
A Comparison of Machine-Learned Survival Models for Predicting Tenure from

Unstructured Résumés

Corné de Ruijt

Faculty of Science
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands
Email: c.a.m.de.ruijt@vu.nl

Vladimer Kobayashi

Faculty of Economics and Business
University of Amsterdam

Amsterdam, the Netherlands
Email: v.kobayashi@uva.nl

Sandjai Bhulai

Faculty of Science
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

Email: s.bhulai@vu.nl

Abstract—This paper explores to what extent job seekers’
future job tenures can be predicted using only the information
contained in their own résumés. Here, job tenure is interpreted
as the time spent in a single job occupation. To do so, we compare
the performance of several machine-learned survival models in
terms of multiple error measures, including the Brier score and
the C-index. The results suggest that ensemble methods, such
as random survival forest and Cox boosting, work well for this
purpose. We further find that in particular time-related features,
such as the time a person has already worked in a particular
field, are predictive when predicting the person’s future tenure.
However, the results also show that this prediction task is difficult.
There is substantial subjectivity in both how job seekers define
their jobs, and at what level of granularity they indicate their
job tenures. As a result, the best performing models (survival
ensemble methods) only perform marginally better than the used
benchmark (a Kaplan-Meier estimate).

Keywords—Human resource management; turnover prediction;
résumé mining; machine-learned survival models; job churn.

I. INTRODUCTION

Given the high Internet penetration of job seekers, one
could expect it to become easier for recruiters to find and
select potential candidates. The reality, however, sometimes
turns out to be different. Early studies on online recruitment
(also known as e-recruitment) reported profitable benefits
for recruiters, including an increased speed of hiring, or an
improved quality applicants. However, they also reported the
problem of having to sift through a (sometimes) overwhelming
number of candidates [1].

Many of the methods proposed in the literature that assist in
matching job seekers and vacancies online, use the semantic
overlap between the résumé and the vacancy as a proxy for
the quality of this match [2]. This, however, neglects other
types of information contained in résumés that could provide
information about the quality of the match. In this paper, we
will instead use the temporal data often contained in résumés.
Most job seekers indicate their job history in their résumé,
in which their previous occupations are listed, along with a
start and end date for each job. Our aim is to predict job
tenures, defined as the time difference between these start and
end dates, using other data that is contained in the résumé.

This data includes features such as the type of job, education
history, and the number of years of experience.

Predicting future job tenure from résumés is not a new
problem. In fact, it has been the subject of many studies in
personnel psychology in the last few decades [3, Ch. 12].
The problem we consider, however, differs from these studies
in two ways: 1) we automatize the processes of extracting
features from the résumé, both using a pre-trained résumé
parser, and by using word2vec. 2) We focus on methods that
emphasize on making accurate predictions, mostly by incor-
porating a large number of second or larger order interaction
terms, rather than models that emphasize on explanations.

This paper has the following structure. Section II discusses
related work. Sections III-A and III-B discuss properties of the
résumé dataset, with a focus on properties of such unstructured
datasets that may lead to biased results, and it considers
how to avoid such bias. Section III-C introduces the survival
models used in this study, and discusses how to measure the
error of these models. Section IV presents the outcomes of
the survival model comparison from different perspectives.
Section V draws a final conclusion and provides directions
for further research.

II. RELATED WORK

With the digitization of résumés, the automatic extraction
of features from (manually written) résumés has become more
common practice (e.g., [4], [5]). Apart from its application
in job or candidate search engines, such features can also
be used in job or candidate recommender systems. In both
applications, the semantic overlap between the résumé and
vacancy is often used as a proxy to evaluate how well the job
seeker and vacancy match [2]. We will refer to the problem of
matching job seekers and vacancies as job seeker - vacancy
matching. Hence, since most literature considers the problem
from a semantic perspective, we deliberately focused on non-
semantic methods. In particular, we consider the potential of
predicting how long someone will stay in a new job position,
given that the candidate would be hired for the position, as a
measure for the quality of the match.

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

Few studies consider the sequential and time-based elements
in a résumé, which in particular present themselves in the job
history section. In résumés, it is common to write down one’s
previous jobs in chronological order, and indicate the start and
end date of each job. This information could be used to infer a
job seeker’s most likely next job, given a sequence of previous
jobs. Such perspective to job seeker - vacancy matching has
been considered by various contributions in the literature [6]–
[9]. Li et al. [9] compared several sequential models for
this task, where in particular a Long Short-Term Memory
(LSTM) recurrent neural network worked well, especially
when additional contextual data was included in the model.

From the start and end dates, one could also infer how long
job seekers will be likely to remain in their jobs. For this
problem, survival analysis has been a frequently used method
in personnel psychology, in particular in the form of Cox
regression [10]. Survival models often allow for censored data,
making these models attractive for studying turnover. I.e., job
seekers included in a study might still be “alive”, or in other
words still occupying the job under study, at the end of the
study. Even though there has been a substantial increase in
the number of studies applying machine learning methods for
predicting employee turnover, only a few consider combining
machine learning methods with survival analysis [11].

Wang et al. [12] propose a survival model that is fitted
using a Bayesian model. The Bayesian model was chosen to
cope with the high dispersion in the number of observations
for a job transition from some job a to job b. I.e., most
transitions have little to no observations, whereas some self-
transitions may be very frequent. The authors show that if one
is indifferent about to which job the job seeker switches, and
only considers how long the job was occupied, the Bayesian
model outperforms a model ignoring covariates in terms of
perplexity. Though, this difference between the with/without
covariates models evaporated when considering more passive
job seekers.

Li et al. [8] discretize time and predict a value proportional
to the survival function using a squared loss function. As the
predicted values are only proportional to the probability of
remaining in a job, the study considers the correct order of
turnover events, rather than predicting tenure. The method
outperformed typical parametric or semi-parametric survival
methods such as a Cox regression or the log-logistic model.

III. METHODS

A. Feature extraction from résumés

The data used in this study was extracted from résumés,
which were uploaded to the Dutch job board Gus [13] be-
tween 2005-01-01 and 2016-10-17. The jobs to which these
applicants applied were temporary jobs. In total, the dataset
contains 50,000 unique job seekers, which we split into a
training, validation and test set according to a 70/10/20 split.
I.e., all jobs from one job seeker are either completely in the
training, test, or validation set.

In total, the dataset encompasses 131,059 unique jobs. Note
that the start and end dates of these jobs may be outside of

the 2005-2016 range. E.g., if the job seeker applied in 2005,
he/she will be likely to have jobs in his/her resume before
2005. To avoid data dredging, all statistics presented in this
section are based on the training set.

Since the résumés are plain text documents, we used tech-
nology from Textkernel [14] to extract information from the
text. Here, we make use of a common convention in résumés
to include job history in a table, where each record includes a
(textual) description of the job, and the start and end date of
the job. From this data, we extracted the variables transition
lustrum (the year in which job seeker j started job h, grouped
into clusters of 5 years), order (the number of previous jobs job
seeker j had occupied just after starting job h), and expdays
(the total observed work experience of candidate j, just before
the start of job h, in days).

We also extracted the edu lvl (the candidate’s highest ed-
ucation level, mapped to the Dutch education system), age
(candidate’s age at the start of the job), gender, and the job
description given by the candidate. The job description was
mapped to a vector space in two ways. The first approach
used a classification model from Textkernel, which maps the
job to a three-layer hierarchical classification (of which the
upper two were used as covariates) and classifies the industry
of the job.

We also trained a word2vec model on the candidates’
previous job description. Before training the word2vec model,
we removed (Dutch) stop words and stemmed the words using
the Snowball stemmer [15]. We used a vocabulary of 20,000
unique words having the largest tf-idf values. We used negative
sampling with a sampling factor of 10−5, from which word
pairs were constructed using skip grams with a window size
of 3, as larger window sizes did not improve the results.

The word2vec model was trained using Keras with a Ten-
sorflow backend [16], [17]. We used an embedding size of 64;
100 training epochs; a batch size of 65,536; an initial learning
rate of 0.1; and we used rmsprop [18] to update the learning
rate in subsequent epochs. To obtain document vectors from
word vectors, we computed a weighted average over the word
vectors for each job description. As weights we used the tf-idf
value of each word. We did experiment with different epochs,
batch sizes, and initial learning rates; these did not improve
the results.

B. Computing tenure from parsed résumé data

From analyzing the job seekers’ start and end dates, one can
readily observe that job seekers tend to indicate the start and
end date of each job at different levels of granularity. Some
indicate the start and end dates on a monthly level, whereas
the majority indicate these dates on a yearly level. In case
candidates indicate their start and end dates on a yearly level,
we considered this a case of interval-censored data. Besides the
interval censoring, the start and end dates also may incorporate
other types of censoring.

The survival models we will introduce in Section III-C only
cope with right censoring. Hence, to cope with other types of
censoring in the tenures, the following procedure was applied.

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

All observations with Complete (no start and end date; 1.62%)
and Left FJ (no start date, and the job is the First Job of
the candidate; 0.03%) censoring were removed. The former
were removed because they are non-informative. The latter
were removed because these only encompass a small number
of jobs. Year interval (44.18%) indicates jobs with rounded
start and/or end dates to entire years. If this was the case, a
random number of months were added (subtracted) to the start
(end) date, following the monthly turnover distribution. Since
the observed turnover in the months January and December
was inflated, due to the interval censoring, we did not use
the observed turnover frequencies in these months to estimate
the monthly turnover distribution. Instead, we estimated the
turnover probability in these months by interpolation, using a
cubic spline over the remaining months.

Right censoring, Not Last Job (Right NLJ; 10.3%), and
Right censoring Last Job (Right LJ; 5.87%) indicate cases
of right censoring. In case of Right NLJ, the start date of the
next job was taken as end date of the job. In case this start
date was again year interval-censored, the job was relabeled
as year interval-censored and processed accordingly. Right LJ
were treated as normal cases of right censoring, using the date
of application as the date of censoring. 38% of all jobs did not
have any type of censoring, hence remained in the dataset as-
is. Although theoretically other types of censoring could have
occurred (e.g., Left NFJ), these did not occur in the dataset.

Besides removing and correcting censored data, we also
removed observations having occupations with tenures last-
ing longer than 50 years, occupations that started before
the candidate’s 18th birthday, occupations that started after
the candidate’s 67th birthday, and observations with negative
tenures. To reduce the number of unique values for categorical
attributes, we reassigned categorical values with fewer than 30
observations to a category “other”. Missing data was imputed
using adoptive tree imputation, as described by Ishwaran et al.
[19], and which is implemented in the RandomForestSRC
R package [20]. To fit this random forest model, the package’s
default parameters were used.

C. Survival estimation methods

1) Notation: Before discussing the survival models, we
require some notation. Let Ti be the observed job tenure of
job i = 1, . . . , I , which is computed following the procedure
described in Section III-B. Although we corrected for different
types of censoring, Ti may still be right-censored. Whether this
is the case, is indicated by δi (1 if not censored, 0 otherwise).

Furthermore, let T̃i be the full job tenure. That is, the
job tenure we would have observed if no censoring had
occurred. We are interested in estimating the survival function
Si(t) = P(T̃i > t|xi). Here, xi ∈ RP is some covariate vector.
We assume independence between T̃i and T̃j , given covariate
vectors xi and xj . I.e., P(T̃i, T̃j |xi,xj) = P(T̃i|xi)P(T̃j |xj),
for all pairs (i, j): i 6= j. Furthermore, we assume T̃i to
be independent of the censoring time. Note that, due to
right censoring, T̃i may not be completely observed. Hence,
survival estimation methods use the (possibly right-censored)

job tenure Ti, and censoring indicator δi, to estimate the
uncensored survival distribution.

To estimate the survival function, we will frequently use
the cumulative hazard function Λi(t) =

∫ t
τ=0

λi(τ)dτ with
λi(t) = lim∆t→0 P(t ≤ T̃i ≤ t + ∆t|T̃i > t,xi) being the
hazard rate. From the cumulative hazard rate, the survival
function can directly be derived [21, p. 16].

Some of the models that we consider assume discrete
time. To discretize time, we bin time intervals into bins
r = 1, . . . , R, each having equal length ρ. Since the number
of jobs having tenures longer than 5 years was sparse, we
took R = 5. The time interval of period r is denoted by
ur = [(1 − r)ρ, rρ). To balance between sparsity within the
bins (which happens for small ρ), and the precision of the
estimate, we selected ρ = 3 months.

2) Benchmark models: All machine-learned survival mod-
els presented in this paper were benchmarked against three
benchmark methods: 1) a Kaplan-Meier (KM) estimate [21,
Ch. 4], 2) a Cox proportional hazard model with an elastic
net penalty [22] (we named this Cox Lasso, since using a
Lasso penalty produced the best results). The baseline hazard
was estimated using the Brewlow estimator [23]. 3) A binary
survival tree (Surv. tree), using the log-rank splitting rule [19].

3) Ensemble survival models: A common approach to
improve the quality of predictions from weak learners is by
using model ensembles. In this study, we considered two
approaches: the Random Survival Forest (RSF) introduced by
[19], and a Cox boosting approach (GBM) [24].

A Random Survival Forest [19] for the most part employs
the same procedure as the original random forest algorithm
by Breiman [25]. Though, since we wish to predict a survival
function, there are two main differences. First, as with the
binary survival tree, the log-rank splitting rule is used to
recursively branch the observations in the tree. Second, for
each leaf node, the cumulative hazard rate is estimated using
the Nelson-Aalen estimator, based on the observations in the
leaf node. An estimate of the cumulative hazard rate for some
time t and covariate vector x is then obtained by computing
the unweighted average over all cumulative hazard rates at
time t, for leaf nodes subject to x.

To employ boosting, we used the boosting procedure by
Friedman [26]. As the method employs Cox’s partial likeli-
hood, the method does not provide an estimate of the baseline
hazard. To find the baseline hazard, the same procedure as
for the Cox model was applied. That is, we use the Breslow
estimator to estimate the baseline hazard, though we now used
the output from the boosting model instead of the linear link
function.

4) Neural survival models:
a) Feedforward neural survival models: To model neural

survival models, we used a similar approach as Gensheimer &
Narasimhan [27]. This study models the neural survival model
as a feedforward neural network, only adjusting the output
layer to produce a survival curve. To rewrite the problem, let
γi,r = 1 if Ti ∈ ur, δi = 1 (zero otherwise), and vi,r = 1
if Ti < (r − 1)ρ (zero otherwise). The output layer of the

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

neural network is modeled in two ways. In the flexible variant
(NN-Flex), a simple feedforward neural network is used with
one or multiple hidden layers, applying a sigmoid activation
to each output r ∈ {1, . . . , R} to end up with estimates of the
hazard rate.

The proportional hazard (NN-PH) variant uses the propor-
tional hazard assumption. I.e., it assumes the hazard rate has
the form λi(t) = λ0(t) exp(xTi β), β ∈ RP being a weight
vector. Following [21, p. 43], when assuming intrinsically
discrete time, the (now also discrete) estimated hazard rate
λ̂i(r) can be written as

λ̂i(r) =
1

1 + exp(αi(r) + zi)
, (1)

with zi and α(r) being outputs of different feedforward neural
networks. Here, αi(r) has as input the covariate vector xi,
followed by one or multiple hidden layers. The variable zi is
obtained by a weighted average over the elements in the last
hidden layer. Note that (1) is a sigmoid activation function,
which simplifies the implementation in, for example, Keras.

For both the NN-PH and NN-Flex approach, we find a loss
function in the form of the binary cross-entropy

L =

I∑
i=1

R∑
r=1

[γi,r log(λ̂i(r)) + (1− γi,r) log(1− λ̂i(r)vi,r)].

(2)
Note that when rρ > Ti and δi = 0, we have yi,r = 0 and
λ̂i(r) = 0. Therefore, these predictions do not contribute to
the log-likelihood.

b) Recurrent neural networks: In addition to the two
feedforward models, we also considered recurrent neural net-
works. Here, each output corresponds with one of the time
periods r = 1, . . . , R. We considered a standard recurrent
neural network with either a Gated Recurrent Unit (NN-
GRU) [28] or a Long Short-Term Memory (NN-LSTM) unit
[29]. As we do not include time-varying covariates, only at
r = 1 an input vector is inserted, whereas at the other time
periods a vector containing only zeros is fed to the net-
work. Also here we multiply (element-wise) the output vector
(λ̂i(1), . . . , λ̂i(R)) by the censoring vector (vi,1, . . . , vi,R) to
exclude observations after censoring.

D. Model evaluation

To evaluate the survival models, we used the Brier score
to assess the accuracy of the survival curve [30], and the C-
index [31] to assess the accuracy in correctly predicting the
order of turnover. Since the number of observations at some
time points was quite sparse, we decided not to use IPCW
weights [32].

Since the C-index assesses the correct order of job churn
at the start of both jobs, and it considers any job pair,
even those unrelated, we also considered a somewhat altered
C-index. This altered C-index, which we will refer to as
the Integrated Conditional Concordance Index (ICCI), has
two adjustments compared to the C-index. First, instead of
assessing the correct order of survival estimates at some time t,

TABLE I. HYPERPARAMETER GRID SEARCH

Model Hyperparameters Best param.
Cox-PH with α ∈ {0 (Ridge), 0.5, 1 (Lasso)} α∗ = 1 (Lasso),
elasticnet penalty penalty weight as in [33] penalty∗ = 0.0107
Survival tree term. node size = 6 NA
Random survival trees ∈ {100, 500, 1000}, trees∗ = 500,
forest term. node size = 6, depth∗ = 12

depth ∈ {6, 12},
random split points = 5,
tree feature sample size =

√
P

Cox boosting trees ∈ {1000, 2500, 5000}, trees∗ = 2, 500,
shrinkage ∈ {0.001, 0.05, 0.01, 0.1} shrinkage∗ = 0.01
depth ∈ {3, 6} depth∗ = 3

Neural survival hidden units ∈ {64, 128}, hidden units Flex ∗ = 128
non-sequential hidden layers = 2, hidden units PH ∗ = 64

epochs = 100, learning rate Flex∗ = 0.01
batch size = 65, 536, learning rate PH∗ = 0.001
learning rate ∈ {0.001, 0.01, 0.1}

Neural survival time periods = 21, hidden layers GRU∗ = 16
sequential hidden layers ∈ {1, 4, 16}, hidden layers LSTM∗ = 16

epochs = 100, learning rate GRU∗ = 0.001
batch size = 9, 292, learning rate LSTM∗ = 0.001
learning rate ∈ {0.001, 0.01, 0.1},
drop out = 0.1

it assesses the correct order of the expected remaining survival
times, conditioned on survival up until times ti, tj for jobs
i and j respectively. Second, we only sample over pairs in
the same (function group, transitionlustrum) bin. Since the
number of observations in each bin differs, we use three
types of sampling: 1) stratified sampling, 2) sampling the
same number of observations from each bin, 3) sampling
random pairs, ignoring the bins. As the name ICCI suggest,
we integrate the conditional concordance indices over time.

IV. RESULTS

A. Overall performance

Table I gives an overview of the grid search we applied
to the validation set to find appropriate values for the models’
hyperparameters. The obtained best parameter values are given
in the last column of Table I. Our dataset contains some vari-
ables that could introduce unwanted discrimination in terms of
gender and age. Instead of removing these attributes upfront,
we included them while training the model, but imputed them
by their overall average value (in case of categorical values, we
imputed after dummification) during validation. However, it
should be noted that this procedure was only partially effective,
due to the many missing values for both year of birthlustrum
and gender.

Figure 1 shows the resulting Brier and C-index on the test
set, whereas Table II shows the integrated and normalized
scores. Since the Kaplan-Meier estimate is the model with
the least complexity (i.e., it does not take into account any
covariates), the results of the KM model are emphasized in
Figure 1. Gradient boosted trees and a random survival forest
produce the best results, with a slight preference for GBM.
Interestingly, the neural models and the Cox model barely
outperform the Kaplan-Meier estimate both in terms of the
Brier score and C-index. The single survival tree shows a
trade-off between the Brier score and C-index. For t < 3
it shows reasonable performance in terms of the C-index, but
the results are poor in terms of the Brier score.

The good performance of random survival forest and GBM
seems to diminish when we include conditional survival times,
as shown in Table II. Although in absolute terms the ICCI for

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

GBM and random survival forest are somewhat comparable to
their C-index, the values are also closer to the results of a KM-
estimator. Furthermore, taking different kinds of samples only
had a marginal impact on the ICCI. Hence, when predicting
the correct order, the advantage of using more complex models
seems to diminish.

Brier score C-index

0 1 2 3 4 5 0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

Time (years)

Model
NN-Flex
GBM
Cox Lasso

NN-GRU
KM
RSF

Surv. tree

Figure 1. Brier score and C-index over time.

TABLE II. INTEGRATED BRIER SCORE, C-INDEX AND ICCI

ICCI
Integrated Integrated ICCI eq. per ICCI

Model Brier C-index stratified group random
GBM 0.16 0.69 0.66 0.66 0.67
RSF 0.17 0.68 0.65 0.65 0.66
NN-Flex 0.19 0.51 0.64 0.64 0.63
NN-PH 0.18 0.51 0.64 0.65 0.63
NN-LSTM 0.18 0.51 0.63 0.64 0.64
NN-GRU 0.18 0.50 0.63 0.62 0.63
KM 0.18 0.50 0.64 0.64 0.64
Cox Lasso 0.19 0.50 0.64 0.65 0.63
Surv. tree 0.30 0.53 0.56 0.55 0.54

B. Performance on sub-datasets

Next, we split the results per function group in order to
study differences in predictive ability for different job types.
As GBM had the best overall score (Table II), we used this
model for further inference. The results over the five largest
job types in the dataset are shown in Figure 2. As we may
have expected from the Brier scores in Figure 1, which are
somewhat similar to those of a Kaplan-Meier estimate, the
fitted survival curves for the different job types are also rather
similar.

We also considered the effect of excluding certain attributes
from the model. To do so, we construct four sub-datasets:
1) a dataset in which age and gender were not imputed,
2) a dataset without the word2vec word embedding, 3) a
dataset in which we exclude attributes derived from the job
classifier (i.e., excluding function class, function group, sec-
tor, expdaysfunctiongroup, and orderperfunctiongroup), and 4)
a dataset including only features related to time-dependent
variables (i.e., including transitionlustrum, order, expdays,
month of startdate, orderperfunctiongroup, and expdaysfunc-
tiongroup). A comparison between the performance of GBM
on these datasets and the full dataset is shown in Figure

Survival curve Brier score C-index

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

Time (years)

Administrative
Management

Warehouse
Production

Commerce

Figure 2. Results over the 5 most common job types.

3. Especially inclusion of the time variables caused a sub-
stantial improvement in both the Brier sore and C-index.
Inclusion/exclusion of other types of attributes had a negligible
effect.

Brier score C-index

0 1 2 3 4 5 0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

Time (years)

All
No word2vec

No time var.
No job classifier

Time var. only

Figure 3. Scores on other datasets.

V. CONCLUSION AND FUTURE WORK

From our comparison of machine-learned survival models,
we find that especially tree-based ensembles, such as a ran-
dom survival forest and Gradient Boosting Machines, work
well to predict job tenure from unstructured résumés. They
outperformed benchmark models in terms of the Brier score
and C-index. These benchmarks included a Kaplan-Meier
estimator and Cox regression, but also more complex models
such as neural survival models and recurrent neural networks.
Especially the importance of time-related variables in these
models is interesting. Job - vacancy matching is often done
using semantic overlap, e.g., comparing skill overlap between
the vacancy and job. Our results suggest that including time-
related variables in these matching algorithms may improve
their performance.

Although tree-based ensembles outperformed benchmark
models, still the prediction problem remains difficult. The
difference with benchmark models are relatively small, and
if one takes into account conditional survival times, and
compares more similar job pairs, the error scores between the
tree-based ensembles and benchmark models become more
similar.

This limited performance may be explained in several
ways. First, it should be acknowledged that predicting job

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

tenure from résumés is a difficult prediction problem. Previous
work (using mostly Cox-PH models [10]) finds only weak
correlations between predictors and tenure, (r2 between 0.33
and 0.37) [3, p. 261]. Second, as illustrated in this study,
résumés come with considerable fuzziness. Turnover itself
may be indicated at different levels of granularity. Missing
data is a considerable problem, as the résumé parser has to deal
with a variety of formats. Also, job seekers may have different
definitions of a job. E.g., one might define two positions at the
same employer as one job, whereas another will consider these
as two jobs. Naturally, such fuzziness complicates interpreting
models derived from résumés.

Given these results, we are in particular interested in two
directions for further work. Given the fuzziness of résumé data,
an interesting direction would be to study whether survival
analysis on résumés could benefit from models trained in
different contexts, i.e., transfer learning. One could think of
applying language models trained on larger corpora. But also
training survival models on corporate turnover data, for which
we expect to have more precise measurements, would be an
interesting direction.

A second direction is with regards to the practical im-
plications of predicting tenure from résumés for candidate
recommendation. It would be interesting to consider how
these models compare with semantic matching methods, using
more application-directed error scores, such as NDCG. From
a practical perspective, further research could also consider
whether the model benefits from asking the user for additional
data when uploading one’s résumé.

VI. ACKNOWLEDGEMENTS

We would like to thank Ton Sluiter and USG People for their
collaboration and guidance during the course of this work.

REFERENCES

[1] F. Suvankulov, “Job search on the internet, e-recruitment, and labor
market outcomes,” Ph.D. dissertation, Pardee RAND Graduate School,
2010.

[2] M. N. Freire and L. N. de Castro, “e-recruitment recommender systems:
a systematic review,” Knowledge and Information Systems, pp. 1–20,
2020.

[3] W. F. Cascio, Applied psychology in human resource management.
Prentice-Hall, 1998.

[4] K. Yu, G. Guan, and M. Zhou, “Resume information extraction with
cascaded hybrid model,” in Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics. Association for Computa-
tional Linguistics, 2005, pp. 499–506.

[5] S. K. Kopparapu, “Automatic extraction of usable information from
unstructured resumes to aid search,” in 2010 IEEE International Con-
ference on Progress in Informatics and Computing, vol. 1. IEEE, 2010,
pp. 99–103.

[6] I. Paparrizos, B. B. Cambazoglu, and A. Gionis, “Machine learned
job recommendation,” in Proceedings of the fifth ACM conference on
Recommender systems. ACM, 2011, pp. 325–328.

[7] M. Jiang, Y. Fang, H. Xie, J. Chong, and M. Meng, “User click
prediction for personalized job recommendation,” World Wide Web,
vol. 22, no. 1, pp. 325–345, 2019.

[8] H. Li, Y. Ge, H. Zhu, H. Xiong, and H. Zhao, “Prospecting the career
development of talents: A survival analysis perspective,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017, pp. 917–925.

[9] L. Li, H. Jing, H. Tong, J. Yang, Q. He, and B.-C. Chen, “NEMO:
Next career move prediction with contextual embedding,” in Proceedings
of the 26th International Conference on World Wide Web Companion.
International World Wide Web Conferences Steering Committee, 2017,
pp. 505–513.

[10] P. W. Hom, T. W. Lee, J. D. Shaw, and J. P. Hausknecht, “One hundred
years of employee turnover theory and research.” Journal of Applied
Psychology, vol. 102, no. 3, pp. 530–545, 2017.

[11] S. Strohmeier and F. Piazza, “Domain driven data mining in human
resource management: A review of current research,” Expert Systems
with Applications, vol. 40, no. 7, pp. 2410–2420, 2013.

[12] J. Wang, Y. Zhang, C. Posse, and A. Bhasin, “Is it time for a career
switch?” in Proceedings of the 22nd international conference on World
Wide Web. ACM, 2013, pp. 1377–1388.

[13] Gus, Website Gus, 2017, https://www.gus.nl, retrieved: September 2021.
[14] Textkernel, Website Textkernel, 2017, https://www.textkernel.com/, re-

trieved: September 2021.
[15] M. Bouchet-Valat, “Package ‘SnowballC’,” R package version 0.6.0,

https://cran.r-project.org/web/packages/SnowballC/index.html, 2019, re-
trieved: September 2021.

[16] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015, re-
trieved: September 2021.

[17] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th USENIX Symposium on Operating Systems Design and
Implementation, 2016, pp. 265–283.

[18] T. Tieleman and G. Hinton, “Divide the gradient by a running average
of its recent magnitude,” COURSERA: Neural Networks for Machine
Learning, 2012.

[19] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer,
“Random survival forests,” The Annals of Applied Statistics, pp. 841–
860, 2008.

[20] H. Ishwaran and U. B. Kogalur, “Random Forests for Survival,
Regression, and Classification (RF-SRC),” 2018, R package version
2.6.0, https://cran.r-project.org/web/packages/randomForestSRC/index.
html, retrieved: September 2021.

[21] S. P. Jenkins, Survival analysis, 2005, unpublished, https://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.176.7572&rep=rep1&type=pdf,
retrieved: September 9, 2021.

[22] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” Journal of Statistical
Software, vol. 39, no. 5, pp. 1–13, 2011.

[23] D. Lin, “On the Breslow estimator,” Lifetime data analysis, vol. 13,
no. 4, pp. 471–480, 2007.

[24] B. Greenwell, B. Boehmke, and J. Cunningham, “Package ‘gbm’,”
2019, R package version 2.1.5, https://github.com/gbm-developers/gbm,
retrieved: September 2021.

[25] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[26] J. H. Friedman, “Stochastic gradient boosting,” Computational statistics
& data analysis, vol. 38, no. 4, pp. 367–378, 2002.

[27] M. F. Gensheimer and B. Narasimhan, “A scalable discrete-time survival
model for neural networks,” PeerJ, vol. 7:e6257, 2019.

[28] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] U. B. Mogensen, H. Ishwaran, and T. A. Gerds, “Evaluating random
forests for survival analysis using prediction error curves,” Journal of
Statistical Software, vol. 50, no. 11, pp. 1–23, 2012.

[31] P. Wang, Y. Li, and C. K. Reddy, “Machine learning for survival analysis:
A survey,” arXiv preprint arXiv:1708.04649, 2017.

[32] M. Wolbers, P. Blanche, M. T. Koller, J. C. Witteman, and T. A.
Gerds, “Concordance for prognostic models with competing risks,”
Biostatistics, vol. 15, no. 3, pp. 526–539, 2014.

[33] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for Cox’s proportional hazards model via coordinate descent,”
Journal of Statistical Software, vol. 39, no. 5, pp. 1–13, 2011.

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-891-4

DATA ANALYTICS 2021 : The Tenth International Conference on Data Analytics

