terms of AutoML. Regarding
this, the related works do not provide specific insights in what
optimization methods and metrics work best in the
manufacturing domain.

Wrapper methods for feature selection evaluate a subset of
all features using a specific machine learning algorithm. These
have a pre-defined search strategy to check for the best
possible result from the feature subsets [26]. Wrapper
methods have a high computation time, especially for datasets
with many features because it must search for the best subset
of features. Our advantage compared to wrapper methods is
that we use the filter methods to pre-sort the most important
features. Therefore, we can always replace the learning
algorithm (XGBoost) in the background with another one.
Furthermore, we would also have a time advantage if, for
example, only the n most important features should be taken.
In addition, the ordered feature list can be used for further
analyses. We also go through several subsets of the features,
but these are already sorted by the feature importance.

Our work is inspired by the existing works and tests
several approaches for handling feature selection and hyper
parameter tuning with real world data. We thereby provide
insights into the benefits of different optimization metrics and
strategies under realistic conditions.

IV. FUNDAMENTALS

In this section, we describe fundamental concepts behind
selection methods and metrics. We first introduce three
different filter methods used in our experiments and
afterwards two metrics.

ANalysis Of VAriance (ANOVA) is a statistical and state
of the art approach to select features in datasets. ANOVA tests
the statistical significance of mean differences among
different groups of scores [17]. We chose SelectKBest [18]
from scikit-learn as tool to implement ANOVA filter method
for our experiments. The underlying feature scores are
assigned by ANOVA F-Value [19], a metric which calculates
linear dependencies between two variables. The advantage of
ANOVA is that if there is little or no statistical significance,
these features are considered late in the ordering and can often
be excluded. A disadvantage of ANOVA is that it considers
only one independent feature in relation to the prediction
outcome.

Kendall’s rank coefficient or also called Kendall's tau (τ)
is a measure for the correlation between an observation of at
least two ordinally scaled features x and y. The rank
correlation shows the correlation between these variables, in
which no hypothesis about the statistical distribution of the
variables is made [20]. An advantage of Kendall's tau is the
robustness against outliers. The disadvantage of this method
is that some information of the original data can be lost, for
example the true distribution function. We implemented the
kendalltau function from the scipy.stats package for our
experiments [21].

The permutation feature importance [22] is another
method to select features from a dataset. The permutation
feature importance for a classifier measures the impact of a
feature on the performance of a model (e.g., the accuracy). In
this procedure, the performance is measured with and without
permuted values of the feature. The difference between the
performance with and without permuted values is computed
for each model and averaged to get the feature importance see
e.g., [23]. A clear advantage of this is that it can handle
different metrics. This leaves us a free space for our own
metrics to use. A disadvantage of permutation feature
importance is the higher computational cost, compared to
ANOVA or Kendall's Rank. To calculate the permutation
feature importance, we must execute first an independent
algorithm.

To understand the metrics, we want to clarify the groups
of the confusion matrix in the context of our use case. In our
experiments, we focus on the minority class because product
errors occur far less than good products in a production line.
This fact should be considered when choosing the metrics.
Firstly, a True Positive (TP) instance is a corrupted product,
that is predicted as such. A False Positive (FP) instance is a
good product, that is predicted as bad product. The next group
is the False Negative (FN) instance, which represent a
corrupted product, that is predicted as good product. The last
group is the True Negative (TN) instance. This is a good
product, which is predicted as such. The explained groups of
the confusion matrix are used by the upcoming metrics, to
calculate the performance of the ML model.

84Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

The first metric we want to describe is the Matthews
Correlation Coefficient (MCC) [24]. The value of the MCC
metric gets calculated by:

MCC =
TP ∗ TN − FP ∗ FN

��TP + FP��TP + FN��TN + FP���� + ���
 (1)

The MCC metric is a good solution for unbalanced
datasets in terms of a binary classification. The MCC metric
takes both classes into account and can therefore provide a
good statement about the performance of the ML model.
Moreover, the MCC metric has been increasingly used in the
past years and is a state-of-the-art metric for a classification.

The following metric is our own cost-based metric, which
is based on the cost formula of [11]. This metric is a
calculation to predict the cost savings for all predictions.
Symbol α represents the cost saving factor or ratio of savings
of an identified error in relation to the costs of an instance
incorrectly classified as an error. A quality engineer can adjust
α for different products and can therefore decide product by
product which ML configuration is the most suitable.
Therefore, we want to use the Expected Benefit Rate (EBR)
metric to maximise the possible savings for a company.

Expected Benefit Rate =
TP ∗ α − FP

TP + FP + TN + FN
 (2)

Within the EBR metric, the numerator represents the
absolute savings or our expected benefit. We derive the
formula from [11] and obtain the total costs by TP*C(0,0) +
FP*C(0,1) + FN* C(1,0) + TN*C(1,1). Here the individual
parts represent C(0,0) = α, C(0,1) = -1, C(1,0) = 0, C(1,1) = 0,
which leads us to the numerator TP* α - FP. The denominator
is used to normalize the savings by dividing the numerator by
all instances. As result, we can show the expected benefit rate
for all predictions. The EBR metric intends to demonstrate the
benefits to use a ML system in production. Without a ML
system, it is difficult to get hints on possible correlations in
the data for the quality engineer. Without these hints on the
origin of the error, we cannot save any costs, i.e., all instances
must be classified as negative. Therefore, all error instances
will belong to class FN. To describe a positive result, we use
the terms of cost savings or benefit. Conversely, costs are
negative savings or a negative benefit. By using a ML system,
a previous FN could be turned into a TP, which increases
savings in the production. To be precise, we would correctly
predict a corrupted part that would otherwise proceed further
in the production line. A FP would still produce costs but less
than the savings of a TP, which we consider by α. By dividing
the numerator by all predictions within the metric calculation,
the result could be in the hundredths or thousandths range. The
outcome result looks maybe like a small saving, but it is very
profitable in mass production.

V. DESIGN OF FILTER SELECTION ALGORITHMS

This section is dedicated to the explanation of the
implementation summarized as condensed pseudocode in
Listing 1.

Listing 1: Pseudocode for feature selection

1. Fselect(F, m, ≥r, p, T, V)
2. S ← F, opt ← −∞
3. Sort(F, ≥r)
4. For i = 1 to |F|
5. C ← {fk ∈ F | k ≤ i}
6. score ← m(C,p,T,V)
7. If score > opt and lp < "
8. opt ← score
9. S ← C
10. Return (S)

The pseudocode describes the core approach for all

experiments. We subsequently discuss the pseudo code and
the variations for the different experiment. Line 1 defines the
parameters for the feature selection. In this representation, F
is a set of features and m(C,p,T,V) is a metric that evaluates a
prediction mechanism p that is trained over data T and
evaluated on validation data V. The symbol ≥r is an ordering
relation over features according to some importance measure,
with (f1, f2) ∈ ≥r if f1 is more important than f2.

At the start, we define list S with F (all features), in the
case that there will be no better result and a variable opt that
we define as negative infinity in Line 2. A for-loop to iterate
over the number of the features |F| is defined in Line 4. This
is to implement a version of a sequential feature selection filter
method. In Line 5 we select a current subset of features C
within the for-loop, with the features fk from the passed
ordering relation over the features ≥r. For every iteration, the
next feature from F ordered by ≥r is added to C. In Line 6 we
calculate the score based on the passed metric m(C,p,T,V) to
optimize. Note, that m wraps the training process for the
predictor p and is an important design choice. One may make
compromises concerning the implementation for the sake of
reducing computation time, e.g., implement m with or without
hyperparameter optimization.

The calculation of score is followed by a check if the
calculated score is greater than the opt variable and that lp is
smaller than α. The lp variable represents the p-value from the
two-sided dependent T-test [25] and α is set to 0.05. The p-
value is calculated for the baseline model, which represent the
model with all features trained and the current model within
an iteration of the for-loop, to make sure that our current
model is significantly better than the original model. If this
condition is met, we update opt with the score value in Line 8
and set C as S in Line 9. At the end, we return the feature list
S in Line 10.

85Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

VI. EXPERIMENTS

We ran several experiments based on the approach that we
introduced in the previous section. These experiments differ
(1) in the way hyperparameter tuning is integrated and (2) in
the implementations for the ordering relation ≥r.

We integrate hyperparameter tuning in three different
ways. The basic approach (A) does not include any
hyperparameter tuning. The predictor with default parameters
is trained and used on data projected on the selected features.
Experiment approach (B) adds hyperparameter tuning as
subsequent step to approach (A). After returning S at the end
of Listing 1, we reduce the original dataset to the selected
features and optimize a new model with the parameters from
TABLE 3. For the optimization via hyperparameter tuning,
we went through all possible combinations of the parameters
from TABLE 3, i.e., we implemented a grid search strategy.
With this new optimized model, we create the final results.
The third experiment approach (C) integrates hyperparameter
tuning into the basic experiment (A) by optimizing the
parameters of every single model during the training of
mechanism m in line 5. At the end of the function, we return
the best result and the selected features.

We consider three alternative methods in order to create
the ordering ≥r. As a first case (a), features are ordered
according to measurements based on ANOVA. An alternative
sorting (b) is provided by Kendall’s rank coefficient. As third
method (c) we chose permutation feature importance. This
procedure requires an additional ML model in advance to
calculate the importance of each feature. Based on this, we
create the ordered feature list using a certain metric, which
was EBR or MCC, depending on the optimization.

We ran experiments with all possible settings of
hyperparameter tuning. These include three variations with
respect to the feature ranking ≥r, yielding a number of 18 sets
of experiments in total (Optimizing according to EBR and
MCC). To optimize the model, we used the training set for
training and test set to evaluate the model. We continue to
perform a final 10-fold cross validation with a T-test on the
optimization metric based on the best model. Therefore, we
ensure that the final model is not worse than the baseline
model based on the training set. If so, we use the baseline
model instead of the optimized model.

A. Test Setup

For our experiments, we used a machine with Windows 10
64Bit. The test system has an Intel(R) Xeon(R) W-2133(12x
3.60 GHz) processor and 32 GB RAM. We used the Anaconda
Distribution with Numpy Version: 1.18.1, Pandas Version:
1.0.1, Scikit-learn Version: 0.22.1 and Python 3.7.6. All
shown experiments were executed on the CPU. For the
experiments, we used the well-known XGBoost algorithm
with the version 0.90. XGBoost is a state-of-the-art algorithm
to predict product quality [27]. Furthermore, the
comprehensibility of the results is an important criterion for
quality engineers, which is most likely to be fulfilled by
decision trees [8].

TABLE 3: XGBOOST OPTIMIZATION PARAMETER

Hyperparameter

n_estimators 50, 100, 150

max_depth 3, 6, 9

learning_rate 0.1, 0.3

class_weight
({0:1, 1:1}, ({0:1, 1:10}), ({0:1, 1:int(M)}),

(M = (sum(negative instances) / sum(positive

instances))

All optimizations for the experiment approaches B and C

have been calculated using the parameter search space from
TABLE 3.

B. Data Preparation for Training

To prepare the datasets for classification, we used a
sequential split. The data is ordered by time. We set the split
for the training set to first 67% of the total amount of errors in
the data. Therefore, we have always 33% of the total amount
of errors in the test set to validate the quality of the ML model.

C. Datasets

For our experiments, we used 25 highly unbalanced
datasets from six different production lines. Within these
production lines, we took the measurements from various
sequential test stations and addressed various error messages.
TABLE 2 shows the ratio between good and corrupted
product parts.

Class 0 represents a good and Class 1 represents a

corrupted product part. The imbalance of the two classes is
shown by the column IR. Dataset K has the highest IR value

TABLE 2: DATASETS

86Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

with 0.02982 and dataset P the lowest with 0.001228. This fact
stresses the importance of considering imbalance in the
domain of manufacturing, in particular for highly optimized
production lines. For our experiments we use numerical and
categorical data. Numerical values are measurements from
one or several combined test stations.

A further point is the number of features of the datasets.
Especially interesting are the datasets D, H, I, N, R, S, W
because of the high number of features (90+). The effect of
the feature reduction should be seen clearly on these.

VII. EVALUATION

In this section, we present the results from the executed
experiments. We used all three presented feature ranking
methods for each optimization approach. The objective was to
find out, which combination of ranking and optimization
approach is the most suitable regarding the prediction quality
and execution time. To evaluate the results with one key figure
we used the EBR metric. Even if we optimize according to
MCC we calculate the EBR value to compare. We set α=10 in

our experiments. According to our project partner, this is a
reasonable assumption for α in many cases. However, the
specific values may vary greatly throughout the production
lines and error types. Yet, we keep a fixed number to make the
results on different experiments comparable. For the analysis,
we first compared the EBR value and the number of necessary
features.

InTABLE 3, we show the baseline results of the test
without any optimization, filter methods or the use of the
Fselect function. These results are our baseline to compare
later results and were created with the standard settings from
the XGBoost algorithm. For the baseline results, we do not
consider the imbalance of the classes. There are several
aspects to point out inTABLE 3. First, some datasets have a

high number of features. The next point is the EBR value. If
an EBR value is 0, this does not mean that the model did not
find a relation in the data, but the predicted error probabilities
are too low for making an economically reasonable error
prediction (i.e., the cost for false positives would outweigh the
savings through true positives and hence TP = 0, FP = 0).
These results do not provide a meaningful prediction, but they
show a possible hint to the quality engineer regarding the error
causes. A further point is the negative EBR value. In this case,
the model estimated the confidence in error prediction too
high, resulting in higher cost through false positive predictions
than savings through true positive results.

TABLE 4 shows the results of the experiment approach A.
To highlight the best results (best EBR, using the number of
features as tie-breaker) for a dataset in TABLE 4 and
following tables, these lines are colored with a green
background color. If there is no green background color in a

TABLE 3: BASELINE RESULTS

(MODELL TRAINED WITH ALL FEATURES)

TABLE 4: EXPERIMENT APPROACH A

87Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

line, there are only identical results and therefore no winner.
For this experiment we also used the standard parameters for
the algorithm and did not consider the unbalanced dataset.
Compared to Table 3 we improved the result in 16 out of 75
experiments based on the EBR optimization. However, this is
contrasted by eight deteriorations compared to the baseline.
One of the possible reasons for the deterioration of results is a
concept drift in the data. During the training, a model was
found that performed better on the training set but afterward

worse based on the test set. This is because the production
processes are subject to constant change. With these results,
we can show that our safety mechanism based on the T-test is
working. That is, we avoid significant deterioration through
failed optimization while gaining benefits when the
optimization works. We can already notice an improvement
in approach A compared to the baseline results. We were able
to reduce dataset X to 3 out of 17 features with ANOVA.
Dataset D could be reduced from 133 to 1 feature using

TABLE 5: EXPERIMENT APPROACH B

TABLE 6: EXPERIMENT APPROACH C

88Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

Kendall's rank. For dataset I, we reduced the number of
features from 103 to 1 using Permutation Feature Importance.
In TABLE 4, we show that the ANOVA selection method was
the best for approach A. In TABLE 5, we show the results of
experiment approach B. For Dataset X (ANOVA), parameter
optimization improved the result from 0.002599687 to
0.01062813 for the same number of features. However, some
results are already optimized by a reduction to the most
important features e.g., dataset D with Kendall's rank or
dataset I with permutation feature importance. In this
approach we could provide 21 out of 75 better and nine worse
results based on the EBR optimization compared to TABLE
3. Therefore, we show a benefit to adjust the parameter of the
algorithm to provide better results with this approach. With
approach B we improved 11 out of 75 results and six out of 75

got worse based on the EBR optimization compared to
approach A. For approach B the Kendall’s rank provided the
best method for the feature selection if we consider the results
from the EBR and MCC optimization.

In TABLE 6, we visualized the results from approach C.
Within this table we can show the most changes in the number
of features and the difference between the optimization
metric. First, we provide 16 out of 25 best results based on the
EBR and MCC optimization with the Kendall’s rank selection
method in this approach. We also could reduce in 21 out of 75
cases the number of features and improve the result by
optimizing with the EBR metric. In contrast, we only could
reduce and improve the results twice by optimizing with the
MCC metric. Here, we can clearly show the benefit to use our
cost-based metric. Compared to approach B we improve 20

TABLE 7: EXECUTION TIME COMPARISON

TABLE 8: RESULT OVERVIEW

89Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

results and got worse in 15 cases based on the EBR result. As
mentioned before, the deterioration of the results may be due
to a concept drift in the data.

In TABLE 7, we compare the computation time needed
for each experiment approach for different datasets. We
colored the best time results with different colors for each
approach. For the experiment approach A the permutation
feature importance selection method achieved in 11 out of 25
cases the best results. At experiment approach B the Kendall’s
rank selection method achieved in 13 out of 25 cases the best
time results. For experiment approach C, the ANOVA
selection method achieved in 15 out of 25 datasets the best
time result.

When comparing experiment approach A and C in terms
of the EBR result and required time, we can point out that the
use of hyperparameter tuning does show a significant
enhancing effect in most of our experiments. However, the
calculation time for 19 datasets was demanding in terms of
time (over one hour needed), especially in dataset D. With the
experiment approach A and the benefit of EBR metric, we can
demonstrate a significant advantage towards the baseline.
Nevertheless, the experiment approach C could be used to
obtain the best possible result. We summarize all experiments
and results in a brief overview in TABLE 8. In this table we
can show that an optimization according to MCC achieves
better results than the baseline, but also often worsens
especially in Approach C Kendall's rank and permutation
feature importance. Therefore, we recommend optimization
according to EBR.

VIII. CONCLUSION

In this paper, we showed three filter methods and used
adapted cost-based metric EBR, to reduce features in real
manufacturing datasets. Regarding the research questions
from the introduction, we demonstrate benefits in a real-world
use case, which answers Q1. We showed a benefit by using
different filter methods and optimizing the XGBoost
algorithm with the EBR metric. However, the different filter
methods overall yield similar results. We obtain most of the
best results with experiment approach C. Experiment
approach B is favorable with respect to computation time.
These findings provide insights on Q2. Overall, most of the
best results for the experiment approaches were achieved by
using the permutation feature importance selection method
based on TABLE 8. Moreover, we have shown that more
features of the dataset can be reduced when using the EBR
metric compared to the MCC metric. This answers our
question Q3. The answer for question Q4 depends on the
experiment approach. The time difference between
experiment approaches A and B is tolerable for better results.
The training duration of a model is especially important to
consider as soon as many models must be trained in parallel
for different products. Especially because there are only
limited computing resources. However, the Kendall’s rank
selection method could be used in combination with
experiment approach B as fastest method regarding the best
possible results. To summarize our contributions in this paper,
we state the following:

First, we showed benefits of feature reduction in our use
case with highly unbalanced real-world data. Second, using
our EBR metric reduces the number of features in comparison
to the MCC in our experiments. Third, the experiment
approach B indicates the best improvement compared to the
baseline regarding the computation time.

ACKNOWLEDGEMENTS
This project was funded by the German Federal Ministry

of Education and Research, funding line “Forschung an
Fachhochschulen mit Unternehmen (FHProfUnt) “, contract
number 13FH249PX6. The responsibility for the content of
this publication lies with the authors. Also, we want to thank
the company SICK AG for the cooperation and partial
funding.

REFERENCES
[1] Z. Li, Z. Zhang, J. Shi, and D. Wu, “Prediction of surface

roughness in extrusion-based additive manufacturing with
machine learning,” Robotics and Computer-Integrated
Manufacturing, vol. 57, pp. 488-495, 2019
doi:10.1016/j.rcim.2019.01.004.

[2] V. Hirsch, P. Reimann, and B. Mitschang, “Data-Driven Fault
Diagnosis in End-of-Line Testing of Complex Products,” 2019
IEEE International Conference on Data Science and Advanced
Analytics (DSAA), 2019, doi:10.1109/dsaa.2019.00064.

[3] J. C. Ang, A. Mirzal, H. Haron, and H. N. A. Hamed,
“Supervised, unsupervised, and semi-supervised feature
selection: a review on gene selection,” IEEE/ACM transactions
on computational biology and bioinformatics, vol. 13, no. 5,
pp. 971-989, 2015.

[4] Y. Peng, Z. Wu, and J. Jiang, “A novel feature selection
approach for biomedical data classification,” Journal of
Biomedical Informatics, vol. 43, no. 1, pp. 15-23, 2010.

[5] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K.
Leyton-Brown, “Auto-WEKA: Automatic Model Selection
and Hyperparameter Optimization in WEKA,” Automated
Machine Learning The Springer Series on Challenges in
Machine Learning, pp. 81-95, 2019, doi:10.1007/978-3-030-
05318-5_4.

[6] E. LeDell and S. Poirier, “H2o automl: Scalable automatic
machine learning,” In Proceedings of the AutoML Workshop
at ICML vol. 2020, 2020.

[7] H. Ziekow et al., “Proactive Error Prevention in Manufacturing
Based on an Adaptable Machine Learning Environment,” From
Research to Application, vol. 113, 2019.

[8] A. Gerling et al., “A Reference Process Model for Machine
Learning Aided Production Quality Management,”
Proceedings of the 22nd International Conference on
Enterprise Information Systems, 2020,
doi:10.5220/0009379705150523.

[9] Y. Zhang, E. Tochev, S. Ratchev, and C. German, “Production
process optimization using feature selection methods,”
Procedia CIRP, vol. 88, pp. 554-559, 2020.

[10] M. Liu et al., “Cost-sensitive feature selection by optimizing F-
measures,” IEEE Transactions on Image Processing, vol. 27m
no. 3, pp. 1323-1335, 2017.

[11] P. Domingos, “MetaCost: A General Method for Making
Classifiers Cost-Sensitive,” Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD '99, 1999,
doi:10.1145/312129.312220.

[12] J. Huang, W. Qian, B. Wu, and Y. Wang, “Cost-Sensitive
Feature Selection Based on Label Significance and Positive
Region,” In 2019 International Conference on Machine
Learning and Cybernetics (ICMLC), pp. 1-7, 2019.

90Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

[13] M. Ali and T. Aittokallio, “Machine learning and feature
selection for drug response prediction in precision oncology
applications,” Biophysical reviews, vol. 11, no. 1, pp. 31-39,
2019.

[14] Y. Liu, J. W. Bi, and Z. P. Fan, “Multi-class sentiment
classification: The experimental comparisons of feature
selection and machine learning algorithms,” Expert Systems
with Applications, vol. 80, pp. 323-339, 2017.

[15] H. Liu, M. Zhou, and Q. Liu, “An embedded feature selection
method for imbalanced data classification,” IEEE/CAA
Journal of Automatica Sinica, vol. 6, no. 3, pp. 703-715, 2019.

[16] F. Feng, K. C. Li, J. Shen, Q. Zhou, and X. Yang, “Using cost-
sensitive learning and feature selection algorithms to improve
the performance of imbalanced classification,” IEEE Access,
vol. 8, pp. 69979-69996, 2020.

[17] B. G. Tabachnick and L. S. Fidell, “Experimental designs
using” ANOVA, Belmont, CA: Thomson/Brooks/Cole, pp.
724, 2007.

[18] SelectKBest, Sklearn.feature_selection.SelectKBest, from
https://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.
SelectKBest.html, (n.d.). Retrieved October 01, 2020

[19] F_classif, Sklearn.feature_selection.f_classif, from
https://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.f
_classif.html, (n.d.). Retrieved October 05, 2020.

[20] K. Siebertz and D. van Bebber, Statistische versuchsplanung.
T. Hochkirchen (Ed.). Springer Berlin Heidelberg, 2010.

[21] Kendalltau, Scipy.stats.kendalltau, from
https://docs.scipy.org/doc/scipy-
0.15.1/reference/generated/scipy.stats.kendalltau.html, (n.d.).
Retrieved October 05, 2020.

[22] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer,
“Permutation importance: a corrected feature importance
measure,” Bioinformatics, vol. 26, no 10, pp. 1340-1347, 2010.

[23] G. Casalicchio, C. Molnar, and B. Bischl, “Visualizing the
feature importance for black box models,” In Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases, Springer, Cham, pp. 655-670, September 2018.

[24] B.W. Matthews, “Comparison of the Predicted and Observed
Secondary Structure of T4 Phage Lysozyme,” Biochimica Et
Biophysica Acta (BBA) - Protein Structure, vol. 405, no. 2, pp.
442–51, 1975, https://doi.org/10.1016/0005-2795(75)90109-9.

[25] SciPy.org, scipy.stats.ttest_ind - SciPy v1.6.3 Reference
Guide. (n.d.).
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stat
s.ttest_ind.html, May 2021.

[26] Y. B. Wah, N. Ibrahim, H. A. Hamid, S. Abdul-Rahman, and
S. Fong, “Feature Selection Methods: Case of Filter and
Wrapper Approaches for Maximising Classification
Accuracy,” Pertanika Journal of Science & Technology, vol.
26, no. 1, 2018.

[27] N. Zhou, Q. Ren, and J. Zhou, “Identification of Critical-to-
quality Characteristics Based on Improved XGBoost,” In
Proceedings of the 3rd International Conference on Data
Science and Information Technology, pp. 205-209, July 2020.

91Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

