

Integrated Architecture of SQL Engine and Data Analytics Tool

with Apache Arrow Flight and Its Performance Evaluation

Yuichiro Aoki

Research and Development Group, Center for Technology

Innovation - Digital Platform

Hitachi, Ltd.

Tokyo, Japan

email: yuichiro.aoki.jk@hitachi.com

Satoru Watanabe

Research and Development Group, Center for Technology

Innovation - Digital Platform

Hitachi, Ltd.

Tokyo, Japan

email: satoru.watanabe.aw@hitachi.com

Abstract—Data analytics in enterprise systems requires huge

amounts of data that are generally stored in databases.
Conventionally, Structured Query Language (SQL) engines

retrieve the data from the database and data analytics tools,

such as Python® scripts, are used to analyze them. In this case,

whenever the data moves from the database to the data

analytics tools, the data needs to be serialized/deserialized in

traditional Open Database Connectivity (ODBC). This is one of

the bottlenecks in data analytics performance. In addition, the

data needs to be joined for advanced data analytics, and

joining the data in the SQL engines takes a lot of time. This is

another bottleneck. To remove these bottlenecks, we propose a

new architecture integrating the SQL engine and the data

analytics tool that reduces the number of data serializations/

deserializations and caches joined results to improve

performance of data analytics. Evaluation results show that the

data transfer throughput using Apache Arrow/Arrow Flight is

13.1-37.4 times faster than that of a conventional data analytics

tool using ODBC. Moreover, this architecture runs 2.4 times

faster with the caching mechanism than without it.

Keywords-relational database; SQL engine; ODBC; Apache

Arrow; Apache Arrow Flight; data analytics.

I. INTRODUCTION

Data analytics in enterprise systems requires huge
amounts of data that are generally stored in databases.
Conventionally, Structured Query Language (SQL) engines,
such as Relational DataBases (RDBs), retrieve the data from
the database using traditional Open Database Connectivity
(ODBC) [6], and data analytics tools like Python® scripts
analyze the retrieved data. In such cases, whenever the data
moves from the database to the data analytics tool, the data is
serialized in the database and deserialized in the data
analytics tools. Serialization/deserialization demands many
memory copies and takes a lot of time. Thus,
serialization/deserialization is a bottleneck in data analytics
performance.

In addition, the data needs to be joined for complicated
data analytics. Join operations in the SQL engines take a lot
of time and are another bottleneck.

In this paper, to address these issues, we propose a new
architecture for a data analytics system that integrates the
SQL engine and the data analytics tool. It uses Apache

Arrow Flight for data transfer between them. Apache Arrow
Flight is a brand-new parallel data transfer framework [1]. It
uses a column-oriented data format based on Apache Arrow
[12]. If the SQL engines, data transfer framework, and the
data analytics tools use the same column-oriented data
format, the data does not need serialization/deserialization.
Thus, the proposed system might be faster than a traditional
data analytics system that uses ODBC. In addition, we
propose JOIN Result Cache to reduce the number of join
operations in the SQL engines. It also improves the
performance of the data analytics.

Moreover, we evaluate two types of performance. One is
the data transfer performance of the SQL engines using
ODBC and Apache Arrow Flight. The other is the
performance of JOIN Result Cache.

The rest of the paper is organized as follows. In Section
II, we review related work. In Section III, we describe the
overview of the proposed architecture of the data analytics
system. We show the performance evaluation results in
Section IV. In Section V, we make a discussion about the
performance, followed by conclusion and future study in
Section VI.

II. RELATED WORK

In this section, we review the SQL engines that use
Apache Arrow Flight. Dremio [2] is an open-source SQL
engine for cloud data lakes. Dremio uses both ODBC and
Apache Arrow Flight as a connection with the data analytics
tools. Dremio discloses its performance with ODBC and
Apache Arrow Flight [3] and Apache Arrow Flight performs
15 times faster than ODBC. In addition, Dremio compares
benchmarking results using Transaction Processing
Performance Council – Decision Support (TPC-DS)
generated data on PrestoDB [4]. On average, Dremio is 3-4
times faster than PrestoDB. However, both results show the
overall performance of SQL queries, and the performance of
data transfer itself with ODBC and Apache Arrow Flight was
not compared.

Li et al. [5] implemented data transfer functionalities
using Apache Arrow Flight on the DB-X (currently known
as noisepage) database management system [7]. They
measured the data transfer throughput using Apache Arrow
Flight and Remote Direct Memory Access (RDMA) over

40Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

Figure 1. Proposed architecture.

Ethernet. RDMA is slightly faster than Apache Arrow Flight.
However, they do not show the overall data analytics system
design.

Magpie [8] measured speedups of SQL queries with or
without caching data in Apache Arrow Flight. Apache Arrow
Flight with caching data runs 2-3 times faster than that
without it. However, data transfer time with or without
Apache Arrow Flight was not evaluated.

ImmVis [9] is an open-source framework for immersive
analytics. It is suggested that data transfer performance may
improve if ImmVis uses Apache Arrow Flight. However, the
data transfer performance of Apache Arrow Flight was not
evaluated.

InfluxData [10] refers to Apache Arrow, Apache Arrow
Flight, and Apache Parquet. Data transfer time using Apache
Arrow Flight was shown. However, no performance
comparison was conducted.

NVIDIA® RAPIDS [11], DataBricks [14], Google
BigQuery [16], and Snowflake [17] use Apache Arrow
internally. However, they do not use Apache Arrow Flight.

In-database analytics analyzes the data in the RDBs and
only the results are transferred to the users [18]. However, in
huge results case, the data transfer time is also problematic.

In contrast, we propose a new architecture for a data
analytics system that can rapidly transfer the data between
the SQL engines and the data analytics tools. In addition, we
show the data transfer throughput of both ODBC and Apache
Arrow Flight on various SQL engines.

III. PROPOSED ARCHITECTURE OF DATA ANALYTICS

SYSTEM

A. Proposed Architecture

Figure 1 illustrates the proposed architecture. It uses a
column-oriented Apache Arrow data format internally. The
SQL engine and the data analytics tool are connected via
Apache Arrow Flight. Apache Arrow/Arrow Flight decreases
the number of serializations/deserializations. In addition, the
data is stored in a column-oriented Apache Parquet format in
storage [15]. This also decreases the number of
serializations/deserializations in collaboration with Apache
Arrow in the SQL engine. In this architecture, no

TABLE I. PERFORMANCE EVALUATION ENVIRONMENT

CPU
Intel® Core™ i7-8665U

(4 cores / 8threads)

Memory 32GB

Storage 1TB SSD

Host OS Windows 10 Pro 2004

Virtual Machine

(VM)

Oracle VM VirtualBox 6.1.14

VM CPU 4 processors

VM Memory 16GB

Guest OS CentOS 7.8

serialization and deserialization of the data occurs from
bottom to top.

Moreover, the proposed architecture has JOIN Result
Cache next to the SQL engine. JOIN Result Cache reduces
the number of join operations.

B. Apache Arrow Flight

Apache Arrow Flight is a brand-new data transfer
framework, and 1.0.0 was released in 2020 and 5.0.0 in 2021
[1][13]. Apache Arrow Flight uses Apache Arrow column-
oriented in-memory data format [12]. If the SQL engines
hold the data in Apache Arrow format in memory, Apache
Arrow Flight can use the data for transfer without
serialization in the SQL engine. In addition, Apache Arrow
Flight transfers the data in parallel using gRPC. The gRPC is
an open-source high performance RPC framework using
Hyper Text Transfer Protocol/2 (HTTP/2). HTTP/2 enables
multiple HTTP requests to be sent on a single Transmission
Control Protocol (TCP) connection without waiting for the
corresponding responses. Thus, Apache Arrow Flight
enables faster data transfer between the data analytics tools
and the SQL engines than traditional database connectivity,
such as ODBC.

C. JOIN Result Cache

This architecture has JOIN Result Cache beside the SQL
engine. Some conventional systems cache the join results
without precomputing them. However, this architecture pre-
computes them on the basis of join query history before join
queries are issued, and caches them. For example, a join
query is precomputed if it has the same columns as a
previous join query but has different tables. Such cases often
appear in daily tabulation of Point-Of-Sales (POS) system.
Different daily sales tables have the same column names.
The tables are inferred from the history of table usage in
previous join queries, because in daily tabulation, tables are
often mechanically named in day order, such as
sales20210803, sales20210804, etc. Thus, join can be
precomputed. The SQL engine uses the results if they are
cached. As a result, we could improve the data analytics
performance and shorten the Turn-Around Time (TAT) of
data analytics.

IV. PERFORMANCE EVALUATION

To prove the effectiveness of the new architecture, we

evaluate the data transfer time using ODBC or Apache

Arrow Flight. In addition, we make an evaluation of JOIN

Result Cache.

41Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

Figure 2. Data transfer time from SQL engine to Python® script.

A. Performance Evaluation Environment

In this section, we briefly overview the performance
evaluation environment. Table I shows details of the

environment. We use a virtual machine on Windows 10 for

performance evaluation.

B. Performance Evaluation Targets and Methods

In this section, we briefly explain performance evaluation
targets and methods. We created Python® scripts as an
example of the data analytics tool. We imported pyodbc
4.0.30 as connections with the SQL engines in the Python®
scripts. It is a Python® wrapper of ODBC. The Python®
scripts executed an SQL query in the execute() method and
fetched the data from the SQL engines in the fetchall()
method. We measured the execution time of this fetchall()
method as the data transfer time in ODBC cases.

We also imported pyarrow 2.0.0 as connections with the
SQL engines in the Python® scripts. It is a Python® wrapper
of Apache Arrow and Apache Arrow Flight. We calculated
the data transfer time from the difference between script
execution time and SQL engine server’s Central Processing
Unit (CPU) execution time because Apache Arrow Flight is
implemented in C++ libraries of pyarrow and does not use
the fetchall() method.

We selected open-source SQL engine Dremio 4.9.1
Community Edition that is enabled to use both Apache
Arrow Flight and ODBC [2]. In addition, we also selected
PostgreSQL 9.2.24 and Presto 0.250 as ordinary SQL
engines that use ODBC.

We generated dummy datasets using Python® Faker
package. The datasets have 5 columns (employee ID, first
name, last name, age, and education history) and 2.5M,
12.5M, 25M, and 50M rows, respectively. The sizes of the
datasets are about 130MB, 650MB, 1315MB, and 2642MB,
respectively.

We used SQL queries “SELECT * FROM dataset” for
performance measurement. Though they are very simple, we
focus on the data transfer time, not the data processing time
inside the RDBs, such as GROUP BY operations.

In addition, we measured the effect of the JOIN Result
Cache on Dremio. We prepared other thtree datasets with the
dataset described above. Two of them are inner-joined and
other two are also inner-joined. Lastly, these two inner-

Figure 3. Data transfer throughput from SQL engine to Python® script.

Figure 4. Effect of JOIN Result Cache.

joined tables are inner-joined. A Reflection (materialized
view in Dremio) of the resulting table was calculated to
simulate JOIN Result Cache. The resulting table was queried
as “SELECT * FROM table”. Its size is about 256 MB.

C. Performance Evaluation Results

Figure 2 shows data transfer time from the SQL engine
to the Python® script in seconds. Each line means
PostgreSQL/ODBC, Presto/ODBC, Dremio/ODBC, and
Dremio/Apache Arrow Flight, respectively. We cannot
measure the data transfer time of PostgreSQL/ODBC and
Presto/ODBC in the 2642MB dataset case because they
stopped executing the query with error messages.

In this figure, Presto/ODBC and Dremio/ODBC take
almost the same measurement time. PostgreSQL/ODBC runs
faster than them. Dremio/Apache Arrow Flight is the fastest
in these four measurements.

Figure 3 shows data transfer throughput from the SQL
engine to the Python® scripts in MB/s. Each bar means,
from left to right, PostgreSQL/ODBC, Presto/ODBC,
Dremio/ODBC, and Dremio/Apache Arrow Flight,
respectively. The data transfer throughput of Dremio/Apache
Arrow Flight is 224MB/s. It is 13.1 times faster than
PostgreSQL/ODBC, 36.0 times faster than Presto/ODBC,
and 37.4 times faster than Dremio/ODBC.

Figure 4 shows the effect of JOIN Result Cache. In
Cache ON case, JOIN time (blue bar) disappeared. As a
result, query execution time decreases by 2.4 times.

42Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

V. DISCUSSION

ODBC needs data to be serialized and deserialized before
and after the data transfer. On the other hand, Apache Arrow
Flight uses the Apache Arrow column-oriented in-memory
data format that the SQL engine (Dremio) uses internally.
Thus, Apache Arrow Flight does not need the data to be
serialized before the data transfer. In addition, the Python®
script uses the pyarrow module, and the transferred data is
retained in Apache Arrow format. Thus, the data do not need
to be deserialized. We suppose that this is why Apache
Arrow Flight outperforms ODBC.

However, we suppose that, in many cases, the data
analytics tools written in Python® use pandas DataFrame,
which is not column-oriented. Thus, the data needs to be
deserialized when it is analyzed. This could be another
overhead of the data transfer. In a simple experiment, for
example, the data deserialization of 1315MB Apache Arrow
array to pandas DataFrame in Python® takes about 2.6s.
This could worsen the data transfer performance by 33.8%.
If the time of deserialization linearly depends on the size of
the data, 1TB data needs about 40 additional minutes for
deserialization. This overhead deteriorates the TAT of data
analytics.

After serialization/deserialization disappears, join time is
a performance bottleneck. In Figure 4, 76% (blue bar) of the
query execution time is join time. The JOIN Result Cache
removes join query processing and outperforms Cache OFF
case by 2.4 times. The difference between Magpie and the
proposed architecture is that the former has cache in Apache
Arrow Flight and the latter has cache out of Apache Arrow
Flight. It affects the maintenance cost of the system.

The Cache OFF case only reads smaller datasets
(296MB) from the storage. However, the Cache ON case
reads larger joined table (512MB). That is the cause of the
difference in data read time (orange bar) in Figure 4.

In addition, the data analytics system using the proposed
architecture can cross the cloud boundaries, because it does
not use specific hardware, such as RDMA. This means that
data analytics users can distribute the data among usual
clouds where the data analytics tools are not installed.

Additionally, if the system resides in one cloud, we can
use memory-mapped files in place of file Input/Output (I/O)
system calls between storage and the SQL engines. When
files are mapped into memory, data in the files is read from
and written to the mapped files as if it were in a memory. I/O
system calls are usually much slower than memory
read/write. Therefore, memory-mapped files can speed up
read/write performance of the SQL engines. Thus, in
addition to Apache Arrow Flight, memory-mapped files
enable us to improve the system performance more and
shorten the TAT of data analytics.

VI. CONCLUSION

We proposed a new architecture for a data analytics
system using column-oriented Apache Arrow/Arrow Flight.
We compared the data transfer throughput performance
between the data analytics tool and the SQL engine using
ODBC and Apache Arrow Flight. We found that Apache

Arrow Flight transfers the data 13.1-37.4 times faster than
ODBC because serialization/deserialization of the data is
eliminated. In addition, JOIN Result Cache accelerates the
query by 2.4 times using precomputed join results. Thus, our
proposed architecture can improve the TAT of the data
analytics.

In future work, we will design and implement such a data
analytics system using Apache Arrow and Apache Arrow
Flight. It may reduce the data analytics time and help data
analytics users to gain new insights from the data more
rapidly.

REFERENCES

[1] The Apache Software Foundation, “Arrow Flight RPC”
[Online]. Available from:
https://arrow.apache.org/docs/format/Flight.html [Retrieved:
August, 2021].

[2] Dremio, “Set Your Data Free” [Online]. Available from:
https://www.dremio.com [Retrieved: April, 2021].

[3] P. Shrivastava, “Eliminating Data Exports for Data Science
with Apache Arrow Flight” [Online]. Available from:
https://www.dremio.com/eliminating-data-exports-for-data-
science-with-apache-arrow-flight [Retrieved: April, 2021].

[4] S. Leontiev, “Think Presto Is Fast? Dremio is 3,000 Times
Faster.” [Online]. Available from:
https://www.dremio.com/dremio-vs-presto [Retrieved: April,
2021].

[5] T. Li, M. Butrovich, A. Ngom, W. S. Lim, W. McKinney, and
A. Pavlo, “Mainlining Databases: Supporting Fast
TransactionalWorkloads on Universal Column-oriented Data
File Formats,” arXiv:2004.14471, 2020.

[6] Microsoft®, “What Is ODBC?” [Online]. Available from:
https://docs.microsoft.com/en-us/sql/odbc/reference/what-is-
odbc?view=sql-server-ver15 [Retrieved: April, 2021].

[7] Database Research Group at Carnegie Mellon University,
“noisepage” [Online]. Available from:
https://github.com/cmu-db/noisepage [Retrieved: April, 2021].

[8] A. Jindal, et al., "Magpie: Python at Speed and Scale using
Cloud Backends," in Proc. CIDR’21, 2021.

[9] F. A. Pedroso and P. D. P. Costa, "ImmVis: Bridging Data
Analytics and Immersive Visualisation," Proc. VISIGRAPP
2021, vol.3, pp.181-187, 2021.

[10] P. Dix, “Apache Arrow, Parquet, Flight and Their Ecosystem
are a Game Changer for OLAP” [Online]. Available from:
https://www.influxdata.com/blog/apache-arrow-parquet-
flight-and-their-ecosystem-are-a-game-changer-for-olap/
[Retrieved: June, 2021].

[11] NVIDIA®, “RAPIDS” [Online]. Available from:
https://developer.nvidia.com/rapids [Retrieved:]2020.06.04

[12] The Apache Software Foundation, “Apache Arrow” [Online].
Available from: https://arrow.apache.org/ [Retrieved: April,
2021].

[13] Wes McKinney, “Introducing Apache Arrow Flight: A
Framework for Fast Data Transport” [Online]. Available
from: https://arrow.apache.org/blog/2019/10/13/introducing-
arrow-flight/ [Retrieved: April, 2021].

[14] L. Jin, “Introducing Pandas UDF for PySpark” [Online].
Available from:
https://databricks.com/blog/2017/10/30/introducing-
vectorized-udfs-for-pyspark.html [Retrieved: June, 2021].

[15] The Apache Software Foundation, “Apache Parquet” [Online].
Available from: https://parquet.apache.org/ [Retrieved: May,
2021].

43Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

https://arrow.apache.org/docs/format/Flight.html
https://www.dremio.com/
https://www.dremio.com/eliminating-data-exports-for-data-science-with-apache-arrow-flight
https://www.dremio.com/eliminating-data-exports-for-data-science-with-apache-arrow-flight
https://www.dremio.com/dremio-vs-presto
https://docs.microsoft.com/en-us/sql/odbc/reference/what-is-odbc?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/odbc/reference/what-is-odbc?view=sql-server-ver15
https://github.com/cmu-db/noisepage
https://www.influxdata.com/blog/apache-arrow-parquet-flight-and-their-ecosystem-are-a-game-changer-for-olap/
https://www.influxdata.com/blog/apache-arrow-parquet-flight-and-their-ecosystem-are-a-game-changer-for-olap/
https://developer.nvidia.com/rapids
https://arrow.apache.org/
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://parquet.apache.org/

[16] Google, “Download table data in the Arrow data format”
[Online]. Available from:
https://cloud.google.com/bigquery/docs/samples/bigquerystor
age-arrow-quickstart?hl=en [Retrieved: June, 2021].

[17] H. Kapre, “Fetching Query Results From Snowflake Just Got
a Lot Faster With Apache Arrow” [Online]. Available from:
https://www.snowflake.com/blog/fetching-query-results-

from-snowflake-just-got-a-lot-faster-with-apache-arrow/
[Retrieved: June, 2021].

[18] J. Taylor, “In-database analytics,” [Online]. Available from:
http://www.decisionmanagementsolutions.com/wp-
content/uploads/2015/06/In-database-Analytics-Decision-
Management-Solutions.pdf [Retrieved: August, 2021].

44Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

https://cloud.google.com/bigquery/docs/samples/bigquerystorage-arrow-quickstart?hl=en
https://cloud.google.com/bigquery/docs/samples/bigquerystorage-arrow-quickstart?hl=en
https://www.snowflake.com/blog/fetching-query-results-from-snowflake-just-got-a-lot-faster-with-apache-arrow/
https://www.snowflake.com/blog/fetching-query-results-from-snowflake-just-got-a-lot-faster-with-apache-arrow/

