DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

Analysis of Minimal Clearance and Algorithm
Selection Effect on Path Planning for Autonomous
Systems

Ronald Ponguillo-Intriago

Payam Khazaelpour

Dept. of Industrial Systems Engineering and Product Design Dept. of Industrial Systems Engineering and Product Design

Ghent University
Industrial Systems Engineering (ISyE), Flanders Make
Ghent, Belgium
Facultad de Ingenieria en Electricidad y Computacion
Escuela Superior Politecnica del Litoral, ESPOL
Guayaquil, Ecuador
RonaldAlberto.PonguilloIntriago @ UGent.be

Ignacio Querol Puchal
SEAL Aeronautica S.L.

Barcelona, Spain Barcelona, Spain

IgnacioQuerolPuchal @sealaero.com Silvio.Semanjski @sealaero.com

Sidharta Gautama

Silvio Semanjski
SEAL Aeronautica S.L.

Ghent University
Industrial Systems Engineering (ISyE), Flanders Make
Ghent, Belgium
Payam.Khazaelpour @UGent.be

Daniel Ochoa
Facultad de Ingenieria en Electricidad y Computacion
Escuela Superior Politecnica del Litoral, ESPOL
Guayaquil, Ecuador
dochoa@espol.edu.ec

Ivana Semanjski

Dept. of Industrial Systems Engineering and Product Design Dept. of Industrial Systems Engineering and Product Design

Ghent University
Industrial Systems Engineering (ISyE), Flanders Make
Ghent, Belgium
Sidharta.Gautama@ugent.be

Abstract—There are many path planning algorithms in the
literature, with different classifications, domains of use, efficiency
to find the shortest path or to make a complete coverage of the
area to be studied. In the literature, we can also find evaluations
of all these algorithms in terms of their performance in the search
for the shortest path, execution time and comparisons between
them. In this work, twelve algorithms from the literature were
studied to analyze their sensibility to the number of obstacles
and the clearance value between them. Data analytics methods
were used to make a qualitative study of the sensibility of these
algorithms to the constraints studied. For investigation of the
problem, two metrics were used, the length of the generated
path and the number of iterations used to find the solution.
The number of iterations here refers to the number of nodes
evaluated by the algorithm when searching for the target node.
The results are synthesized in two tables that show the sensibility
of the algorithms to the change in the constraints studied and the
immunity of others, and the correlation among the algorithms,
the constraints and the metrics.

Keywords—robotics path planning, data analytics, clearance
analysis, autonomous systems.

I. INTRODUCTION

In Robotics Path Planning, there are many algorithms, each
one with its particularity to solve a problem under a specific

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

Ghent University
Industrial Systems Engineering (ISyE), Flanders Make
Ghent, Belgium
Ivana.Semanjski @ugent.be

domain and conditions. For example, there are algorithms
to discover the shortest path between two points on a map
avoiding all obstacles that are on the way. There are also
algorithms that do not look for the shortest path between two
points, but rather find the route with which they can travel the
entire map in the most efficient way, that is, without repeating
visited places, or being forced to go back or perhaps generate
intersections of traveled segments.

In this work, we analyze algorithms based on the response to
different numbers of obstacles and clearance values. We define
the clearance value to free space within the robot configuration
space, limited in dimensions by the obstacle space. In Figure
1, the idea of clearance is graphically shown.

Twelve algorithms have been chosen from the literature for
evaluation. These algorithms are divided into deterministic and
probabilistic. The deterministic algorithms considered are A*,
bidirectional A*, Breadth First Search (BFS), Bidirectional
BFS, Depth First Search (DFS), Dijkstra, Greedy Best First
Search, and Visibility Road Map. The probabilistic algorithms
analyzed are: Rapidly Exploring Random Tree (RRT), RRT
with Path Smoothing, RRT with Sobol Sampler and RRT*.

A common characteristic of all these algorithms is that

45

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

iclearance

obstacle

: free space

Figure. 1. Clearance graphically explained

they are algorithms that discretize the map to be traversed
and create a graph on which they develop the search. All
algorithms use a resolution of 1, that is, each node corresponds
to a square on the grid map.

Among the deterministic algorithms is the group of (*) that
use a heuristic to guide the search for the destination node.
Probabilistic algorithms differ in the way they take the sample
nodes or process the final path.

In Section II, a literature review is made showing a gener-
ality of each of the algorithms used, related previous works
and the techniques for the evaluation of the works that were
used. In the Section III, the construction of the scenarios is
discussed in detail, namely, how the maps are constructed by
making variations in the number of obstacles and clearance
dimensions and the considerations taken into account when
making changes in the position of the obstacles. The metrics
used to perform the sensitivity analysis of the constraints
chosen on the proposed scenarios are also defined. In Section
IV, the results are shown using strip plots with the seaborn
library in Python. These show the response of each algorithm
to variations in the constraint’s clearance and number of
obstacles. The results are discussed, and a conclusion is given
in Section V.

II. LITERATURE REVIEW

Among the path planning algorithms used in robotics there
are algorithms that use a discretization of the map and convert
this information into a graph that can then be traversed
using different strategies to find the path between the starting
node and the destination node. In this work, several of these
algorithms are used that base their solution on graphs. The A*
algorithm is one of the most used path planning algorithms in
robotics. This algorithm was developed by Peter E. Hart et
al. [8]. It combines the breadth first search technique with a
heuristic to simplify the search and improve convergence times
without being greedy. The Dijkstra algorithm was developed
by Edsger Dijkstra [6] and is a complete algorithm that
traverses the entire search space until the solution is found.
Regarding the Bidirectional algorithm A* [14], it is based on
A* with the variation that the route of the nodes is made in

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

two directions, one from the start node to the goal node and
one from the goal node to the initial node and ends when
these two semi solutions are found. This algorithm manages
to reduce the execution time to a value less than half the time
used by A*. The BFS algorithm [13] [21] makes a search that
goes down the levels, starting with the levels closest to the start
node and moving up to the levels towards the destination node.
Contrary to BFS, the Depth First Search (DFS) algorithm, as
shown in [5] and [19], does the search by going through the
tree branch by branch, that is, it advances through a branch and
when it finishes it returns to the start node and goes through the
neighboring branch, and so on until the tree is finished. Greedy
Best First Search [7] uses a heuristic that tries to always predict
which is the node that takes it closer to the destination node.
As the last algorithm evaluated from the group of deterministic
algorithms, we have the Visibility Road Map [10] [15], which
is based on creating a graph, putting as nodes all the points or
corners of the obstacles present on the map that are visible to
the start node, goal node and among them. This created graph
is much smaller than if the created graph with all the nodes of
the free space is used and, therefore, it will be easier to solve.
Then, to find the shortest path between the start and end nodes
of this graph, any algorithm can be applied to traverse graphs,
for example, Dijkstra, A*, etc.

Four probabilistic algorithms were considered, one of which
is Rapidly Exploring Random Tree (RRT) [12] and the others
are some variants of it. This algorithm does not go through
all the nodes of the free space, but rather randomly takes
a few that meet the condition of being within the defined
circumference with the current node as the center and radius a
number less than or equal to the expansion distance parameter.
The points that coincide in the obstacle space are discarded and
another random number is generated to replace it. This con-
tinues until eventually the destination node is found within the
generating circle. With this methodology, by not completely
covering the free space, it is possible to reduce the number
of nodes traveled and, with this, the execution time. On the
other hand, the price that compensates for this greater speed
is that the generated path is not the smoothest possible and
the length of the path obtained is not as good as what is
obtained with deterministic algorithms, but it is quite close,
which for many applications makes it more attractive. The
other variant used, RRT Path Smoothing [3], applies the same
original RRT to get the set of nodes between the start node and
the goal node. Then runs a smoothing process to smooth the
resulting path. This process is based on generating the least
number of direct straight lines towards the destination node
and eliminating the intersections that occur with obstacles. The
RRT Sobol Sampler variant [11] [20], for its part, differs in
the way it generates each random point in the search process
for the destination node, for which it uses a technique called
Sobol filter. Finally, the applied RRT* algorithm [16] uses a
combination of the original RRT algorithm and a heuristic such
as that of the A* algorithm, to guide the algorithm towards
the destination node. This succeeds in eliminating unnecessary
branches in other directions that are usually seen in the original

46

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

RRT.

Some works in the literature that involve data analytics
and robotics have been done in IoT or in robotics applied
to medicine [1] [17]. These approaches use data analytics to
make predictions with the data and improve their processes.
The most used tools in data analytics are presented in [2]
where the authors make an analysis of the leading tools in
data analytics and locate the Python language in second place
with a growth in terms of use in this area of more than 15%
from 2015 to 2016. It also refers to the libraries used in data
analytics such as pandas, scipy, matplotlib that we have also
used in this work. Regarding the evaluation of path planning
algorithms in robotics, we can find works that evaluate several
algorithms and compare the performance between them, as in
[9] where the authors make an evaluation of the performance
of 5 algorithms from the literature, focusing on the length of
the generated path and processing time, ranking the algorithms
that obtained the best balance between both metrics as the best.
In [4], the authors also analyze 5 path planning algorithms,
4 of them from the literature and one that they present in
the same work. They show an analysis of the performance
of these algorithms taking as metrics the length of the path
obtained and the processing time. They evaluate the response
of these algorithms to the variation in the size of the navigation
map in terms of grid units. At the end, they implement their
algorithm in ROS (Robot Operating System) [23] and make a
comparison of their execution time there. In [22], the authors
make an evaluation of the trajectory produced by 5 algorithms
from the literature, in which they also combine the path
length, processing time and curvature metrics. One of the five
algorithms shown in the proposal is introduced by the authors
in this work. Works that combine data analytics with the study
of performance or constraints in path planning algorithms were
not found and in this work an attempt is made to make that
contribution to the state of the art.

III. METHODOLOGY

Prior to introducing the scenarios and the methodology used
in this study, we want to give the reader a first impression
of how different the selected algorithms are in terms of their
processing time. A comparison among them is shown in Figure
2. The Figure 2(a) shows the test scenario for the algorithms.
The scenario is a map with two obstacles, with the start point
in the lower left corner with coordinates (0,0) and the goal
point in the upper right corner with coordinates (200,200).
The Figure 2(b) shows the processing time of each algorithm,
measured in seconds. The simulation was run on a laptop with
an Intel Core 19 processor and 32GB of RAM running the
Microsoft Windows 10 operating system.

A. Scenarios

Several scenarios were built in which different number of
obstacles are placed on a map of 200x200 units. These units
(U) represent a way of generalizing the dimensions of the maps
and can be changed to any measurement units, for example,
cm, inches, feet, meters, km, etc. Maps were built with options

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

200
1754

150 4

1254

100 4

50 1

N §§
o

(a) Simple scenario to test algorithms.

Algorithms Comparison

11800

—_
@ 1600
<
o 1400
£ 1200
1000
0
£ 0800
3 0600
4]
S 0400
2 000 I
- |
0000 H = = -
R x @ & S g & o O & &
T & S S
& & & &S &
& & &S & S &
N SRS PO N
& S & % F & & &
3 < S T &

Algorithms
(b) Processing time for algorithms under test.

Figure. 2. Processing time comparison among algorithms under study.

TABLE I
VARIANTS OF SCENARIOS BY NUMBER OF OBSTACLES

Obstacles Variants Scenarios

oI e Y R
AR~ BN~

from one to eight obstacles, all of them maintaining clearance
throughout the configuration space. The obstacles were moved
from their position, when possible, to study if the position
of the obstacles has any influence on the evaluated metrics.
Thus, for the scenario with one obstacle, there are no variants
since moving the obstacle from position maintaining the same
clearance means rotating it and at any feasible angle of rotation
it will always give the same square. Based on this criterion,
in the Table I is shows the number of variants generated with
the number of obstacles and their rotations.

To evaluate the effect of clearance on the metrics, the
simulations were run by varying clearance values in intervals
of 5 units, within the interval [5, 30].

The starting point is the origin of coordinates (0, 0) and
the goal is the upper right corner with coordinates (200,

47

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

NEIGHBOR DISTANCES
5 e T T T 3

/2 units

: A .

1 unit

1

—
1 unit

Figure. 3. Neighbor node concept illustrated

200). Obstacles are convex figures (squares and rectangles)
distributed on the map in such a way that there is the same
clearance throughout the map. In the resulting graph, each
node is connected to its close neighbors. Close neighbors of
a node are defined as those nodes that have a distance of 1 or
v/2 U from the original node. Figure 3 illustrates the neighbor
node concept graphically.

B. Metrics

The metrics used were the length of the path generated
by the algorithm and the number of iterations made by an
algorithm in each scenario. The number of iterations in this
work refers to the number of times that the studied algorithm
accesses a node to operate on it. This metric is used since
all the evaluated algorithms solve the path planning problem
on a node-based map. On the other hand, this avoids using
the convergence time of the algorithms, which is dependent
on various factors such as the hardware, operating system
or processes that run in the background on a computational
platform and, therefore, makes the reproducibility of the
results difficult.

C. Simulation

From the combination of 20 maps constructed by combining
obstacles and clearance values according to those discussed in
sub-section III-A, plus the 12 algorithms mentioned in Section
I, 1440 scenarios were built on which the simulation was run
to obtain the data from the Path_length and Iteration metrics
that will later be used for the analysis. The simulations and
data processing were done using the Python language. For the
simulations, PythonRobotics [18] was used and, for the data
processing, the pandas library [24] was used in the dataframe
preprocessing and profiling analysis and the seaborn library
[25] was used to graph the results.

IV. RESULTS AND DISCUSSION

Once the data has been processed, we can observe from the
resulting graphs some behaviors of the algorithms with the
chosen constraints. We will start by analyzing the effects of
the clearance constraint on the Path_length metric.

Figure 4 illustrates the effect of the clearance value on
the length of the path produced by each algorithm. For

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

Influence of Clearance on Path Length

550 Clearance
5
10
15
500 20
25
30

gth

450

4004

Path_len

350

3004

g

T T T T T T T T T T T
a 5 © n »n 5 5 n 5 = %)
2 8 3 & CI S A - & 5
ES o g
g 00 : 3 B 0§ & £
4 2 g © 3 5 2
> g S 1] 2 g
3 2 g o8
2 @ hel | L
> [7]
« &
Algorithm
Figure. 4. Effects of the clearance over Path_length
Influence of # Obstacles on Path Length
550 # Obstacles
1
2
3
500 +
5
- 6
5,450 7
S 8
5\
T 400+
350
300
T T T T T T T
5 3 o 5 2 2 @
b g & B & 5
< 7

RRT_Star -
Greedy BFS -

Bidirectional_BFS -

Bidirectional_A_Star -

Visibility_Road_Map -
RRT_Sobol_Sam|
RRT_Path_Smoothin

Algorithm

Figure. 5. Effects of the # Obstacles over Path_length

all algorithms, there is an inverse relationship between the
clearance size and the length of the generated path, that is, as
we increase the value of the clearance, the generated path is
smaller in length. This occurs because, when we increase the
clearance or, in other words, we increase the size of the free
space within the configuration space, each algorithm has more
options to search and establish better resulting path values.

In Figure 5, we can see that, for the algorithms A*, bidi-
rectional A*, Bidirectional BFS, BFS, Dijkstra and Visibility
Road Map, they do not show dependence on where the
obstacles are located, but only on the number of obstacles
and the clearance value between them. On the other hand, for
the algorithms DFS, Greedy Best First Search and the group
of probabilistic algorithms, there is influence of the position
in which the obstacles are placed.

Reviewing Figure 6, we can see that, for the algorithms A*,
Bidirectional A*, Bidirectional BFS, BFS and Dijkstra, the
number of iterations increases as we increase the clearance
value. This is because these algorithms, to a lesser or greater
extent, sweep the available nodes when they apply their
strategy to find the solution. By increasing clearance, we are

48

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

Influence of Clearance on Iteartion

Clearance
30000 10
15
25000 20
25
30
20000

Iteration

15000 -

10000 -

5000

BFS 4
pler 4

9
RRT 4
DFS

A_Star+
Dijkstra -

RRT_Star -
Greedy_BFS

Visibility_Road_Map -
Bidirectional_BFS -
Bidirectional_A_Star
RRT_Sobol_Sam
RRT_Path_Smoothin,

Algorithm

Figure. 6. Effects of the clearance over Iteration

increasing the number of nodes in free space, therefore, we
are increasing the number of nodes that these algorithms must
evaluate. The DFS algorithm, for its part, uses a strategy that
keeps the number of iterations independent of the clearance
value, but pays the price by generating path lengths with
values well above the rest of the algorithms evaluated. The
Greedy BFS algorithm, due to its greedy nature, uses very
few iterations since it only needs to have one path available
between the start node and the target node. The Visibility Road
Map algorithm keeps the number of iterations almost constant
because, to find the solution, it creates a graph based on the
number of visible points of the obstacles present and does not
consider the number of nodes in the free space that we are
varying with clearance.

With the probabilistic algorithms, we can notice instead that,
as the clearance value increases, it becomes easier to find the
solution, that is, they use fewer iterations. This is because,
the narrower the corridor through which the samples must be
taken, the more likely that the samples taken will overlap with
the obstacle space. This sample must be discarded and a new
one must be taken that matches the free space. This will make
it necessary to do more iterations to be able to go through
narrower paths. As can be seen, clearance has inverse effects
on the number of iterations used between deterministic and
probabilistic algorithms.

Regarding the effect of the number of obstacles on the
metric of the number of iterations shown in Figure 7, it is well
defined for the Bidirectional BFS, BFS and Dijkstra algorithms
that there is no relationship with the position of the obstacles,
but only the number of obstacles and the clearance value
between them. On the other hand, probabilistic algorithms
do show a dependency with the position of the obstacles.
In case of the Visibility Road Map, when the number of
obstacles increases, the number of iterations also increases.
This is because of its nature of using the information of the
obstacles to create the graph where the search will be done.
However, there is no dependency of the clearance value on the
number of iterations.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

Influence of # Obstacles on Iteration

Obstacles

300004 1

25000

®No o s wN

20000

Iteration

15000 -

10000 -

5000

A_Star+
Dijkstra -
BFS
RRT_Star
Greedy_BFS
| pler +

_: g
RRT 4

DFS

Bidirectional_BFS

Visibility_Road_Map -

Bidirectional_A_Star

RRT_Sobol_Sam|
RRT_Path_Smoothin,

Algorithm

Figure. 7. Effects of the # Obstacles over Iteration
TABLE II
SUMMARY OF ALGORITHM IMMUNITY WITH THE CONSTRAINTS

Clearance Immunity # Obstacles Immunity

Algorithm Path Length Iteration Path Length Iteration
Visibility Road Map no yes no no
A* no no no no
Dijkstra no no no no
BFS no no no no
Bidir BFS no no no no
Bidir A* no no no no
RRT* no no no no
Greedy Best First Search no no no no
RRT Sobol Sampler no no no no
RRT Path Smoothing no no no no
RRT no no no no
DFS no no no no

In Table II, based on the information from the four graphs
in Figures 4, 5, 6 and 7, the immunity presented by the
algorithms to the constraints evaluated has been summarized.
As a result, we can see that Visibility Road Map is the
only algorithm that really presents immunity with respect to
the number of iterations versus the clearance value. This is
because, regardless of where the obstacles are located or how
distant they are from each other, this algorithm will create
a graph with the same number of nodes and edges for the
same group of obstacles if their shapes are maintained and,
therefore, solving the search will always have the same number
of nodes.

Table III shows a summary of the type of correlation
among the constraints clearance and number of obstacles
with the metrics path_length and iteration. The minus sign
"-" represents a negative correlation, i.e., while one variable
increase the other variable decrease. In this case, when clear-
ance or number of obstacles increase, path_length or iteration
decrease. Similarly, the plus sign "+" indicates a positive cor-
relation, in other words, when the constraint variable increases,
the metric variable also increases. The sign "x" means no
correlation between variables can be defined.

V. CONCLUSION AND FUTURE WORK

In this work, the influence exerted by the clearance value
and number of obstacles constraints on the generated path

49

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

TABLE III
TYPE OF CORRELATION AMONG (CLEARANCE, PATH_LENGTH,
ITERATION) AND (# OBSTACLES, PATH_LENGTH, ITERATION). SIGN - IS
NEGATIVE, + IS POSITIVE AND X NO CORRELATION

Clearance # Obstacles
Algorithm Path Length Iteration Path Length Iteration
Visibility Road Map - X - +
A* - +
Dijkstra - +
BFS - +
+
+

Bidir BFS -
Bidir A* -
RRT* -
Greedy Best First Search - -
RRT Sobol Sampler - -
RRT Path Smoothing - -
RRT - -
DFS - -

[I I B B S S

[R IR RS

length and number of iterations metrics on a group of robotics
path planning algorithms was explored. From the simulations
carried out, and the analysis made to the data, it was possible
to establish relationships between the metrics, the algorithms,
and the restrictions. These results are shown qualitatively and
were obtained using data analysis tools in Python language.

As an extension of this work, we intend to develop statisti-
cally validated indices that allow a quantitative approach and
allow to generalize a prediction model of the behavior of the
algorithms under different types of constraints.

VI. ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der grant agreement No 101007134. Also this work was in part
funded by National Secretariat of Higher Education, Science,
Technology and Innovation of Ecuador (SENESCYT).

REFERENCES

[1] A. Banerjee, C. Chakraborty, A. Kumar, and D. Biswas, “Emerging
trends in iot and big data analytics for biomedical and health care
technologies,” In Handbook of data science approaches for biomedical
engineering, pp. 121-152, 2020.

[2] S. Bonthu and K. H. Bindu, “Review of leading data analytics tools,”
International Journal of Engineering & Technology, vol. 7, no.3, pp.
10-15, 2017.

[3] X. Cao, X. Zou, C. Jia, M. Chen, and Z. Zeng, “Rrt-based path planning
for an intelligent litchi-picking manipulator,” Computers and electronics
in agriculture, vol. 156, pp. 105-118, 2019.

[4] I. Chaari, A. Koubaa, H. Bennaceur, A. Ammar, M. Alajlan, and H.
Youssef, “Design and performance analysis of global path planning
techniques for autonomous mobile robots in grid environments,” Inter-
national Journal of Advanced Robotic Systems, vol. 14, no.2, pp. 1-15,
2017.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction
to algorithms,” MIT press, 2009.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no.1, pp. 269-271, 1959.

[7]1 C. Frésinaru and B. Réschip, “Greedy best-first search for the optimal-
size sorting network problem,” Procedia Computer Science, vol. 159,
pp. 447-454, 2019.

[8] P.E.Hart, N.J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

[91 M. Korkmaz and A. Durdu, “Comparison of optimal path planning
algorithms,” In 2018 14th International Conference on Advanced Trends
in Radioelecrtronics, Telecommunications and Computer Engineering
(TCSET), pp. 255-258, IEEE, 2018.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

J. C. Latombe, “Robot motion planning,” Springer Science & Business
Media, vol. 124, 2012.

S. LaValle, “Planning algorithms,” Cambridge university press, 2006.
S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept. Oct., vol. 98, no. 11, 1988

E. F. Moore, “The shortest path through a maze,” In Proc. Int. Symp.
Switching Theory, pp. 285-292, 1959.

G. Nannicini, D. Delling, D. Schultes, and L. Liberti, “Bidirectional a*
search on time-dependent road networks,” Networks, vol. 59, no. 2, pp.
240-251, 2012.

C. Nissoux, T. Simeon, and J.-P. Laumond, “Visibility based probabilis-
tic roadmaps,” In Proceedings 1999 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Human and Environment Friendly
Robots with High Intelligence and Emotional Quotients, vol. 3, pp.
1316-1321, IEEE, 1999.

I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using rrt*
based approaches: a survey and future directions,” Int. J. Adv. Comput.
Sci. Appl, vol. 7, no. 11, pp. 97-107, 2016.

S. Panicucci et al., “A cloud-to-edge approach to support predictive
analytics in robotics industry,” Electronics, vol. 9, no. 3, pp. 492, 2020.
A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, and A. Paques,
“Pythonrobotics: a python code collection of robotics algorithms,” arXiv
preprint arXiv:1808.10703, 2018

A. Shojaie, A. Jauhiainen, M. Kallitsis, and G. Michailidis, “Inferring
regulatory networks by combining perturbation screens and steady state
gene,” Plos One, vol. 9, no. 2, pp. 1-16, February 2014.

I. M. Sobol, “On the distribution of points in a cube and the approximate
evaluation of integrals,” Zhurnal Vychislitel’'noi Matematiki i Matem-
aticheskoi Fiziki, vol. 7, no. 4, pp. 784-802, 1967.

K. Ueno, T. Suzumura, N. Maruyama, K. Fujisawa, and S. Matsuoka,
“Efficient breadth-first search on massively parallel and distributed
memory machines,” Data Science and Engineering, vol. 2, no. 1, pp.
22-35, 2017.

S. Zaheer, M. Jayaraju, and T. Gulrez, “Performance analysis of path
planning techniques for autonomous mobile robots,” In 2015 IEEE
international conference on electrical, computer and communication
technologies (ICECCT), pp. 1-5, IEEE, 2015.

M. Quigley et al., “ROS: an open-source Robot Operating System,”
ICRA workshop on open source software, vol. 3, no. 3.2 pp. 5, Kobe,
Japan, 2009.

W. McKinney, “pandas: a foundational Python library for data analysis
and statistics,” Python for high performance and scientific computing,
vol. 14, no. 9, pp. 1-9, 2011.

M. L. Waskom, “Seaborn: statistical data visualization,” Journal of Open
Source Software, vol. 6, no. 60, pp. 3021, 2021.

50

