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Abstract—Manufacturing systems suffer from progressive
degradation due to wear, fatigue, cracking, corrosion, with
respect to both age and usage. Reduced performance of system
components and even catastrophic failure could be the main
consequences of not being able to detect such faults at early times.
Fault diagnosis and predictive maintenance aim at showing the
machine working conditions, indicating current and possible fu-
ture abnormal states, and allowing to take appropriate actions in
advance in order to avoid damages, minimize downtime, improve
the safety of the whole system and reduce manufacturing and
repairing costs. In this paper, we successfully apply a data driven
modelling approach designed for log data to a new scenario. The
methodology proposed transforms the production and stops data
of an industrial machine into a thoughtfully elaborated series of
timestamped events, and applies a set of feature engineering tech-
niques that enables to exploit the pipelines typically implemented
in log-based predictive maintenance modelling. The transformed
data is used to train a binary classificator that predicts with
high accuracy (96.2%) the occurrence of a machine failure in
the short-medium term.

Index Terms—predictive maintenance, machine learning, fea-
ture engineering, manufacturing

I. INTRODUCTION

The term ’Industry 4.0’ refers to the Fourth Industrial Rev-
olution, the recent trend of automation and data exchange in
manufacturing technologies. The key fundamental principles
of Industry 4.0 include data integration, flexible adaptation,
cloud intranet, intelligent self-organizing, manufacturing pro-
cess, optimization, interoperability, secure communication, and
service orientation [1]. These innovative technologies are used
to create a “smart factory” where machines, systems and
humans communicate with each other to cooperate, monitor
progress and connect sensors to provide data concerning the
quality and the quantity of the goods, along the assembly line
[2]. Apart from the evaluation of the quality of the final prod-
ucts, Predictive Health Management (PHM) systems use real-
time and historical state information of machines, subsystems
and components to provide actionable information, enabling
intelligent decision-making for improved performance, safety,
reliability, and maintainability in the manufacturing sector. The
focus of health management is to minimize operational loss
and to maximize the objectives established by the facility [3].

PHM of components or systems involves both diagnostics and
prognostics: diagnostics is the process of detection and isola-
tion of failures or faults, while prognostics is the process of
prediction of the future state or Remaining Useful Life (RUL)
based on current and historic conditions [4], [5]. The RUL
is the prediction of the cycle-time before the performance of
a component, system or process reaches an unacceptable low
threshold [6]. Prognostics is based on the understanding that
machines fail after a period of degradation, which if measured
and thoughtfully analyzed, can be exploited to prevent system
breakdown and minimize operation costs. These are in fact the
goals of the predictive maintenance methodologies [7].

Data are at the core of diagnostics and prognostics oper-
ations. Manufacturers that envision the importance of data
as an asset and manage to implement effective strategies to
leverage data in multiple ways, gain measurable advantage
over competitors. All players at a small- or large-scale produce
data, but an aspect that distinguishes each other is the harness-
ing and management of the data that they conduct [8]. Data
have different types and formats and can be collected from
numerous sources using a variety of technological approaches,
processed accordingly, and saved in an extensive catalogue
of data stores and databases both locally and on the cloud.
Data typically applied to condition monitoring and hopefully
to predictive maintenance of machines are sensor and log
data. In the present work, based on the lack of these kind of
information, we propose the combined use of production and
stops records of machines to construct artificial intelligence
tools able to anticipate machine failures, and satisfactory apply
this approach to predict the RUL of a machine operating in
the textile sector.

The remainder of this paper is organized as follows. Section
II describes the data-driven techniques commonly applied in
predictive maintenance. Section III presents the scenario and
the data utilized in the work. In Section IV we introduce
the proposed approach and explain its three main steps:
data preprocessing, feature engineering and machine learning
modelling. The application of the method and the obtained
results are presented in Section V. Finally, in Section VI, we
draw some concluding remarks and suggest important work to
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address in the future.

II. BACKGROUND

Model-based and data-driven approaches are two main
techniques for diagnosis, monitoring and predictive main-
tenance of machines [9]. Model-based approaches exploit
mathematical and physical models to provide insights into
the failure mechanism of systems [10]. Faults are diagnosed
by monitoring discrepancies between model calculations and
the actual measurements. Data-driven approaches, on the other
hand, are featured by building machine learning models based
on large volumes of data without using the knowledge of
the physical mechanisms behind the failures, and can provide
excellent diagnosis results and RUL estimation [11], [12].

Data-driven predictive maintenance can be classified as
sensor-based or log-based, depending on the type of data able
to be generated and extracted from the machinery system and
used for model training. The most frequently implemented
is the sensor-based methodology, in which the streams of
sensor measurements describing the working conditions of the
machine are stored, aggregated, processed and applied to train
a machine learning model, and subsequently to monitor and
score the algorithm in order to predict future failure events
[13]–[15]. Machine sensor data consist essentially in a set of
time series signals, collected in general at regular time periods,
and device identifiers formatted according to a hierarchical
structure like machine/subsystem/component/channel. Typical
machine parameters monitored by sensors are temperature,
pressure, rotation speed, vibration, electrical consumption,
acoustic emissions, among others. Sensor data are usually
complemented with environmental, production, alerts, failures
and maintenance data in this kind of approaches, enabling
through a feature engineering process the generation of more
solid datasets from which machine learning models with a
higher prediction power can be constructed. Modern machines
incorporate sensors and data processing modules from factory,
but in older equipment these devices must be installed with the
machine already in production. IoT devices and technologies
facilitate enormously the conditioning of machines into a
predictive maintenance ready status, although in some cases
the high cost, the intensive use or the presence of mechanical
or even regulatory constraints can turn this process unfeasible.

Log-based approaches, conversely, use event-log data for
machine diagnostics, and prevent the need of implementation
or monitoring of sensor data to train machine learning models
for prognostics and predictive maintenance [16]–[20]. Pro-
grammable Logic Controllers (PLC) and software applications
running on machine controllers continuously produce logs
containing valuable information about internal events, tasks
carried out, warnings, errors, components state, dialogues be-
tween modules, etc. Logs are generated automatically at a very
high rate, reaching typically volumes of hundreds of thousand
records per hour. Every log is timestamped and appended
into a plain text or Extensible Markup Language (XML)
file. Many log files can be generated daily by machines,
each one containing a limited amount of records in order

to avoid complicating the reading process and the storage
of very large sized files. The management of these files is
in fact an important aspect to consider when preservation of
log data of a machine is contemplated. Most data recorded in
log files are unstructured text data, and the extraction of the
small subset of data embedded into the logs, that might be
useful for predictive maintenance purposes, requires a heavy
preprocessing work. There is no data in the logs providing
explicit information about the machine condition that can be
directly applied to predict failures. This means that a careful
feature extraction process must be performed in log-based
approaches to obtain successful prediction results through
appropriate machine learning modelling.

In both approaches depicted above, the integration of the
data with machine failure records is mandatory for RUL
prediction using supervised machine learning algorithms. Each
instance of the dataset is composed by a vector of features and
a label. Features are constructed from collected sensor or log
data, whereas failure records are exploited for data labeling.
Binary or multiclass classification are the most frequently
applied model types in data-driven predictive maintenance
scenarios, rather than regression models. In binary prob-
lems, particularly, the label usually expresses the occurrence
(positive class) or not (negative class) of a failure within a
prediction window ahead in time from a specific prediction
point, to which the data instance is associated. These two
classes define the RUL to be predicted by the model. Both
sensor and log data are time-series data, and the construction
of the features for every prediction point is not based only on
the data at that single point in time but on the aggregation of
data within a specific time window set before the prediction
point. For log-based approaches, it has been also reported in
the literature the use of Multiple Instance Learning (MIL), in
which instances are bagged and bags are labeled positive or
negative according to the labels of the instances within them
[19], [21]. Typical classification models applied to predic-
tive maintenance include XGBoost, Random Forest, Gradient
Boosting Machines (GBM), Support Vector Machines (SVM),
Neural Networks, among others [22]–[24].

III. SCENARIO AND DATA DESCRIPTION

A. Scenario

The equipment under study is a bleaching machine, utilized
in textile industries to remove the natural yellowish-brown
coloring of fabric fibers, in order to confer to the material
a white appearance. The equipment owner is a big interna-
tional textile manufacturer with headquarters in Turkey. The
bleaching machine is a long production line that operates in
continuous mode in a 24/7 regime, processing an average of 80
km of fabric per day and performing four different processes:
Bleaching, Bleaching + Emulsion, Repairment and Washing.
The machine operation and architecture are subdivided in
four steps: pre-washing, bleaching, washing and drying of the
fabric.

In the bleaching step, the fabric is subject to a chemical
bath and a steamer, with controlled times, temperatures and
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(a) Production data

(b) Stops data

Fig. 1: Samples of the tables containing production (a) and stops (b) data.

proportion of chemical bath components, which depend on
the type and whiteness level of the inlet fabric. An excessive
time of exposure of the material to the chemicals can produce
irreversible damages, resulting in the loss of up to kilometers
of textile. The long exposures to the chemicals are caused
by different types of stops that the machine suffers during
its operation. One of the most frequent stops are due to
mechanical failures, specifically to failures of cylindrical roller
bearings, which progressively deteriorate due to abrasion.
The whole machine structure includes a total of 1259 roller
bearings of 54 different types. Despite the intensive preventive
maintenance activities, an average of 1 mechanical failure per
day is reported by the machine owner. Other failure types
affect the normal operation of the machine, i.e., electrical,
electronic and power failures, depending on the root cause and
the component or subsystem in which the issue is originated.
Failures with a repairing duration exceeding 10 minutes are
classified by the maintenance department as critical, based on
Total Productive Maintenance (TPM) principles, and generally
meet 10% of the total failures. Half of the total critical failures
time is due exclusively to mechanical failures, which reach
an average duration of 27 minutes. These statistics extracted
from data provided by the manufacturer reveal the importance
of targeting the prediction of mechanical failures to enable
the predictive maintenance of the equipment. In addition to
the huge quantity of roller bearings, this complex machine is
composed also by 50 motors, 30 inverters, 5 chemical dosing
pumps, and many other components. The machine is not

equipped with a network of sensors for condition monitoring,
and a collection of log files reporting a reasonable period
of historical log events was not available at the moment of
conducting this study. The lack of data questioned initially
the possibility of executing a data-driven analysis for RUL
prediction. Data provided by the manufacturer consist of four
months of production and stop events in structured format,
with complete information about the type of production pro-
cess performed or stop undergone, and the corresponding
starting and final timestamps.

B. Data description

Data about production processes and stop events were
provided by the machine owner in two separate files, ex-
ported from the production management software and the
PLC, respectively. The tables in the source files contain 1883
production records and 7663 stop events registered from June
to October 2020. The structure of these tables and some
example data are shown in Figure 1. The production table
includes data about the performed process (Process), the ID
of the order (BatchNumber), the code of the processed fabric
(FabricCode), the input length (Length, in meters) and area
(Production, in squared maters) of the material, the initial and
final timestamps (StartTime, EndTime), and the order duration
(Duration, in minutes). This duration includes the times of all
eventual stops and failures undergone by the machine during
the processing of the order. The stops table simply shows
the type of stop experienced by the machine (StopReason),
the initial and final timestamps (StartTime, EndTime), and
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(a) Production processes

(b) Unplanned stops

Fig. 2: Duration of production processes (a) and unplanned stops (b) aggregated by day.

the duration (Duration, in seconds). It is important to notice
that stop timestamps have minute resolution (seconds = 00),
which leads to small inaccuracies when analyzing sequences
of stop events during the processing of fabrics, and to the
presence of records with identical StartTime and in many cases
also EndTime timestamps. The indexes OrderID and StopID
were added to uniquely identify each record in the tables.
BatchNumber in the production table might not be unique due
to one of two reasons: reprocess of bleaching when obtained
whiteness degree is not acceptable (Repairment process), and
reuse of BatchNumber once the processing of a fabric through
all required machines in the plant is complete. The StopReason
is introduced by the operators through the PLC screen of the
machine, by choosing the proper option from the full list which
is shown when the machine stops. The following is the list of
the 17 stop reasons present in the dataset, classified as Planned
and Unplanned:

• Planned stops (4): Planned maintenance, Cleaning, No
production, Holiday.

• Unplanned stops (13): Unreasoned stops, Recipe change,
Fabric rupture, Waiting for batch frame trolley, Fabric
wrapped around a cylinder, Refreshing Stitching, Fab-

ric construction changing, Color OK, Water changing,
Mechanical Failure, Electronic failure, Electrical failure,
Power failure.

The two tables integrate a total of 2050 hours of production
and 1235 hours of stop events. Bleaching and Bleaching +
Emulsion processes comprise the 81% of all production orders.
Bleaching + Emulsion is the bleaching process executed for
a specific type of fabric. More than half of the stop time
corresponds to the Planned stops, mainly to the No production
reason. Near 55% of the orders processed in the reported
period presented unplanned stops, with a total stop duration of
almost 300 hours. The large number of registered stops is due
to the presence of numerous sequences of microstops of few
seconds duration, usually labelled as Unreasoned stops, that
should be conveniently considered as unique longer chains of
these events. The duration of near 48.5% of stops does not
exceed 60 seconds, whereas 81.5% last less than 5 minutes.
Total stop time due particularly to the four failure types rises
to 107 hours, 72 of which correspond to the mentioned critical
condition. The Unreasoned stops are largely the most frequent
in the dataset, reaching 67% of all stop events and 30% of
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the full stop time. Figure 2 shows the duration of production
processes (a) and unplanned stops (b) aggregated by date. The
eight stop reasons other than Unreasoned stops and Failures
are combined and shown in the picture as Other stops.

IV. EVENT-BASED MODELLING APPROACH

The approach proposed in this paper aims to transform
the above mentioned production and stop data in a series of
timestamped events, using a format that enables to exploit the
application of the pipelines typically implemented in log-based
predictive maintenance modelling. These pipelines include
feature engineering steps in which the learning instances are
generated by processing and aggregating data within a features
window preceding each prediction instant, i.e., the instance
point, subdivided into a number of time windows. Features
are extracted from this time frame by applying strategies
like rolling windows with different aggregation functions and
temporal coverage, identification and counting of patterns,
among others. A label window used to generate the instance
labels is also created from each of those instants. One instance
is formulated for each instance point, which is moved ahead in
time along with the features and label windows by a predefined
time step, in order to generate the full set of training and
testing instances.

The three big steps implemented in this approach and
described in the next subsections are the following:

• Data preprocessing: Events formulation and alignment
• Feature engineering: Instance and label generation
• Machine learning modelling: Binary classification model

training and testing

A. Data Preprocessing

The production and stop records present in the data sources
have start and end timestamps, and in order to transform these
records in a streaming of events, what we have done is to
consider both start and end of the records as two separate
events: Start Production/Stop and End Production/Stop. This
sequence of events, correctly arranged by order of occurrence,
is in fact the proper input data format needed for the future
training and scoring of the model in production using stream-
ing data in real-time. The collected data show that more than
70% of the registered stops occur during production processes,
i.e., while the machine is in operation. This means that a
failure starting after the StartTime and finishing before the
EndTime of a production record splits this process into two
pieces, one previous and the other subsequent to the failure.
In terms of the events formulation depicted above, a situation
like this one gives place to six different events, namely
Start Production, Stop Production, Start Failure, End Failure,
Re-start Production and End Production. Depending on the
number of stops registered during the process, production
records could be splitted in more than just two parts. Figure 3
shows an example of the events generated from the occurrence
of two stops/failures during two production processes.

With the aim of applying this principle to the whole
available dataset, we had to perform several steps of data

(a) Production and stops records

(b) Data alignment and events creation

(c) Sequence of events

Fig. 3: Example of events generation after alignment of records
and splitting of production processes.

preprocessing before, to obtain a clean and consistent stream
of events. In addition, we categorized the stops as those
occurring during or outside the production processes. The
preprocessing steps involved were:

• Chaining of stops: Trains of consecutive short stops of
the same type (StopReason) were permanently joined
into single and longer stop chains of identical type, and
duration given by the sum of the duration of all stop
components.

• Chaining of chains of stops: Consecutive and very close
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Fig. 4: Scheme applied to the generation of the training instances.

chains of stops of identical or different type were tem-
porarily joined in order to avoid the generation of very
short pieces of production records when splitting for
events formulation.

• Categorization of stops: Every stop or stop chain oc-
curring exclusively during a production process, i.e., for
which StartTime (stop) > StartTime (production) and
EndTime (stop) < EndTime (production) was denomi-
nated Stop Type I (inner stops). All remaining stops were
categorized as Stop Type II (outer stops).

• Adjustment of stops EndTime: Given the minute reso-
lution of the stop timestamps, there are many records
with equal StartTime and also with identical StartTime
and EndTime (around 2k), and in all cases the time gap
between timestamps does not reflect the real duration
of the stops. To solve this, we assumed the registered
StartTime of all stops records as correct and adjusted the
EndTime as StartTime + Duration. Despite this leads to
slight inaccuracies regarding the exact time of occurrence
of stop events, it contributes to generate a more consistent
dataset.

• Partial overlapping between production and stop records:
StartTime and/or EndTime timestamps of production
records were slightly shifted in the cases of the frequently
observed short overlapping with previous or subsequent
stop records (Type II). The choice of shifting the produc-
tion records was supported by the fact that registration of
the start and end times of these processes is carried out
manually by the operators, which means that timestamps
are prone to involuntary errors and less reliable, contrarily
to the stop records stored automatically by the PLC.

After all these operations, we finally proceeded with the
generation of the events. The algorithm roughly consists of
the following steps:

• Integrate Production and Stop data
• Detect Type I stops, split Production records and label

events
• Label remaining events

• Unchain the temporary stop chains
• Separate instances in start and end events and relabel

accordingly

B. Feature engineering

The decomposition and sorting of all production and stops
processes following the actions explained above give place
to a chronological sequence of discrete events. This dataset
is substantially a time series of all events occurring in the
bleaching machine, including the target failure event that
we plan to predict by training a machine learning model.
The dataset contains clean and ordered data, but it is not
suitable yet for training a binary classification model for failure
prediction. The next step in the pipeline is the generation of
the training instances, each one containing a set of features
and a label, through adequate feature engineering techniques.
Figure 4 shows the scheme used for instances generation,
in line with those presented in [16]–[18]. The instances are
formulated at specific points in time, separated by fixed time
intervals determined by the size of the time windows in which
the features window and the label window are subdivided.
The point in time associated to an instance is referred to as
an instance point, and the features window is a time interval
set before it, that finishes at the instance point and has an
extension of N time windows. All the events occurring within
the features window of an instance point are involved into
the determination of the values of the features associated to
that instance. In this work we applied the counting of the
events to calculate the feature values, but other aggregation
functions, statistics and strategies can be used to enrich the
feature spectrum. The concept of the feature window imple-
mented in this way is clearly the same of the rolling window
commonly applied in time series analytics. All the unique
events generated in the Data preprocessing step are converted
in features of the learning dataset when following this method.
As showed in the figure, multiple features windows can be
used for each instance point, with different sizes in terms of
time windows, which in turn multiplies the number of features
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Fig. 5: Steps implemented in the present event-based approach for predictive maintenance.

created. The label window is set from the instance point and
has a length of M time windows. The presence of at least
one event of the targeted failure inside the label window of
an instance point dictates the assignment of a positive label
to that instance (class 1), otherwise of a negative one (class
0). It is worth mentioning that within the features window,
the target failure events are treated identically to the rest of
the stops. Once the features and label are generated and an
instance is created, the instance point and the windows are
moved ahead by a step of one time window in order to generate
the next learning instance. By iterating through this process,
we construct the entire dataset for the subsequent training of
the failure prediction model.

C. Machine Learning modelling

The tool selected to conduct the modelling experiments is
LightGBM [25], a gradient boosting decision tree framework
that supports different algorithms, i.e., regression, classifi-
cation and ranking. We applied this framework for binary
classification, in order to predict the RUL of the machine
under study considering the two classes (0 and 1) introduced
in the previous subsection. A prediction of 1 raised by the
model indicates the prediction of occurrence of the targeted
failure event in the next period of time given by the duration
of the label window, starting from the current instance point.
LightGBM is a state-of-the-art framework and has demon-
strated to be faster and more robust with respect to other
tree-based algorithms, enabling explainability and distributed
computation.

V. RESULTS

All the steps outlined in Section IV are graphically summa-
rized in Figure 5. We applied this approach to the production
and stops data of the bleaching machine, described in Section
III B. Having 4 production processes and 17 stop reasons,
and considering that up to four events can be generated from
every production and stop record (Start, Stop, Re-start, End
for production and Start Type I, End Type I, Start Type II,
End Type II for stops), we managed to formulate a total of 80
events from the integrated dataset. The size of the events table

is independent of the number of the different events created,
and it is around 16k records. On the other hand, each event
represents one feature within each features window used to
construct the training dataset. Anticipating a time window size
of 1 hour and the setting of 3 features windows to proceed
with the feature extraction process, a training dataset of around
3k instances with 240 features would be obtained. To prevent
dimensionality issues, we decided to reduce the number of
possible distinct events so as to get a larger ratio between
the training dataset size and the number of dimensions. To
do this we mapped the processes and stops into 9 groups, as
shown in Table I, and joined the Type I and Type II stop
categories, to finally reach a total of 20 features. Despite
knowing their importance in log-based approaches, a thorough
implementation of feature selection techniques was not in the
scope of this first version of the work.

The parameters of the feature extraction scheme selected to
conduct the experiments are the following:

• Time windows size = 1 hour
• Number of features windows = 3
• Sizes of features windows (N) = 12, 24, 36 time windows
• Size of label window (M) = 12 time windows
The size of the time windows is the parameter that defines

the quantity of instances composing the ultimate dataset that is
used to train and test the model. A size of 1 hour is reasonable
given the typical duration of the production processes and the
frequency of occurrence of the unplanned stops and failures.
Considering the parameters detailed above, the final dataset
consists of 3161 records, 60 features and the label. The event
selected as the target failure to construct the label is the Start
Mechanical Failure, whose relevance was highlighted in Sec-
tion III A. The resulting ratio between classes is approximately
1:5, being the minority class the positive one, i.e., the class
indicating the occurrence of at least one Start Mechanical
Failure event in the next 12 hours from an instance point.
Although a slight imbalance between classes is observed, it
is not large enough as to consider the problem a severely
imbalanced classification.

The LightGBM binary classifier was trained and evaluated
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TABLE I: Mapping of production and stop records into groups.

Process or stop reason Group
Bleaching, Bleaching+Emulsion, Repairment, Washing Production
Planned maintenance, Cleaning, No production, Holiday Planned
Electrical failure, Power failure Electrical/Power Failure
Fabric construction changing, Water changing, Recipe change, Color OK Change
Fabric wrapped around a cylinder, Fabric rupture, Refreshing Stitching Fabric issue
Unreasoned stops Unreasoned stops
Waiting for batch frame trolley Waiting for batch frame trolley
Mechanical Failure Mechanical Failure
Electronic failure Electronic failure

Fig. 6: Confusion matrix.

by applying cross-validation with 5 folds. Hyperparameter
tuning was conducted using a grid search to find the model
with better performance. Due to the observed class imbalance,
the macro average of Area Under Receiver Operating Char-
acteristic Curve (AUC), Precision and Recall metrics were
calculated in order to weight equally both the minority and
majority classes. The following are the obtained values:

• Accuracy = 0.962
• AUC(macro) = 0.987
• Precision(macro) = 0.948
• Recall(macro) = 0.918
As can be corroborated the metrics are very encouraging.

When considering only the minority class, the Recall metric
falls to 0.85. This is due to the non-negligible number of false
negatives predicted by the model, as can be noticed from the
confusion matrix shown in Figure 6. There are 474 and 83
positive samples predicted correctly and wrongly, respectively.
There is room to improve even more the classification quality,
for example, by deepening the search of the optimal hyper-
parameters of the model and conducting experiments with
different classificators.

VI. CONCLUSION AND FUTURE WORK

Knowing the principles of the log-based approaches for
predictive maintenance, we decided to transform the available
production and stops data from a textile machine in a large se-
quence of events having a similar format to the events typically
extracted from log files, then apply the proper preprocessing,
feature engineering and labelling steps, and finally train a

supervised machine learning classificator to predict the time
to mechanical failure of the equipment.

The preliminary results evidence the potentiality of the
proposed method for the predictive maintenance of industrial
machines, and its extreme utility in scenarios in which the
lack of collections of sensor measurements and log files pre-
vents the application of more traditional data-driven schemes.
Despite the approach has been proven to be effective in a
particular use case, we consider that the application can be
extended to a wide variety of manufacturing sectors in which
the predictive maintenance of the equipment is known to
deliver a high business impact.

The work also shows the high extra value that the production
and failure data of a machine might provide to a manufacturer.
These data are commonly available in industrial plants at
all scales, and the study contributes to highlight the reasons
because data are considered so valuable assets in the era of
Industry 4.0.

It is worth mentioning that the unavailability of detailed
and quality maintenance data regarding repairing, recondi-
tioning or replacement of specific mechanical components
of the bleaching machine, addressed the study to the RUL
prediction of the roller bearings as a whole subsystem. Based
on their experience, the domain experts and senior operators
can exploit these predictions to elucidate what are the most
probable roller bearings to fail when an alert is raised by the
model.

The future work will be focused not only on the im-
provement of the prediction performance of the model by
hyperparameters tuning and feature selection, but also on
the exploration of the incidence of different combinations of
parameters in the feature extraction method, namely the size
of the time windows, the number and size of the features
windows and the size of the label window. In addition,
efforts will be addressed to investigate other aggregations and
featuring strategies to apply to the events enclosed into the
features windows.
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