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Abstract— The importance of Machine Learning (ML) in the 

domain of manufacturing has been increasing in recent years. 

Especially, ML techniques are used to predict and explain 

errors in the production. One challenge of using ML in this 

domain is to deal with the often-high number of features in the 

datasets. However, a product defect can in many cases be traced 

back to a few relevant characteristics. In this paper, we 

investigate methods for finding reduced feature sets in the 

context of manufacturing. Here, the feature reduction promises 

two key advantages. One improvement is the prediction quality 

of the ML model. The second advantage concerns the 

explainability of a product error. With a reduction of features 

from the original dataset, we also reduce the search space for 

the product error origin. We investigate three different filter 

methods for feature selection based on 25 real manufacturing 

datasets, which are highly unbalanced. We describe the 

implementation of these and test them in three experimental 

approaches. Furthermore, we optimize the feature selection 

using a cost-based metric. Optimizing on the basis of the cost-

based metric is shown to be in several cases more useful for 

reducing the number of features than well-established and 

frequently used classification metrics. In various experiments, 

we were able to improve the result and simultaneously reduce 

the number of features with our cost-based metric. 

Keywords: Filter-Based Feature Selection methods; Machine 

Learning; Cost based Metric; Production; Production data. 

I.  INTRODUCTION 

Machine Learning (ML) has been increasingly used in the 
domain of manufacturing, particularly in the production line 

to predict corrupted product parts [1][2]. Data scientists and 
quality engineers are user roles in a company, which analyze 
malfunctions in the production to eliminate production errors. 
The task of these user roles is it to find the cause of a 
production error. Highly advanced production lines result in 
only few, but costly, errors. This is reflected in the data by just 
few errors to analyze, which result as a main challenge for this 
domain. A ML system can support data scientists and quality 
engineers, e.g., by creating prediction models and identifying 
relevant features in datasets from test stations. The evaluation 
methods for feature selection methods can be divided into five 
groups: embedded, hybrid, ensemble, wrapper and filter. In 
this paper we investigate the effect of filter selection methods. 
Filter methods have the advantage of better time performance 
in comparison to wrapper methods and are classifier 
independent [3]. Independence of classifier is particularly 
important for the flexibility to choose a different classifier 
regarding black box optimization. Another advantage of the 
filter-based methods is the ability to scale up to high-
dimensional datasets [4]. This is particularly useful because a 
large number of measurements are recorded in a production 
line. Even a single test station in a production line can check 
numerous features, but not every feature is equally important 
for a classification. Unnecessary features in the dataset are 
features, which are not related to a specific error message. 
These features should be removed from the dataset to provide 
(1) a better result and (2) to support the explainability of 
resulting models. Such tasks could be solved automatically by 
using Automated Machine Learning (AutoML) tools. 
Different AutoML solutions emerged over the past few years 
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[5][6]. An AutoML tool can take over various steps of the data 
science pipeline and prepare data or ML models for users. Our 
work is part of the project PREFERML [7] that investigates 
challenges and holistic system solutions in this context. 
Within our project, we provide the user an optimized dataset 
including only selected features from the original dataset. The 
selection of features will help to reduce the error cause space 
and support targeted analyses. We will test three different 
forms of state-of-the-art filter methods on real manufacturing 
data. 

The following research questions (Q) emerge from the 
above description: 

 (Q1) Can state of the art filter methods provide a 
benefit in the given use case? 

 (Q2) Which is the best filter method in our use case? 

 (Q3) Can further feature reductions be achieved by 
using alternatives to standard metrics? 

 (Q4) How long does the optimization of the model 
take and is there a fastest filter method? 
 

The paper is organized as follows: Section 2 describes our 
use case and the challenges in this domain. In Section 3, we 
describe related work. The fundamentals for our experiments 
are described in Section 4; this includes the used metrics and 
the filter methods. In Section 5, we describe the filter selection 
algorithm. Our setup for the experiment and the different 
experiment approaches are described in Section 6. Section 7 
is dedicated for the evaluation of the results. Section 8 
summarizes the work of this paper. 

II. USE CASE 

In this section, we provide basic information about the 
manufacturing domain and describe our use case. Production 
lines can be equipped with different numbers of test stations. 
In a production line, many test stations can be arranged in 
sequence or in parallel. Various production errors can be 
detected at different test stations. While an error is detected at 
a specific station, measurements from preceding stations may 
contain clues about the error and thus it is possible to stop the 
production of corrupted parts earlier in the production process 
avoiding additional costs. To analyze this, it is important to 
link data from several test stations and trace back the 
individual products through the production line. A general 
description of a production line can be found in [8]. Within 
this scenario, we can use feature selection based on specific 
product errors to investigate their causes. The objective is to 
use machine learning on data from the test stations to predict 
and prevent production errors. However, the number of 
recorded test measurements is very high and only a fraction of 
the data is useful to explain specific errors. Surplus data can 
negatively impact the model performance. Therefore, it is 
important to reduce the number of features to train the ML 
model. Another reason to reduce the number of features is the 
explainability of correlations between errors and their 
underlying causes. After reduction, only a few features are left 
from the origin dataset. Thus, we also have reduced the search 
space for quality engineers that seek to understand error 
causes. A quality engineer often just has simple tools to 

investigate the data from the test stations. Without adjusted 
analyzing tools for this task, a quality engineer must search in 
a wide range of features for correlation with the product error. 
After the reduction of the dataset with a feature selection 
method, a quality engineer can analyze the product error with 
better focus on the relevant data and easier find the root cause. 
Another important point to be considered for ML training in 
our use case are the highly unbalanced datasets. These can 
severely impact the performance of a ML model, if not 
accounted for. This could be solved by using various sampling 
methods. Another method to tackle this challenge is to use 
weight parameters in learning models. In our experiments, we 
use weights and hyperparameter tuning to counteract the 
unbalanced dataset by adjusting the associated parameter with 
different ratios. 

III. RELATED WORK 

Zhang et al. [9] introduced a case study to optimize the 
process of a production by using feature selection methods 
was conducted. To do so, the authors used feature selection 
methods based on acceptance testing strategies. As a result, 
they show a reduction of 81% of inspection time while 
keeping the same accuracy with current industrial strategies to 
distinguish a non-qualified from a qualified product. An 
industrial strategy is e.g., acceptance sampling, which is 
commonly used as a statistical quality control method. The 
objective of the case study was to reduce the total testing time 
and optimize the production capability while still secure the 
accuracy of quality inspection for industrial products. 
Therefore, the reduction is not to meant to find an error cause, 
as in our use case. What is not considered in this reduction is 
that tests could be removed that would lead to the origin of a 
product error. 

Liu et al. [10] show the problem of feature selection 
methods is investigated. They address the problem that 
standard feature selection methods do not take into account 
the imbalance of classes. During the selection process, the 
majority class is taken into account to a greater extent, which 
may lead to incorrectly selected features. To handle the 
problem, the F-measure metric was used for optimization, as 
it performs better on unbalanced data than accuracy does. For 
the investigation of the cost-sensitive classification, they 
generated and assigned various costs for the different classes 
based on a rigorous theory guidance. As result, they could 
reduce the number of features by optimizing with the F-
measure metric. This work is similar to ours in terms of 
unbalanced data. [10] aim to reduce features in a cost-
optimized way. Unlike the discussed work, we use a cost-
based metric to optimize the results of real-world data and use 
further filter selection methods for our experiments. 

The subject of cost-sensitive classifier and MetaCost is 
covered in [11]. Their approach uses a cost matrix with 
different costs for the errors. Afterwards, the classifier is 
adjusted based on this matrix. Due to the allocated costs of 
different errors, this approach is well suited for imbalanced 
datasets. A cost reduction can be accomplished with this 
approach compared to the cost-blind classifier. In this cost 
matrix the minority class was set to 0 and the majority class 
set to 1, based on a two-class (fail, no fail) classification. The 
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error costs for the cost matrix was set to C(0,0) = C(1,1) = 0; 
C(0,1) = 1000; C(1,0) = 1000 r. In our approach the C(0,0) 
and C(0,1) cases are relevant, because they correspond to a 
corrupted product, that is predicted as such (factor C(0,0)) and 
a good product, that is predicted as bad product (factor 
C(0,1)). 

Huang et al. [12] investigate the correlation and 
significance among labels for multi-label data. To handle this 
problem, they introduce label significance into cost-sensitive 
feature selection. Furthermore, they suggest a feature 
selection algorithm, which utilize test cost based on label 
significance. Three distributions (namely Uniform, Normal 
and Pareto distribution) with positive region generate a test 
cost matrix, which are combined with the suggest algorithm. 
Moreover, by analyzing the feature cost integrated in the 
positive region, they define a feature significance metric. As 
result, they could validate the efficiency of the algorithm with 
the influence of an additional parameter on various test costs 
in their experiments and analysis of the suggested method on 
four real datasets.  

The subject of feature selection is a popular field in 
different applications or domains [13][14]. One of the 
important reasons to use feature selection is the reduction of 
high dimensional data. Another reason is to select only 
important features to explain a certain behavior or correlation. 
Also, in the domain of manufacturing feature selection is also 
an important aid [15][16]. Our work contributes to the case of 
manufacturing. We are using feature selection to reduce the 
original dataset, which helps us to identify the origin of error 
causes. We are doing so by optimizing with a cost-based 
metric. Further, we are using filter selection methods for our 
experiment and use case. By using filter selection methods, 
we can exchange the underlying algorithm without hesitation. 
This characteristic helps us in terms of AutoML. Regarding 
this, the related works do not provide specific insights in what 
optimization methods and metrics work best in the 
manufacturing domain. 

Wrapper methods for feature selection evaluate a subset of 
all features using a specific machine learning algorithm. These 
have a pre-defined search strategy to check for the best 
possible result from the feature subsets [26]. Wrapper 
methods have a high computation time, especially for datasets 
with many features because it must search for the best subset 
of features. Our advantage compared to wrapper methods is 
that we use the filter methods to pre-sort the most important 
features. Therefore, we can always replace the learning 
algorithm (XGBoost) in the background with another one. 
Furthermore, we would also have a time advantage if, for 
example, only the n most important features should be taken. 
In addition, the ordered feature list can be used for further 
analyses. We also go through several subsets of the features, 
but these are already sorted by the feature importance. 

Our work is inspired by the existing works and tests 
several approaches for handling feature selection and hyper 
parameter tuning with real world data. We thereby provide 
insights into the benefits of different optimization metrics and 
strategies under realistic conditions. 

IV. FUNDAMENTALS 

In this section, we describe fundamental concepts behind 
selection methods and metrics. We first introduce three 
different filter methods used in our experiments and 
afterwards two metrics. 

ANalysis Of VAriance (ANOVA) is a statistical and state 
of the art approach to select features in datasets. ANOVA tests 
the statistical significance of mean differences among 
different groups of scores [17]. We chose SelectKBest [18] 
from scikit-learn as tool to implement ANOVA filter method 
for our experiments. The underlying feature scores are 
assigned by ANOVA F-Value [19], a metric which calculates 
linear dependencies between two variables. The advantage of 
ANOVA is that if there is little or no statistical significance, 
these features are considered late in the ordering and can often 
be excluded. A disadvantage of ANOVA is that it considers 
only one independent feature in relation to the prediction 
outcome. 

Kendall’s rank coefficient or also called Kendall's tau (τ) 
is a measure for the correlation between an observation of at 
least two ordinally scaled features x and y. The rank 
correlation shows the correlation between these variables, in 
which no hypothesis about the statistical distribution of the 
variables is made [20]. An advantage of Kendall's tau is the 
robustness against outliers. The disadvantage of this method 
is that some information of the original data can be lost, for 
example the true distribution function. We implemented the 
kendalltau function from the scipy.stats package for our 
experiments [21]. 

The permutation feature importance [22] is another 
method to select features from a dataset. The permutation 
feature importance for a classifier measures the impact of a 
feature on the performance of a model (e.g., the accuracy). In 
this procedure, the performance is measured with and without 
permuted values of the feature. The difference between the 
performance with and without permuted values is computed 
for each model and averaged to get the feature importance see 
e.g., [23]. A clear advantage of this is that it can handle 
different metrics. This leaves us a free space for our own 
metrics to use. A disadvantage of permutation feature 
importance is the higher computational cost, compared to 
ANOVA or Kendall's Rank. To calculate the permutation 
feature importance, we must execute first an independent 
algorithm. 

To understand the metrics, we want to clarify the groups 
of the confusion matrix in the context of our use case. In our 
experiments, we focus on the minority class because product 
errors occur far less than good products in a production line. 
This fact should be considered when choosing the metrics. 
Firstly, a True Positive (TP) instance is a corrupted product, 
that is predicted as such. A False Positive (FP) instance is a 
good product, that is predicted as bad product. The next group 
is the False Negative (FN) instance, which represent a 
corrupted product, that is predicted as good product. The last 
group is the True Negative (TN) instance. This is a good 
product, which is predicted as such. The explained groups of 
the confusion matrix are used by the upcoming metrics, to 
calculate the performance of the ML model.  
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The first metric we want to describe is the Matthews 
Correlation Coefficient (MCC) [24]. The value of the MCC 
metric gets calculated by: 

MCC =
TP ∗  TN −  FP ∗ FN

��TP + FP��TP + FN��TN + FP���� + ���
 (1) 

The MCC metric is a good solution for unbalanced 
datasets in terms of a binary classification. The MCC metric 
takes both classes into account and can therefore provide a 
good statement about the performance of the ML model. 
Moreover, the MCC metric has been increasingly used in the 
past years and is a state-of-the-art metric for a classification. 

The following metric is our own cost-based metric, which 
is based on the cost formula of [11]. This metric is a 
calculation to predict the cost savings for all predictions. 
Symbol α represents the cost saving factor or ratio of savings 
of an identified error in relation to the costs of an instance 
incorrectly classified as an error. A quality engineer can adjust 
α for different products and can therefore decide product by 
product which ML configuration is the most suitable. 
Therefore, we want to use the Expected Benefit Rate (EBR) 
metric to maximise the possible savings for a company. 

Expected Benefit Rate =
TP ∗  α −  FP

TP + FP + TN + FN
 (2) 

Within the EBR metric, the numerator represents the 
absolute savings or our expected benefit. We derive the 
formula from [11] and obtain the total costs by TP*C(0,0) + 
FP*C(0,1) + FN* C(1,0) + TN*C(1,1). Here the individual 
parts represent C(0,0) = α, C(0,1) = -1, C(1,0) = 0, C(1,1) = 0, 
which leads us to the numerator TP* α - FP. The denominator 
is used to normalize the savings by dividing the numerator by 
all instances. As result, we can show the expected benefit rate 
for all predictions. The EBR metric intends to demonstrate the 
benefits to use a ML system in production. Without a ML 
system, it is difficult to get hints on possible correlations in 
the data for the quality engineer. Without these hints on the 
origin of the error, we cannot save any costs, i.e., all instances 
must be classified as negative. Therefore, all error instances 
will belong to class FN. To describe a positive result, we use 
the terms of cost savings or benefit. Conversely, costs are 
negative savings or a negative benefit. By using a ML system, 
a previous FN could be turned into a TP, which increases 
savings in the production. To be precise, we would correctly 
predict a corrupted part that would otherwise proceed further 
in the production line. A FP would still produce costs but less 
than the savings of a TP, which we consider by α. By dividing 
the numerator by all predictions within the metric calculation, 
the result could be in the hundredths or thousandths range. The 
outcome result looks maybe like a small saving, but it is very 
profitable in mass production. 

V. DESIGN OF FILTER SELECTION ALGORITHMS 

This section is dedicated to the explanation of the 
implementation summarized as condensed pseudocode in 
Listing 1. 

 

Listing 1: Pseudocode for feature selection 

1. Fselect(F, m, ≥r, p, T, V) 
2.     S ← F, opt ← −∞ 
3.     Sort(F, ≥r)  
4.     For i = 1 to |F| 
5.         C ← {fk ∈ F | k ≤ i} 
6.         score ← m(C,p,T,V) 
7.         If score > opt and lp < " 
8.             opt ← score 
9.             S ← C 
10.     Return (S) 

 
The pseudocode describes the core approach for all 

experiments. We subsequently discuss the pseudo code and 
the variations for the different experiment. Line 1 defines the 
parameters for the feature selection. In this representation, F 
is a set of features and m(C,p,T,V) is a metric that evaluates a 
prediction mechanism p that is trained over data T and 
evaluated on validation data V. The symbol ≥r is an ordering 
relation over features according to some importance measure, 
with (f1, f2) ∈ ≥r if f1 is more important than f2. 

At the start, we define list S with F (all features), in the 
case that there will be no better result and a variable opt that 
we define as negative infinity in Line 2. A for-loop to iterate 
over the number of the features |F| is defined in Line 4. This 
is to implement a version of a sequential feature selection filter 
method. In Line 5 we select a current subset of features C 
within the for-loop, with the features fk from the passed 
ordering relation over the features ≥r. For every iteration, the 
next feature from F ordered by ≥r is added to C. In Line 6 we 
calculate the score based on the passed metric m(C,p,T,V) to 
optimize. Note, that m wraps the training process for the 
predictor p and is an important design choice. One may make 
compromises concerning the implementation for the sake of 
reducing computation time, e.g., implement m with or without 
hyperparameter optimization. 

The calculation of score is followed by a check if the 
calculated score is greater than the opt variable and that lp is 
smaller than α. The lp variable represents the p-value from the 
two-sided dependent T-test [25] and α is set to 0.05. The p-
value is calculated for the baseline model, which represent the 
model with all features trained and the current model within 
an iteration of the for-loop, to make sure that our current 
model is significantly better than the original model. If this 
condition is met, we update opt with the score value in Line 8 
and set C as S in Line 9. At the end, we return the feature list 
S in Line 10. 
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VI. EXPERIMENTS 

We ran several experiments based on the approach that we 
introduced in the previous section. These experiments differ 
(1) in the way hyperparameter tuning is integrated and (2) in 
the implementations for the ordering relation ≥r. 

We integrate hyperparameter tuning in three different 
ways. The basic approach (A) does not include any 
hyperparameter tuning. The predictor with default parameters 
is trained and used on data projected on the selected features. 
Experiment approach (B) adds hyperparameter tuning as 
subsequent step to approach (A). After returning S at the end 
of Listing 1, we reduce the original dataset to the selected 
features and optimize a new model with the parameters from 
TABLE 3. For the optimization via hyperparameter tuning, 
we went through all possible combinations of the parameters 
from TABLE 3, i.e., we implemented a grid search strategy. 
With this new optimized model, we create the final results. 
The third experiment approach (C) integrates hyperparameter 
tuning into the basic experiment (A) by optimizing the 
parameters of every single model during the training of 
mechanism m in line 5. At the end of the function, we return 
the best result and the selected features. 

We consider three alternative methods in order to create 
the ordering ≥r. As a first case (a), features are ordered 
according to measurements based on ANOVA. An alternative 
sorting (b) is provided by Kendall’s rank coefficient. As third 
method (c) we chose permutation feature importance. This 
procedure requires an additional ML model in advance to 
calculate the importance of each feature. Based on this, we 
create the ordered feature list using a certain metric, which 
was EBR or MCC, depending on the optimization.  

We ran experiments with all possible settings of 
hyperparameter tuning. These include three variations with 
respect to the feature ranking ≥r, yielding a number of 18 sets 
of experiments in total (Optimizing according to EBR and 
MCC). To optimize the model, we used the training set for 
training and test set to evaluate the model. We continue to 
perform a final 10-fold cross validation with a T-test on the 
optimization metric based on the best model. Therefore, we 
ensure that the final model is not worse than the baseline 
model based on the training set. If so, we use the baseline 
model instead of the optimized model. 

A. Test Setup 

For our experiments, we used a machine with Windows 10 
64Bit. The test system has an Intel(R) Xeon(R) W-2133(12x 
3.60 GHz) processor and 32 GB RAM. We used the Anaconda 
Distribution with Numpy Version: 1.18.1, Pandas Version: 
1.0.1, Scikit-learn Version: 0.22.1 and Python 3.7.6. All 
shown experiments were executed on the CPU. For the 
experiments, we used the well-known XGBoost algorithm 
with the version 0.90. XGBoost is a state-of-the-art algorithm 
to predict product quality [27]. Furthermore, the 
comprehensibility of the results is an important criterion for 
quality engineers, which is most likely to be fulfilled by 
decision trees [8]. 

 

 

TABLE 3: XGBOOST OPTIMIZATION PARAMETER 

Hyperparameter 

n_estimators 50, 100, 150 

max_depth 3, 6, 9 

learning_rate 0.1, 0.3 

class_weight 
({0:1, 1:1}, ({0:1, 1:10}), ({0:1, 1:int(M)}),  

( M = (sum(negative instances) / sum(positive 

instances)) 

 
All optimizations for the experiment approaches B and C 

have been calculated using the parameter search space from 
TABLE 3. 

B. Data Preparation for Training 

To prepare the datasets for classification, we used a 
sequential split. The data is ordered by time. We set the split 
for the training set to first 67% of the total amount of errors in 
the data. Therefore, we have always 33% of the total amount 
of errors in the test set to validate the quality of the ML model. 

C. Datasets 

For our experiments, we used 25 highly unbalanced 
datasets from six different production lines. Within these 
production lines, we took the measurements from various 
sequential test stations and addressed various error messages. 
TABLE 2 shows the ratio between good and corrupted 
product parts. 

 
Class 0 represents a good and Class 1 represents a 

corrupted product part. The imbalance of the two classes is 
shown by the column IR. Dataset K has the highest IR value 

TABLE 2: DATASETS 
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with 0.02982 and dataset P the lowest with 0.001228. This fact 
stresses the importance of considering imbalance in the 
domain of manufacturing, in particular for highly optimized 
production lines. For our experiments we use numerical and 
categorical data. Numerical values are measurements from 
one or several combined test stations. 

A further point is the number of features of the datasets. 
Especially interesting are the datasets D, H, I, N, R, S, W 
because of the high number of features (90+). The effect of 
the feature reduction should be seen clearly on these. 

VII. EVALUATION 

In this section, we present the results from the executed 
experiments. We used all three presented feature ranking 
methods for each optimization approach. The objective was to 
find out, which combination of ranking and optimization 
approach is the most suitable regarding the prediction quality 
and execution time. To evaluate the results with one key figure 
we used the EBR metric. Even if we optimize according to 
MCC we calculate the EBR value to compare. We set α=10 in 

our experiments. According to our project partner, this is a 
reasonable assumption for α in many cases. However, the 
specific values may vary greatly throughout the production 
lines and error types. Yet, we keep a fixed number to make the 
results on different experiments comparable. For the analysis, 
we first compared the EBR value and the number of necessary 
features. 

InTABLE 3, we show the baseline results of the test 
without any optimization, filter methods or the use of the 
Fselect function. These results are our baseline to compare 
later results and were created with the standard settings from 
the XGBoost algorithm. For the baseline results, we do not 
consider the imbalance of the classes. There are several 
aspects to point out inTABLE 3. First, some datasets have a 

high number of features. The next point is the EBR value. If 
an EBR value is 0, this does not mean that the model did not 
find a relation in the data, but the predicted error probabilities 
are too low for making an economically reasonable error 
prediction (i.e., the cost for false positives would outweigh the 
savings through true positives and hence TP = 0, FP = 0). 
These results do not provide a meaningful prediction, but they 
show a possible hint to the quality engineer regarding the error 
causes. A further point is the negative EBR value. In this case, 
the model estimated the confidence in error prediction too 
high, resulting in higher cost through false positive predictions 
than savings through true positive results. 

TABLE 4 shows the results of the experiment approach A. 
To highlight the best results (best EBR, using the number of 
features as tie-breaker) for a dataset in TABLE 4 and 
following tables, these lines are colored with a green 
background color. If there is no green background color in a 

TABLE 3: BASELINE RESULTS  

(MODELL TRAINED WITH ALL FEATURES) 

TABLE 4: EXPERIMENT APPROACH A 
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line, there are only identical results and therefore no winner. 
For this experiment we also used the standard parameters for 
the algorithm and did not consider the unbalanced dataset. 
Compared to Table 3 we improved the result in 16 out of 75 
experiments based on the EBR optimization. However, this is 
contrasted by eight deteriorations compared to the baseline. 
One of the possible reasons for the deterioration of results is a 
concept drift in the data. During the training, a model was 
found that performed better on the training set but afterward 

worse based on the test set. This is because the production 
processes are subject to constant change. With these results, 
we can show that our safety mechanism based on the T-test is 
working. That is, we avoid significant deterioration through 
failed optimization while gaining benefits when the 
optimization works. We can already notice an improvement 
in approach A compared to the baseline results. We were able 
to reduce dataset X to 3 out of 17 features with ANOVA. 
Dataset D could be reduced from 133 to 1 feature using 

TABLE 5: EXPERIMENT APPROACH B 

TABLE 6: EXPERIMENT APPROACH C 
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Kendall's rank. For dataset I, we reduced the number of 
features from 103 to 1 using Permutation Feature Importance. 
In TABLE 4, we show that the ANOVA selection method was 
the best for approach A. In TABLE 5, we show the results of 
experiment approach B. For Dataset X (ANOVA), parameter 
optimization improved the result from 0.002599687 to 
0.01062813 for the same number of features. However, some 
results are already optimized by a reduction to the most 
important features e.g., dataset D with Kendall's rank or 
dataset I with permutation feature importance. In this 
approach we could provide 21 out of 75 better and nine worse 
results based on the EBR optimization compared to TABLE 
3. Therefore, we show a benefit to adjust the parameter of the 
algorithm to provide better results with this approach. With 
approach B we improved 11 out of 75 results and six out of 75 

got worse based on the EBR optimization compared to 
approach A. For approach B the Kendall’s rank provided the 
best method for the feature selection if we consider the results 
from the EBR and MCC optimization. 

In TABLE 6, we visualized the results from approach C. 
Within this table we can show the most changes in the number 
of features and the difference between the optimization 
metric. First, we provide 16 out of 25 best results based on the 
EBR and MCC optimization with the Kendall’s rank selection 
method in this approach. We also could reduce in 21 out of 75 
cases the number of features and improve the result by 
optimizing with the EBR metric. In contrast, we only could 
reduce and improve the results twice by optimizing with the 
MCC metric. Here, we can clearly show the benefit to use our 
cost-based metric. Compared to approach B we improve 20 

TABLE 7: EXECUTION TIME COMPARISON 

TABLE 8: RESULT OVERVIEW 
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results and got worse in 15 cases based on the EBR result. As 
mentioned before, the deterioration of the results may be due 
to a concept drift in the data. 

In TABLE 7, we compare the computation time needed 
for each experiment approach for different datasets. We 
colored the best time results with different colors for each 
approach. For the experiment approach A the permutation 
feature importance selection method achieved in 11 out of 25 
cases the best results. At experiment approach B the Kendall’s 
rank selection method achieved in 13 out of 25 cases the best 
time results. For experiment approach C, the ANOVA 
selection method achieved in 15 out of 25 datasets the best 
time result. 

When comparing experiment approach A and C in terms 
of the EBR result and required time, we can point out that the 
use of hyperparameter tuning does show a significant 
enhancing effect in most of our experiments. However, the 
calculation time for 19 datasets was demanding in terms of 
time (over one hour needed), especially in dataset D. With the 
experiment approach A and the benefit of EBR metric, we can 
demonstrate a significant advantage towards the baseline. 
Nevertheless, the experiment approach C could be used to 
obtain the best possible result. We summarize all experiments 
and results in a brief overview in TABLE 8. In this table we 
can show that an optimization according to MCC achieves 
better results than the baseline, but also often worsens 
especially in Approach C Kendall's rank and permutation 
feature importance. Therefore, we recommend optimization 
according to EBR. 

VIII. CONCLUSION 

In this paper, we showed three filter methods and used 
adapted cost-based metric EBR, to reduce features in real 
manufacturing datasets. Regarding the research questions 
from the introduction, we demonstrate benefits in a real-world 
use case, which answers Q1. We showed a benefit by using 
different filter methods and optimizing the XGBoost 
algorithm with the EBR metric. However, the different filter 
methods overall yield similar results. We obtain most of the 
best results with experiment approach C. Experiment 
approach B is favorable with respect to computation time. 
These findings provide insights on Q2. Overall, most of the 
best results for the experiment approaches were achieved by 
using the permutation feature importance selection method 
based on TABLE 8. Moreover, we have shown that more 
features of the dataset can be reduced when using the EBR 
metric compared to the MCC metric. This answers our 
question Q3. The answer for question Q4 depends on the 
experiment approach. The time difference between 
experiment approaches A and B is tolerable for better results. 
The training duration of a model is especially important to 
consider as soon as many models must be trained in parallel 
for different products. Especially because there are only 
limited computing resources. However, the Kendall’s rank 
selection method could be used in combination with 
experiment approach B as fastest method regarding the best 
possible results. To summarize our contributions in this paper, 
we state the following: 

First, we showed benefits of feature reduction in our use 
case with highly unbalanced real-world data. Second, using 
our EBR metric reduces the number of features in comparison 
to the MCC in our experiments. Third, the experiment 
approach B indicates the best improvement compared to the 
baseline regarding the computation time. 
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