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Abstract—Production processes are inherently subject to dy-
namic change. This makes the extraction of error causes and
the prediction of errors from manufacturing data by machine
learning (ML) a difficult challenge, but at the same time it
is the key to improve product quality and thus to economic
profit. As part of the PREFERML research project (Proactive
Error Avoidance in Production through Machine Learning), we
present a method for detecting concept drift using clustering
based on SHAP values (SHapley Additive exPlanations) and
propose strategies to handle concept drift. Evaluation based on
real manufacturing data shows that the cluster specific approach
improves concept drift detection and can yield economic benefits.

Index Terms—AI in manufacturing, error prediction, concept
drift detection, clustering, SHAP values

I. INTRODUCTION

The support provided by machine learning in the context of
manufacturing processes is finding more and more application,
as optimized error avoidance is a key competitive advantage.
Among other things, these models can be used to predict in
real time during the production process whether the examined
piece of production will yield a production error at a later
stage or not. A reliable prediction offers the possibility to
remove individual product components from the production
process that would later turn out to be defective. This leads
to the avoidance of follow-up costs. However, there is a risk
of incorrectly classifying error-free parts as defective, which
means that future profits are not realized. A ML classification
model tries to learn the underlying error-cause correlations.
Yet, even if the model represents reality almost perfectly,
the application can be problematic as production processes
are subject to constant change. Previously learned error-cause
correlations may no longer be valid in the future, which
is known as concept drift. Using outdated concepts can be
misleading and reduces the quality of the classification. Hence,
concept drift must be recognized and the models adapted
accordingly. The error-cause relationships are usually highly
complex, so that there are several concepts that can be affected
by concept drift to varying degrees. A blanket analysis of the
entire data (without separating these concepts) does not distin-
guish between the individual correlations and may therefore
be insufficient. SHAP values [1] allow us to subdivide the
data into subsets that correspond to different concepts each.

This is part of our approach by which the specific concepts
can be individually examined for drift and targeted options
for optimizing individual clusters can be derived. Our strategy
is to monitor the quality of predictions on a cluster specific
basis and to disregard predictions of errors if the expected
costs exceed the expected gains.

Our work is organized as follows. Section II introduces
the realities and problems of classification and concept drift
in manufacturing. Section III introduces methods relevant to
understanding our approach. Section IV gives an overview of
the project in which this work is embedded and Section V
deals with related work. Section VI describes the approach
we developed. The description of the experiments in Section
VII is followed by the presentation of the results in Section
VIII. The paper is concluded with a brief summary and further
research aspects in Section IX.

II. DOMAIN

For a better understanding of the problem, the production
environment, the application of ML as well as the problem
and the handling of concept drift are explained in more detail
below.

A. Manufacturing setup

A typical production setup consists of several production
lines. An example of one is given in Fig. 1. It consists of a
number of test stations that serve as quality gate for recent
production steps. The arrangement of the test stations can be
simply sequential, but also more complex. Workpieces pass
through the individual test stations and are forwarded if they
remain error-free. Each test station checks incoming work-
pieces for certain characteristics. The measurements of the
individual parts are stored in the Product Quality Management
System (PQM), that supports the monitoring of production.

Fig. 1: Typical production setup [2]
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If tolerance limits are exceeded during a measurement, a
workpiece is labeled defective and it is removed from the
production process. Products that leave the production process
free of defects lead to economic profits. Early fault detection
in the production process through correct error predictions
therefore ensures economic savings. Defects in production can
usually be traced back to causes. However, these are often
complex or difficult to identify due to the large amounts of
data that are generated in the PQM System.

B. Classification and prediction in manufacturing

Artificial intelligence, such as binary classification models,
can be used here to work out the error-cause relationships
on the one hand, and on the other hand to provide forecasts
for future measurements about future susceptibility to errors.
Due to the described economic implications, this has great
potential. The measurement features of the individual test
stations form the set of input variables for classification. The
occurrence of a defective workpiece at a particular test station
is stored as a binary variable, which is the target variable for
classification. Its recording takes place chronologically after
the measurements of input variables.

When correlations are learned through artificial intelligence,
the classification models created can be used to make pre-
dictions about defects. As soon as all measured values of
a certain model are acquired for a workpiece, a prediction
is created. We refer to the state of a production process
without support of ML as the status quo. Here, the workpieces
pass through all production steps and are only removed from
the process when an error has occurred. Alternatively, we
can trust predictions of an existing ML model and remove
the corresponding workpiece from the production process.
Subsequent costs in production are then saved. Although the
remaining production steps and test stations will not be passed,
there might be possibilities to check in a separate step whether
the workpiece is actually defective or not. At the same time,
incorrect predictions result in missed profits when the products
would actually have been error-free. It is therefore obvious to
evaluate predictions in the context of manufacturing from an
economic point of view. Classifications within a production
line can be done in many ways. From the set of different
errors that occur at a certain test station, a specific error can be
selected, or a subset of all errors can be combined and treated
as one fault. Any subset of the set of measurement features
can be selected, provided that the measurements were made
before the selected error occurred.

C. Concept drift in manufacturing

The time factor plays a major role in handling data derived
from the production processes. The error-cause relationships
are often not permanent, as the production environment is
subject to dynamic change. For example, mechanical prop-
erties of tools used at the test stations can change and affect
the tolerance limits of individual features [3]. Then learned
correlations of the classification models no longer hold and
there is a risk that increasingly wrong predictions are given,

which is called concept drift. This effect can be detected
by monitoring the quality of the positive predictions, e.g.,
using precision, see Section III. Each significant drift signals a
change in the underlying relationships that the ML model used
has not learned. If workpieces are mistakenly removed from
the production process in case of a positive prediction, this
yields a deterioration of the economic profit. Quality managers
can provide information to determine a critical threshold at
which further deterioration leads to economic losses. This
state equals the status quo where no predictions are made.
Since the quality of the predictions can only be monitored
retrospectively, the decision to trust the prediction model must
already be made at the previous instance. This means that a
deterioration in performance can only be reacted to with a
delay. Concept drift might also occur due to the increase of
errors without them being correctly predicted. In this case,
classification does not yield worse results than in the status
quo and has no negative effect in comparison.

III. FUNDAMENTALS

The following sections require the knowledge of some
methodological basics, which will now be presented.

A. Evaluating classification results in manufacturing

We consider the case of a binary classification model that
tries to predict whether a workpiece will later be defective
(class 1) or not (class 0), based on measured values in
production. We evaluate results of a ML mechanism compared
to the status quo without ML support. Not making a prediction
(status quo) corresponds to a negative prediction of a ML
mechanism. Since the positive predictions make the difference,
we focus on these and neglect negative predictions.
Domingos [4] defines a cost matrix C, where c(i, j) represents
costs of a piece of class j that is predicted to be class i. Quality
managers can assess the benefits of correct failure prediction
c(1, 1) and the costs of incorrect failure prediction c(0, 1).
They depend on the specific product, test station and error
and must be determined individually. Note that c(1, 1) > 0,
while c(0, 1) < 0, as there are savings when a faulty part is
correctly predicted as. We define total savings TS as sum of
savings due to the number of true positive instances TP and
costs due to the number of false positive instances FP :

TS = TP ∗ c(1, 1) + FP ∗ c(0, 1) (1)

To simplify, we set c(0, 1) = −1, c(1, 1) can be determined
as any multiple thereof:

TS = TP ∗ c(1, 1)− FP (2)

Total savings represent a metric with which the results of
a classification can be evaluated from an economic point of
view. As mentioned, the status quo does not use artificial
intelligence. No errors are detected, but no workpieces are
mistakenly removed from the process either, which yields
TS = 0.
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If the focus of the evaluation is on the quality of the positive
predictions, then precision is a suitable metric:

precision =
TP

TP + FP
(3)

In this respect, a threshold τ can be derived below which the
classification leads to negative total savings and is therefore
uneconomical.

TS = 0 = TP ∗ c(1, 1)− FP → FP = TP ∗ c(1, 1) (4)

Using (3), this gets:

τ =
TP

TP + TP ∗ c(1, 1)
=

1

1 + c(1, 1)
(5)

As the precision of a single instance is a binary output, it
makes sense to evaluate precision with the help of a sliding
window over the last instances. In the following we call the
number of instances within a sliding window nwin.

B. Concept drift and detecting drift in data streams

Given the quality measurements X , a ML classification
model M predicts the conditional probability P t(Y |X) at time
t, where Y represents a production error. We call the occur-
rence of the true label Y due to certain common properties of a
subset of input data X concept. If the underlying relationships
change over time, P t(Y |X) 6= P t+1(Y |X) may hold after
some time, which is known as concept drift. Independently
of this, P t(X) 6= P t+1(X) might occur as well. If there is
no drift of the nature P t(Y |X) 6= P t+1(Y |X), this is called
virtual drift [5]. In the context of model predictions this is
of smaller interest, as it does not affect the performance of
classification. As the nature of the underlying classification
problem is often not trivial, there might be several concepts
P t

i(Y |X) that can be affected by concept drift to different
degrees. This affects established performance measures of
classification, such as precision or recall [5]. There are several
methods for analyzing data streams for drift [6]. They have in
common that they signal a deviation in data streams when it
is significant, depending on various criteria. Different types
of drift can be detected, such as sudden or incremental drift
[5]. This complicates the quality of correct drift detection. For
example, an outlier should not trigger a drift detection if there
are no significant trends apart from it [6]. One of the well-
known drift detectors is the Page-Hinkley test (PHT) [7].

C. State of the art drift detection in manufacturing

In order to describe the use of ML in manufacturing, we
consider a point in time from which a certain amount of data is
already known (Window W1) and from which further data can
be expected in the future (Window W2). A typical application
based on total data is shown in Fig. 2. During an initialization
phase (red) a classifier model M is created based on already
available data, which provides predictions for future data. This
is part of the ongoing process (blue) as well as the assessment
and handling of concept drift that considers all available data

Fig. 2: Basic ML approach.

as a whole. All relevant information is stored within driftLog.
Since concept drift is usually accompanied by a deterioration
in prediction quality, the status quo with TS = 0 should
always be considered as an alternative with regard to economic
evaluation.

Algorithm 1 describes the procedure in detail. We define
tuple t as instance of datastream S that includes the set of
features X and the corresponding labels Y . Features X are
derived from S by the attribute S.X , labels Y accordingly by
S.Y . Model M predicts a label y for instance t. t and y are
added to previous data collection driftLog. If y is positive, a
possible concept drift needs to be investigated. The evaluation
of whether a possible positive prediction of the next instance
should be considered or not (boolean ignore) is calculated
by the function handle drift(). The idea behind this is to
remove workpieces when the current predictions seem reliable
and not to trust them when the prediction quality is too low in
order to improve the economic balance compared to the status
quo. In Section VI, we propose two strategies for doing so.

D. SHAP values and their clustering

The idea of Shapley values has its origins in game theory
[8]. However, the concept can be extended for the interpre-
tation of model predictions [1]. The basis is a learned model
that gives a prediction for a target variable based on a set
of features for each instance. The values of each feature can
influence the prediction. Depending on its value each feature
contributes to the model output value of a single instance.
The contribution of a feature, given that all other features
remain constant, is called SHAP value. The transformation

Algorithm 1: Basic ML approach.
Input : tuple t ∈ S

classifier model M
dataframe driftLog

Output: dataframe driftLog
y ←−M.predict(t.X)
if y is positive then

ignore←− handle drift(driftLog, t.X, y, args)
driftLog.add(t, y, ignore)
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of the original values X to the SHAP values SV will in the
following be referred to as function SHAP ():

SV = SHAP (M,X) (6)

For illustration, we trained a model with synthetic data
consisting of two features A and B and 10000 instances.
Feature values were generated from the standard normal distri-
bution. 1000 randomly drawn instances were given the label
1, which is supposed to represent an error. This adds some
noise to the data. In addition, all instances with A < −0.6
or B > 2.3 received the label 1. This created a region with
significantly higher error probability. Using the model that has
learned this relationship, we can create the SHAP values of
an independent dataset also drawn from the standard normal
distribution. Table I shows eight selected instances and the
predicted error probability ŷ calculated by the model. Values
are rounded to two decimal places. The labels Y are assigned
according to the learned correlations.

The prediction of the model can be understood as follows:
The values of the features of Instance 1 are both outside the
range with high error probability. Both features contribute
to the low prediction. Instance 3 is in the critical range for
A, but not for B. The model has learned that all instances
in the described range are faulty. Therefore, the prediction
is understandable, the value of A contributes significantly.
Conversely, for Instance 5 and Instance 6, B leads to a high
error probability. Both features A and B contribute to the high
predictions of Instance 7 and Instance 8.

The SHAP values map this contribution of the individual
features to the prediction. Table I includes the SHAP values
for the named instances. Negative values signal a tendency to
low error probability, positive values contribute to a high pre-
diction. The described similarities regarding the contribution
to the prediction become apparent.

Fig. 3 illustrates the SHAP values of Instance 5: The proba-
bility space [0, 1] is transformed according to the logit function
and forms the axis. The model output value is the prediction
of Instance 5. The base value corresponds to the expected
value of model output. The red arrow symbolizes feature A
that contributes to an increased prediction, while the blue
arrow relates to feature B that leads to a decreased prediction.
The length of the arrows is the quantitative contribution and
corresponds to the respective SHAP value. The value 2.61

TABLE I: EXEMPLARY INPUT DATA, CORRESPONDING
SHAP VALUES, PREDICTIONS AND LABELS.

ID A B SHAP (M,A) SHAP (M,B) ŷ Y

1 0.39 -2.21 -1.34 -0.33 0.08 0
2 1.07 0.87 -1.28 -0.11 0.10 0
3 -0.63 -0.51 8.36 -0.02 1.00 1
4 -1.47 -0.85 8.33 -0.08 1.00 1
5 0.55 2.61 -0.74 5.56 0.98 1
6 1.16 2.34 -0.69 5.57 0.98 1
7 -0.87 2.43 6.00 2.69 1.00 1
8 -0.62 2.6 6.00 2.69 1.00 1

Fig. 3: SHAP values of Instance 5.

for feature B provides a significant increase of the error
probability, while 0.55 for feature A speaks against an error.

If the examined instances are clustered, corresponding
groups are formed which are similar with respect to their
contribution to the prediction. Therefore, the assumption is
that each concept P (Y |X) goes along with a cluster. Since
the computation of SHAP values requires a supervised learning
model, the clustering of SHAP values is also called supervised
clustering [9]. All SHAP values have the same unit, that
of the model output. This does usually not apply to the
original values of an input dataset. Thus, clustering can be
done without further normalization and instances are collected
whose features have a similar effect on the prediction, i.e., they
are similar in terms of explanation [10]. The predictions of
the instances within a cluster are always similar, but instances
with similar or the same prediction can belong to different
clusters. Fig. 4 shows the distribution of SHAP values from
Table I. Slight jitter is added for visibility and the points are
marked depending on the label of the corresponding instance.
Four different clusters are clearly visible. The cluster near the
origin belongs to instances where both SHAP values for A and
B speak against an error. The bottom right cluster contains
instances where only B tends to increase the probability of
error, and the top left cluster contains instances where B is
the only reason for a high probability of error. In the middle
of these two clusters are instances where both A and B make
an error likely.

As the number of instances increases, the main characteris-
tics of Fig. 4 are preserved. Since the data is drawn from the
standard normal distribution, clustering the input data does not
provide any insights. The contributions of the features to the
prediction would not be visible.

The example shows that the influence of the feature on the
predictions of the individual instances is not revealed either by

Fig. 4: Distribution of SHAP values of input data.
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clustering the original data or by clustering instances according
to their predictions.

IV. THE PREFERML CONCEPT

Avoiding errors at an early stage during production is the
goal of the PREFERML project (Proactive Error Avoidance
in Production through Machine Learning). The system is
intended to achieve economic advantages through improved
prediction quality of errors and to increase the quality of
the manufactured products. To this end, the areas of ma-
chine learning processes, big data technologies and knowledge
modeling are closely interlinked (see Fig. 5). The scalable
application is based on the automated creation of a large
number of models and their automated maintenance to reduce
manual effort. The ML models generated within the framework
of PREFERML serve, on the one hand, to retrospectively
provide the learned error-cause correlations for quality man-
agers. On the other hand, they provide a prediction about
the defectiveness of future instances through classification.
Economic benefits can only be achieved if the prediction
models are of sufficient quality in the long term. To ensure
this, the detection and handling of concept drift is hence a
central part of PREFERML.

V. RELATED WORK

In the following, previously published ideas and approaches
related to fault detection in manufacturing and concept drift
research are presented.

A. Fault detection and monitoring product quality in manu-
facturing

The approaches to fault diagnosis and product quality
prediction include both unsupervised learning [12] and super-
vised learning [13]. Neural networks or decision tree-based
approaches are used as classifiers in diverse applications [14],
[15]. Hirsch, Reimann and Mitschang [14] compare a variety
of classifiers for fault diagnosis using industrial data. They
focus on the occurrence of defects in the last production
step of a production line and evaluate random forests as the
most suitable classifier. There are alternative ways to monitor
the quality of products and workpieces during production
processes. Wuest, Irgens and Thoben [16], for example, check
the quality of products by monitoring the state of a product
during the production process.

Fig. 5: Conception overview of PREFERML [11]. Arrows
represent data flow between two components.

B. Concept drift research and applications
Gama, Žliobaitė, Bifet, Pechenizkiy and Bouchachia [5]

shed a light on different aspects of handling concept drift and
refer to state of the art methods. They discuss the various
possibilities for drift detection. Besides the sequential analysis,
where the Page-Hinkley test is a variant, distributions of two
different time windows can be examined for statistically signif-
icant differences. With the availability of the label of incoming
data, they see two alternatives: retraining or adaptation of
an existing model. They define online adaptive learning as
a sequence of the steps predict, diagnose, and update. For
the evaluation of the used model the authors suggest, among
others, precision and emphasize the consideration of baseline
approaches. Lu et al. [17] add to this work and propose a
framework for handling concept drift in the context of stream
data, including training and learning, prediction, concept
drift detection, concept drift understanding and concept drift
adaptation. Accordingly, besides the time and lasting of drift
occurrence, concept drift understanding concerns the aspects
of severity of drift and region of drift (with respect to the
feature space). They also see training new models and adapting
existing models as consequences for dealing with drift, and
propose precision as an evaluation metric, among others. They
note a lack of concept drift understanding for existing drift
detection methods, in the sense that apart from the time at
which drift occurs, little information can be derived.

Adams et al. [18] try to fill this gap by expanding concept
drift detection with an explainability level. Their approach
introduces a cause-effect relationship to explain drifts.

Wang and Abraham [19] present an alternative approach
to previously established mechanisms for detecting concept
drift, which they call Linear Four Rate (LFR). This method
aims to identify data points that are part of the new concept
to provide an updated basis for retraining. The authors show
significantly better performance in terms of proven evaluation
metrics compared to other methods for drift detection.

Baier, Hofmann, Kühl, Mohr and Satzger [20] present a
method for handling concept drift in the context of regression
problems, which they call intersection approach. During a
period of drift predictions are derived from a simple model
and a more complex model is trusted in ordinary situations.

Regression problems are also part of the work of Zenisek,
Holzinger and Affenzeller [21]. They detect concept drift in
industrial streaming data. However, their focus is on predictive
maintenance and they look at the functionality of machines
rather than a manufacturing process. They present a method
in which the prediction quality is calculated within a sliding
window. On this basis, a predefined threshold is used to decide
whether drift is present. In a further approach, they provide a
concept drift forecast on which drift detection is performed.

Just like our work, Sakamoto et al. [22] deal with concept
drift detection and clustering. However, they aim to detect
changes in clustering results. In our work, however, changes
in classification results are the subject of investigation.

Demšar and Bosnić [23] study concept drift in streaming
data using model explanation. They monitor the contributions
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of attributes to the predictions over time. The idea is similar
to our approach of using SHAP values. In contrast, we
separate the individual concepts into clusters and monitor the
performance of the predictions per cluster.

C. SHAP values in machine learning

Mokhtari, Higdon and Başar [24] use SHAP values in
the context of financial data to obtain important features for
predicting commentaries. They also show that, in their case,
predictions based on SHAP values are better than predictions
based on the orginal data. As part of a seismic classification
task, Meng, Yang, Qian and Zhang [25] use SHAP values
to determine the most important attributes. They investigate
the effects of the most important attributes on the model
output using SHAP plots. Lundberg, Erion and Lee [9] use
an example to show the benefit of supervised clustering
with SHAP values. In the context of income prediction, they
identify groups with common factors relevant to income.

VI. HANDLING CONCEPT DRIFT IN MANUFACTURING DATA

For each prediction, the question arises whether it makes
economic sense to act according to it. If defects are predicted,
a workpiece can be removed from the production process or
it can be further processed. This decision inevitably has eco-
nomic consequences: either a workpiece is correctly identified
as defective and costs are saved, or the prediction is wrong
and economic revenue is foregone. Our goal is to develop an
approach that, based on an incoming data stream of production
data, can be used to

• specifically detect concept drifts,
• efficiently derive measures and thus to
• maximize economic savings.
The decision for the upcoming workpiece has to be made

on the basis of the information of all previous instances. For
this purpose, we have developed a method that extends the
basic use of ML in manufacturing (see Fig. 2). While the
Basic ML approach considers all available data as a whole, our
proposed method (see Fig. 6) involves dividing the same data
into clusters based on their SHAP values. The initialization
phase (red) remains the same, the ongoing process (blue)
additionally includes the assignment of the instances to the
most suitable cluster before the handling of drift.

Fig. 6: Handling drift based on clustering of SHAP values.

In Subsection III-D, we showed how concepts P (Y |X) can
be derived on the basis of SHAP values and how the corre-
sponding instances are distributed to clusters. We continue the
example and generate 100 instances from the standard normal
distribution according to those of Table I. However, we now
assign the labels in such a way that a different correlation
applies, namely an increased error probability if A < −1
(instead of A < −0.6 or B > 2.3). Adding SHAP values
of these instances to Fig. 4 yields Fig. 7. Now, the actual
labels are distributed differently in some clusters. The cluster
near the origin with negative predictions now contains some
faulty instances. For our application, these changes are less
important, because they occur exactly the same with status
quo. Of greater interest are the other clusters. Here, there are
now some instances that are error-free, although faults are
predicted based on certain values for A and B. In the context
of manufacturing, these developments lead to consequential
costs and it would be good if the error-free instances were
not removed from the production process according to their
prediction.

By monitoring cluster specific data we want to detect such
changes of the nature P t(Y |X) 6= P t+1(Y |X) and handle
drift individually for each cluster. This includes a decision
based on the prediction quality as to whether or not the
next workpiece with a positive prediction will be removed
from the production process. The detailed procedure is as
follows. In a first step, all clusters are derived from the past
data (here: data of W1), which is described in Algorithm 2.
As mentioned in Subsection III-D, SHAP (M,X) transforms
measurements X to SHAP values according to the learned
classifier M . The function clustering() represents a common
cluster algorithm such as k-means [26], that returns centers,
the coordinates of the derived clusters. Each instance t of a
dataframe is allocated to the closest center c of centers. The
set clusters is returned that includes all previous of these
tuples. In a second step, each instance of past and future data
is evaluated with regard to concept drift (see Algorithm 3).
The function handle drift() determines whether to ignore a
possible positive prediction of the upcoming instance due to
poor current prediction performance. We propose the following

Fig. 7: Evolution of clusters based on SHAP values.
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Algorithm 2: Derive clusters
Input : dataframe D

classifier model M
Output: dataframe clusters
clusters←− ∅
centers←− clustering(SHAP (M,D.X))
for t ∈ D do

c←− get center(SHAP (M, t.X), centers)
clusters.add(t, c)

two strategies for doing so. The variant handle drift based on
current precision only makes this decision based on the current
precision. In this case, args includes the precision threshold
τ and the size nwin of the sliding window for precision. With
the actual labels Y of the input data driftLog the precision of
the last nwin positive predictions is calculated. If this is below
the precision threshold τ , true is returned, otherwise false.
Due to little available data, nwin may exceed the number of
instances so far. In this case, precision cannot be calculated and
false is output. This strategy is inspired by the procedure of
a drift detection mechanism described by Zenisek, Holzinger
and Affenzeller [21].

The alternative approach handle drift based on current pre-
cision and established drift detection mechanisms like Page-
Hinkley extends the condition for output true. It requires the
stream of precision values of all previous sliding windows.
If the current precision is below the precision threshold τ
and additionally a significant negative drift is detected for
the precision stream at the current instance, true is returned.
This is done by established drift detectors with the help of
a sensitivity parameter sens. False is returned again, when
precision is above the precision threshold τ . The second strat-

Algorithm 3: Evaluate incoming data
Input : tuple t ∈ D

dataframe clusters
set of cluster centers centers
classifier model M
set of parameters args
dataframe driftLog

Output: boolean ignore
dataframe clusters
dataframe driftLog

y ←−M.predict(t.X)
c←− get center(SHAP (M, t.X), centers)
clusters.add(t, c)
if y is positive then

clusterLog ←−
get log of cluster(clusters, c, log)
ignore←−
handle drift(clusterLog, t.X, y, args)

driftLog.add(t, y, ignore)

egy is more reluctant compared to the first one, but continues
to trust the prediction (possibly rightly) if the precision only
briefly falls below the precision threshold τ . For this purpose,
first the SHAP values of the measured values of the respective
instance t are calculated and assigned to the closest cluster c
via the existing cluster centers centers. At the same time, a
binary prediction y is created on the basis of the measured
values. If this is positive, all instances of the relevant cluster
c are assigned to the dataframe clusterLog. The function
handle drift() evaluates this data with respect to concept
drift and returns a boolean value ignore that decides whether
or not to ignore the next positive prediction. args includes
parameters for drift detection to be set in advance, which is
described below. driftLog stores the decision ignore and the
predicted label y of instance t.

VII. EXPERIMENTS

We carried out the approach described in Fig. 6 based on
real manufacturing data of our industry partner SICK AG and
compared the two strategies of the function handle drift
designed in Section VI. The data used come from a total of six
production lines and cover similar periods of about one year.
For each experiment, a test station of a specific production
line was selected. The different types of errors occurring there
were combined, so that for classification an error Y always
represents any type of error. All measurements recorded at
previous test stations served as feature set X . This resulted
in 30 experiments. These were conducted retrospectively and
simulated the described methods under real-time conditions.
Metadata on the data used is given in Table II.

The ML model shown in Fig. 6 resulted from the first part
of the chronologically sorted data which contains 67% of the
total number of errors. The remaining instances were part of
window W2. XGBoost [27] with tree booster was used to
create classification models, Page-Hinkley test served as the
drift detector. Clustering was done using k-means algorithm,
with the number of clusters determined by the elbow heuristic.
After consulting with quality engineers, we set c(1, 1) = 10
and got τ = 1

11 . In a pretest, a sensitivity analysis was
performed on the parameters nwin and sens (in the case
of Page-Hinkley test it is called λ). A parameter setting of
nwin = 100 and λ = 0.1 was considered suitable, which
was chosen to conduct the experiments. For comparison, the
procedure based on clustering was also performed on total data
(see Subsection II-C). Note, that this resembles the state of the
art of applying concept drift detection without our clustering
based approach. The evaluation of an experiment is based
on total savings TS. In the case of several clusters, these

TABLE II: METADATA ON EXPERIMENTAL DATA.

Characteristic mean min max
Instances ∼ 76746 10721 194932

Errors ∼ 1531 139 4284
Features ∼ 93 17 1105
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are calculated by the sum of total savings over all clusters.
Baseline for all experiments is TS = 0, which corresponds to
the result of the status quo.

VIII. RESULTS

In the following, an evaluation on the basis of a selected ex-
periment is shown first. Afterwards, the approaches developed
are evaluated on the basis of all experiments carried out.

A. Use case

The clustering in the selected case resulted in four clusters.
Fig. 8 shows the occurrence of the corresponding instances
over time. It includes jitter for visibility of data density. The
colored area marks the corresponding time period. A vertical
black line indicates the end of Window W1. The temporal
distributions of the data of Clusters 1 and 4 are similar, as are
those of Clusters 2 and 3. Noticeable are periods in which the
density of the instances of Clusters 2 and 3 decreases and at
the same time those in Clusters 1 and 4 increase, so that for
Clusters 2 and 3 there is a longer period in which no data are
assigned to them. Data of W2 are distributed mainly in Cluster
2. Especially in Cluster 1 it is noticeable that the density of
data in W2 is significantly lower than in W1.

Since model M was created with data of W1 the evaluation
of classification results focuses on data of W2. Table III
summarizes the results of the classification for the clusters
and total data. Especially for Cluster 2 and Cluster 3 there are
negative total savings, which indicates concept drift.
Applying handle drift based on current precision only yields
the results shown in Table IV. Due to the small number of
positive predictions Cluster 1 and Cluster 4 are not affected.
However, total savings for Cluster 2 and Cluster 3 can be
increased clearly. Improvements are similar for total data, but
slightly smaller.

This is confirmed by Fig. 9, which shows precision over
time for the different clusters and total data. It illustrates
precision threshold τ as black dotted horizontal line and drift
detected by Page-Hinkley (λ=0.1) test as vertical red line.
A vertical black line indicates the end of W1, y-range goes
from 0 to 1 in each case. As there are too few predictions
in the sliding window, no data points are available for cluster

Fig. 8: Use case - time distribution of cluster instances.

TABLE III: USE CASE: CLASSIFICATION RESULTS FOR
W2 - BASIC ML WITHOUT HANDLING DRIFT.

Data Instances Errors TP FP TS

Cluster 1 778 16 1 0 10
Cluster 2 11094 301 139 3994 -2604
Cluster 3 479 15 15 463 -313
Cluster 4 993 34 6 0 60∑
clusters

13344 366 161 4457 -2847

Total data 13344 366 161 4457 -2847

1. While the precision of Cluster 2 is permanently low in
W2, a strong deterioration of the prediction can be seen for
Cluster 3 at the beginning of W2. In both cases, there is
no lasting improvement. Cluster 2 shows the potential of a
mechanism that ignores the positive predictions in case of poor
performance: Once the precision is below τ , it stays there.

The strategy handle drift based on current precision and
established drift detection mechanisms like Page-Hinkley leads
to similar results for the clusters (see Table V). However, total
savings for total data are considerably lower. With regard to
the status quo with total savings TS = 0, it can be seen that
both approaches perform better for the clusters, but the latter
shows no improvement in the case of total data.

B. General view

Looking at the nature of clusters over all experiments, it
turns out that some clusters have unique characteristics. For
example, there are clusters whose instances are all free of
errors or at least whose predicted labels are negative. Some
clusters contain only instances of W1, so these concepts were
unnecessarily learned by the model and are not used later. Yet,
it may happen that only very few instances of a cluster belong
to W1. Then only little data was available for the model to
learn the corresponding concept. Accordingly, the prediction
quality deteriorates in the later course. In the experiments
conducted, drift occurs mostly in the form of a sudden drift,
a reoccurring drift occurs only in a few cases.
The performance of the different strategies for handling drift
can be determined for the individual experiments based on to-
tal savings of the examined case. The cluster-specific strategy
handle drift based on current precision only (TS = 94) proved
to be the best in the use case examined in Section VIII-A. We

TABLE IV: USE CASE: CLASSIFICATION RESULTS FOR
W2 - HANDLE DRIFT BASED ON CURRENT PRECISION
ONLY.

Data Instances Errors TP FP TS

Cluster 1 778 16 1 0 10
Cluster 2 11094 301 22 195 25
Cluster 3 479 15 9 91 -1
Cluster 4 993 34 6 0 60∑
clusters

13344 366 38 286 94

Total Data 13344 366 31 307 3
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Fig. 9: Use case - cluster specific precision within a sliding window (n=100) over positive predictions.

did this evaluation for each of the 30 experiments. Summing
up the total savings of the respective approaches across all
experiments, we obtain the results shown in Fig 10.
A similar picture emerges as in the use case described: it
makes more economic sense to handle drift on the basis
of individual clusters. As a criterion for deciding whether
a workpiece should be taken out of the production process
according to a positive prediction, the current precision seems
to be the most suitable. Since the status quo goes along with
total savings TS = 0, this also applies to the totality of
experiments. For a deeper analysis, the individual strategies are
compared in pairs using all experiments. For each approach,
we counted how often it performs best in each pairwise
comparisons with all other approaches. Fig. 11 illustrates the
most important pairwise comparisons.
Again, it becomes apparent that the best results are achieved
with the cluster specific approaches. In a direct comparison
of clustering based approaches, the strategy that handles drift
on the basis of current precision only performs best. It can be
concluded that precision in this application is a good metric
to monitor the quality of model predictions.

IX. CONCLUSION

The detection of concept drift in complex relations is often
difficult or does not allow detailed conclusions to be drawn.

TABLE V: USE CASE: CLASSIFICATION RESULTS FOR
W2 - HANDLE DRIFT BASED ON CURRENT PRECISION
AND DRIFT DETECTION MECHANISMS.

Data Instances Errors TP FP TS

Cluster 1 778 16 1 0 10
Cluster 2 11094 301 29 272 18
Cluster 3 479 15 10 99 1
Cluster 4 993 34 6 0 60∑
clusters

13344 366 46 372 89

Total Data 13344 366 47 560 -113

Yet, detecting concept drift is important to ensure benefits of
applying a model. We have examined this challenge in the
context of a manufacturing use case, where model performance
impacts economic savings. We have developed and tested a
method that uses SHAP values to assign the learned concepts
to clusters so that they can be examined individually. Our
evaluation demonstrates the benefits of the proposed clustering
based approach with real manufacturing data. Here, we tested
our approach for cluster specific assessment in combination
with two strategies for handling drift. Our tests show better
performance of drift detection using only precision values
than for using the Page-Hinkley test additionally. However,
in both cases our approach of clustering based assessment
outperformed approaches without clustering. Note, that the

Fig. 10: Sum of total savings over all experiments.
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Fig. 11: Pairwise comparison of strategies to handle drift.

focus of our work is on the drift detection mechanism using
clusters. Hence, we used a simple strategy for drift handling
(i.e., ignoring predictions for a given cluster or total data).
However, future work will address different measures such as
retraining the models. The same applies to the number of the
derived clusters. According to our approach, the clusters are
initially inferred. It is possible that new concepts will emerge
over time that actually require their own cluster. The quality
of the clustering could be monitored and adjusted if necessary.

ACKNOWLEDGMENT

This project was funded by the German Federal Ministry
of Education and Research, funding line “Forschung an Fach-
hochschulen mit Unternehmen (FHProfUnt)“, contract num-
ber 13FH249PX6. The responsibility for the content of this
publication lies with the authors. Also, we want to thank the
company SICK AG for the cooperation and partial funding.

REFERENCES

[1] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems,
I. Guyon et al., Eds., vol. 30. Curran Associates, Inc., 2017.

[2] A. Gerling et al., “A reference process model for machine learning
aided production quality management,” ser. Proceedings of the 22nd
International Conference on Enterprise Information Systems, May 5-
7,2020 : Volume 1, 2020, pp. 515 – 523.

[3] Y. Wilhelm, U. Schreier, P. Reimann, B. Mitschang, and H. Ziekow,
“Data science approaches to quality control in manufacturing: A re-
view of problems, challenges and architecture,” ser. Service-Oriented
Computing : 14th Symposium and Summer School on Service-Oriented
Computing, SummerSOC 2020, Crete, Greece, September 13-19, 2020.
Cham: Springer, 2020, pp. 45 – 65.

[4] P. Domingos, “Metacost: A general method for making classifiers cost-
sensitive,” in Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, 1999, pp. 155–
164.
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