
 

 

Integrated Architecture of SQL Engine and Data Analytics Tool  

with Apache Arrow Flight and Its Performance Evaluation 

 

Yuichiro Aoki 

Research and Development Group, Center for Technology 

Innovation - Digital Platform 

Hitachi, Ltd. 

Tokyo, Japan 

email: yuichiro.aoki.jk@hitachi.com  

Satoru Watanabe 

Research and Development Group, Center for Technology 

Innovation - Digital Platform 

Hitachi, Ltd. 

Tokyo, Japan 

email: satoru.watanabe.aw@hitachi.com

 

 
Abstract—Data analytics in enterprise systems requires huge 

amounts of data that are generally stored in databases. 
Conventionally, Structured Query Language (SQL) engines 

retrieve the data from the database and data analytics tools, 

such as Python® scripts, are used to analyze them. In this case, 

whenever the data moves from the database to the data 

analytics tools, the data needs to be serialized/deserialized in  

traditional Open Database Connectivity (ODBC). This is one of 

the bottlenecks in data analytics performance. In addition, the 

data needs to be joined for advanced data analytics, and  

joining the data in the SQL engines takes a lot of time. This is 

another bottleneck. To remove these bottlenecks, we propose a 

new architecture integrating the SQL engine and the data 

analytics tool that reduces the number of data serializations/ 

deserializations and caches joined results to improve 

performance of data analytics. Evaluation results show that the 

data transfer throughput using Apache Arrow/Arrow Flight is 

13.1-37.4 times faster than that of a conventional data analytics 

tool using ODBC. Moreover, this architecture runs 2.4 times 

faster with the caching mechanism than without it. 

Keywords-relational database; SQL engine; ODBC; Apache 

Arrow; Apache Arrow Flight; data analytics. 

I.  INTRODUCTION 

Data analytics in enterprise systems requires huge 
amounts of data that are generally stored in databases. 
Conventionally, Structured Query Language (SQL) engines, 
such as Relational DataBases (RDBs), retrieve the data from 
the database using traditional Open Database Connectivity 
(ODBC) [6], and data analytics tools like Python® scripts 
analyze the retrieved data. In such cases, whenever the data 
moves from the database to the data analytics tool, the data is 
serialized in the database and deserialized in the data 
analytics tools. Serialization/deserialization demands many 
memory copies and takes a lot of time. Thus,  
serialization/deserialization is a bottleneck in data analytics 
performance. 

In addition, the data needs to be joined for complicated 
data analytics. Join operations in the SQL engines take a lot 
of time and are another bottleneck. 

In this paper, to address these issues, we propose a new 
architecture for a data analytics system that integrates the 
SQL engine and the data analytics tool. It uses Apache 

Arrow Flight for data transfer between them. Apache Arrow 
Flight is a brand-new parallel data transfer framework [1]. It 
uses a column-oriented data format based on Apache Arrow 
[12]. If the SQL engines, data transfer framework, and the 
data analytics tools use the same column-oriented data 
format, the data does not need serialization/deserialization. 
Thus, the proposed system might be faster than a traditional 
data analytics system that uses ODBC. In addition, we 
propose JOIN Result Cache to reduce the number of join 
operations in the SQL engines. It also improves the 
performance of the data analytics. 

Moreover, we evaluate two types of performance. One is 
the data transfer performance of the SQL engines using 
ODBC and Apache Arrow Flight. The other is the 
performance of JOIN Result Cache. 

The rest of the paper is organized as follows. In Section 
II, we review related work. In Section III, we describe the 
overview of the proposed architecture of the data analytics 
system. We show the performance evaluation results in 
Section IV. In Section V, we make a discussion about the 
performance, followed by conclusion and future study in 
Section VI. 

II. RELATED WORK 

In this section, we review the SQL engines that use 
Apache Arrow Flight. Dremio [2] is an open-source SQL 
engine for cloud data lakes. Dremio uses both ODBC and 
Apache Arrow Flight as a connection with the data analytics 
tools. Dremio discloses its performance with ODBC and 
Apache Arrow Flight [3] and Apache Arrow Flight performs 
15 times faster than ODBC. In addition, Dremio compares 
benchmarking results using Transaction Processing 
Performance Council – Decision Support (TPC-DS) 
generated data on PrestoDB [4]. On average, Dremio is 3-4 
times faster than PrestoDB. However, both results show the 
overall performance of SQL queries, and the performance of 
data transfer itself with ODBC and Apache Arrow Flight was 
not compared. 

Li et al. [5] implemented data transfer functionalities 
using Apache Arrow Flight on the DB-X (currently known 
as noisepage) database management system [7]. They 
measured the data transfer throughput using Apache Arrow 
Flight and Remote Direct Memory Access (RDMA) over  
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Figure 1.  Proposed architecture. 

Ethernet. RDMA is slightly faster than Apache Arrow Flight. 
However, they do not show the overall data analytics system 
design.  

Magpie [8] measured speedups of SQL queries with or 
without caching data in Apache Arrow Flight. Apache Arrow 
Flight with caching data runs 2-3 times faster than that 
without it. However, data transfer time with or without 
Apache Arrow Flight was not evaluated. 

ImmVis [9] is an open-source framework for immersive 
analytics. It is suggested that data transfer performance may 
improve if ImmVis uses Apache Arrow Flight. However, the 
data transfer performance of Apache Arrow Flight was not 
evaluated. 

InfluxData [10] refers to Apache Arrow, Apache Arrow 
Flight, and Apache Parquet. Data transfer time using Apache 
Arrow Flight was shown. However, no performance 
comparison was conducted. 

NVIDIA® RAPIDS [11], DataBricks [14], Google 
BigQuery [16], and Snowflake [17] use Apache Arrow 
internally. However, they do not use Apache Arrow Flight. 

In-database analytics analyzes the data in the RDBs and 
only the results are transferred to the users [18]. However, in 
huge results case, the data transfer time is also problematic. 

In contrast, we propose a new architecture for a data 
analytics system that can rapidly transfer the data between 
the SQL engines and the data analytics tools. In addition, we 
show the data transfer throughput of both ODBC and Apache 
Arrow Flight on various SQL engines. 

III. PROPOSED ARCHITECTURE OF DATA ANALYTICS 

SYSTEM 

A. Proposed Architecture 

Figure 1 illustrates the proposed architecture. It uses a 
column-oriented Apache Arrow data format internally. The 
SQL engine and the data analytics tool are connected via 
Apache Arrow Flight. Apache Arrow/Arrow Flight decreases 
the number of serializations/deserializations. In addition, the 
data is stored in a column-oriented Apache Parquet format in 
storage [15]. This also decreases the number of 
serializations/deserializations in collaboration with Apache 
Arrow in the SQL engine. In this architecture, no  

  

TABLE I.  PERFORMANCE EVALUATION ENVIRONMENT 

CPU 
Intel® Core™ i7-8665U 

(4 cores / 8threads) 

Memory 32GB 

Storage 1TB SSD 

Host OS Windows 10 Pro 2004 

Virtual Machine 

(VM) 

Oracle VM VirtualBox 6.1.14 

VM CPU 4 processors 

VM Memory 16GB 

Guest OS CentOS 7.8 

serialization and deserialization of the data occurs from 
bottom to top. 

Moreover, the proposed architecture has JOIN Result 
Cache next to the SQL engine. JOIN Result Cache reduces 
the number of join operations.  

B. Apache Arrow Flight 

Apache Arrow Flight is a brand-new data transfer 
framework, and 1.0.0 was released in 2020 and 5.0.0 in 2021 
[1][13]. Apache Arrow Flight uses Apache Arrow column-
oriented in-memory data format [12]. If the SQL engines 
hold the data in Apache Arrow format in memory, Apache 
Arrow Flight can use the data for transfer without 
serialization in the SQL engine. In addition, Apache Arrow 
Flight transfers the data in parallel using gRPC. The gRPC is 
an open-source high performance RPC framework using 
Hyper Text Transfer Protocol/2 (HTTP/2). HTTP/2 enables 
multiple HTTP requests to be sent on a single Transmission 
Control Protocol (TCP) connection without waiting for the 
corresponding responses. Thus, Apache Arrow Flight 
enables faster data transfer between the data analytics tools 
and the SQL engines than traditional database connectivity, 
such as ODBC. 

C. JOIN Result Cache 

This architecture has JOIN Result Cache beside the SQL 
engine. Some conventional systems cache the join results 
without precomputing them. However, this architecture pre-
computes them on the basis of join query history before join 
queries are issued, and caches them. For example, a join 
query is precomputed if it has the same columns as a 
previous join query but has different tables. Such cases often 
appear in daily tabulation of Point-Of-Sales (POS) system. 
Different daily sales tables have the same column names. 
The tables are inferred from the history of table usage in 
previous join queries, because in daily tabulation, tables are 
often mechanically named in day order, such as 
sales20210803, sales20210804, etc. Thus, join can be 
precomputed. The SQL engine uses the results if they are 
cached. As a result, we could improve the data analytics 
performance and shorten the Turn-Around Time (TAT) of 
data analytics. 

IV. PERFORMANCE EVALUATION 

To prove the effectiveness of the new architecture, we 

evaluate the data transfer time using ODBC or Apache 

Arrow Flight. In addition, we make an evaluation of JOIN 

Result Cache. 
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Figure 2.  Data transfer time from SQL engine to Python® script. 

A. Performance Evaluation Environment 

In this section, we briefly overview the performance 
evaluation environment. Table I shows details of the 

environment. We use a virtual machine on Windows 10 for 

performance evaluation. 

B. Performance Evaluation Targets and Methods 

In this section, we briefly explain performance evaluation 
targets and methods. We created Python® scripts as an 
example of the data analytics tool. We imported pyodbc 
4.0.30 as connections with the SQL engines in the Python® 
scripts. It is a Python® wrapper of ODBC. The Python® 
scripts executed an SQL query in the execute() method and 
fetched the data from the SQL engines in the fetchall() 
method. We measured the execution time of this fetchall() 
method as the data transfer time in ODBC cases. 

We also imported pyarrow 2.0.0 as connections with the 
SQL engines in the Python® scripts. It is a Python® wrapper 
of Apache Arrow and Apache Arrow Flight. We calculated 
the data transfer time from the difference between script 
execution time and SQL engine server’s Central Processing 
Unit (CPU) execution time because Apache Arrow Flight is 
implemented in C++ libraries of pyarrow and does not use 
the fetchall() method. 

We selected open-source SQL engine Dremio 4.9.1 
Community Edition that is enabled to use both Apache 
Arrow Flight and ODBC [2]. In addition, we also selected 
PostgreSQL 9.2.24 and Presto 0.250 as ordinary SQL 
engines that use ODBC.  

We generated dummy datasets using Python® Faker 
package. The datasets have 5 columns (employee ID, first 
name, last name, age, and education history) and 2.5M, 
12.5M, 25M, and 50M rows, respectively. The sizes of the 
datasets are about 130MB, 650MB, 1315MB, and 2642MB, 
respectively. 

We used SQL queries “SELECT * FROM dataset” for 
performance measurement. Though they are very simple, we 
focus on the data transfer time, not the data processing time 
inside the RDBs, such as GROUP BY operations. 

In addition, we measured the effect of the JOIN Result 
Cache on Dremio. We prepared other thtree datasets with the 
dataset described above. Two of them are inner-joined and 
other two are also inner-joined. Lastly, these two inner- 

 

Figure 3.  Data transfer throughput from SQL engine to Python® script. 

 

Figure 4.  Effect of JOIN Result Cache. 

joined tables are inner-joined. A Reflection (materialized 
view in Dremio) of the resulting table was calculated to 
simulate JOIN Result Cache. The resulting table was queried 
as “SELECT * FROM table”. Its size is about 256 MB. 

C. Performance Evaluation Results 

Figure 2 shows data transfer time from the SQL engine 
to the Python® script in seconds. Each line means 
PostgreSQL/ODBC, Presto/ODBC, Dremio/ODBC, and 
Dremio/Apache Arrow Flight, respectively. We cannot 
measure the data transfer time of PostgreSQL/ODBC and 
Presto/ODBC in the 2642MB dataset case because they 
stopped executing the query with error messages. 

In this figure, Presto/ODBC and Dremio/ODBC take 
almost the same measurement time. PostgreSQL/ODBC runs 
faster than them. Dremio/Apache Arrow Flight is the fastest 
in these four measurements. 

Figure 3 shows data transfer throughput from the SQL 
engine to the Python® scripts in MB/s. Each bar means, 
from left to right, PostgreSQL/ODBC, Presto/ODBC, 
Dremio/ODBC, and Dremio/Apache Arrow Flight, 
respectively. The data transfer throughput of Dremio/Apache 
Arrow Flight is 224MB/s. It is 13.1 times faster than 
PostgreSQL/ODBC, 36.0 times faster than Presto/ODBC, 
and 37.4 times faster than Dremio/ODBC. 

Figure 4 shows the effect of JOIN Result Cache. In 
Cache ON case, JOIN time (blue bar) disappeared. As a 
result, query execution time decreases by 2.4 times. 
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V. DISCUSSION 

ODBC needs data to be serialized and deserialized before 
and after the data transfer. On the other hand, Apache Arrow 
Flight uses the Apache Arrow column-oriented in-memory 
data format that the SQL engine (Dremio) uses internally. 
Thus, Apache Arrow Flight does not need the data to be 
serialized before the data transfer. In addition, the Python® 
script uses the pyarrow module, and the transferred data is 
retained in Apache Arrow format. Thus, the data do not need 
to be deserialized. We suppose that this is why Apache 
Arrow Flight outperforms ODBC. 

However, we suppose that, in many cases, the data 
analytics tools written in Python® use pandas DataFrame, 
which is not column-oriented. Thus, the data needs to be 
deserialized when it is analyzed. This could be another 
overhead of the data transfer. In a simple experiment, for 
example, the data deserialization of 1315MB Apache Arrow 
array to pandas DataFrame in Python® takes about 2.6s. 
This could worsen the data transfer performance by 33.8%. 
If the time of deserialization linearly depends on the size of 
the data, 1TB data needs about 40 additional minutes for 
deserialization. This overhead deteriorates the TAT of data 
analytics. 

After serialization/deserialization disappears, join time is 
a performance bottleneck. In Figure 4, 76% (blue bar) of the 
query execution time is join time. The JOIN Result Cache 
removes join query processing and outperforms Cache OFF 
case by 2.4 times. The difference between Magpie and the 
proposed architecture is that the former has cache in Apache 
Arrow Flight and the latter has cache out of Apache Arrow 
Flight. It affects the maintenance cost of the system. 

The Cache OFF case only reads smaller datasets 
(296MB) from the storage. However, the Cache ON case 
reads larger joined table (512MB). That is the cause of the 
difference in data read time (orange bar) in Figure 4. 

In addition, the data analytics system using the proposed 
architecture can cross the cloud boundaries, because it does 
not use specific hardware, such as RDMA. This means that 
data analytics users can distribute the data among usual 
clouds where the data analytics tools are not installed. 

Additionally, if the system resides in one cloud, we can 
use memory-mapped files in place of file Input/Output (I/O) 
system calls between storage and the SQL engines. When 
files are mapped into memory, data in the files is read from 
and written to the mapped files as if it were in a memory. I/O 
system calls are usually much slower than memory 
read/write. Therefore, memory-mapped files can speed up 
read/write performance of the SQL engines. Thus, in 
addition to Apache Arrow Flight, memory-mapped files 
enable us to improve the system performance more and 
shorten the TAT of data analytics. 

VI. CONCLUSION 

We proposed a new architecture for a data analytics 
system using column-oriented Apache Arrow/Arrow Flight. 
We compared the data transfer throughput performance 
between the data analytics tool and the SQL engine using 
ODBC and Apache Arrow Flight. We found that Apache 

Arrow Flight transfers the data 13.1-37.4 times faster than 
ODBC because serialization/deserialization of the data is 
eliminated. In addition, JOIN Result Cache accelerates the 
query by 2.4 times using precomputed join results. Thus, our 
proposed architecture can improve the TAT of the data 
analytics. 

In future work, we will design and implement such a data 
analytics system using Apache Arrow and Apache Arrow 
Flight. It may reduce the data analytics time and help data 
analytics users to gain new insights from the data more 
rapidly. 
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