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Abstract—The quality of steel is essential for many products.
Unfortunately, during the production process of steel, surface
defects (scratches, inclusions, etc.) occur, resulting in financial
losses for steel producers. Therefore, to find and classify surface
damage at the earliest stage of the steel production process
to take actions for mitigating quality is preferred. Recently,
neural networks have shown the usefulness of image classification.
Prerequisite is a large data set. But to collect a large data set often
takes too long and is too expensive. This paper investigates how to
handle smaller data sets, generate artificial data by augmentation
and evaluate their efficiency. Of special interest is the augmen-
tation of images by Deep Convolutional Generative Adversarial
Networks (DCGANs). A detailed evaluation and comparision with
other augmention techniques show that DCGAN augmentation
outperformed other augmentations in accuracy and loss, but it
is no replacement for a large data set.

Keywords—Convolutional Generative Adversarial Network; Steel
Surface Damage; Augmentation; Image Classification; Neural
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I. INTRODUCTION

In the field of machine learning, image classification using
convolutional neural networks is nowadays one of the most
common approaches. Convolutional neural networks gained
popularity because of their success in many image classifi-
cation problems and the acceptable processing time through
the availability of fair GPU (Graphics Processing Unit) prizes.
Further, the training time has been cut down, by pre-trained
deep convolutional neural networks, such as ResNet [1], which
can classify thousands of images from the public available
imagenet data set [2]. Mostly essential for a good performance
of high accuracy and low loss of neural network results is a
huge data set for the training. If there is no such huge data set,
because of difficulties to collect (e.g., particle collisions), high
expenses (e.g., deep water pictures), or high time consumption
(e.g., seldom events), image augmentation can be the solution.
This is often the case in the steel industry, as companies often
do not find the time to collect enough images to create a
good data set. This may require processes to be interrupted,
which can lead to financial loss. Surface inspection would
be so important for the industry, because it allows material
defects to be detected early and sorted out before further
processing. Typically, through augmentation, a data set can be
expanded by flipping images (horizontally or vertically), apply
random zoom, random rotation or random shear of images, for
example. This method can make a machine learning model

more robust, more accurate, and prevent it from overfitting,
but only, if the data set itself has enough variations. Variations
of images are: intra-class variation, scale variation, view-point
variation, occlusion, illumination, background Clutter [3]. But
often, the data set is too small and a model can become over-
fitted easily. To improve such small data set, a new approach
is taken. The augmentation by Deep Convolutional Generative
Adversarial Network (DCGANs) introduced by Radford et al.
in [4]. DCGANs are a variation of the Generative Adversarial
Networks introduced by Goodfellow in [5], especially for
images.

In the next section (Section: II), related work is discussed.
In Section III, the used steel image data is described and
how the data is prepared for our experiments. Section IV
will give information about the used augmentation methods
of this work. Section V describes the used neural network
architecture, the training method, and the evaluation method.
The results of the experiments are shown in Section VI and in
the last Section VII, a conclusion and an outlook are given.

II. RELATED WORK

The work from Shorten and Khoshgoftaar in [6] deals
with the problem of limited data in data sets. They focus
on data augmentation to enhance the size and quality of
image data sets to get better training results and prevent
overfitting at the same time. They provide an overview of all
the different augmentation techniques. In general, there are
two main branches of augmentation techniques. Basic image
manipulations and deep learning approaches. The basic image
manipulations takes one original image and performs different
manipulations on it, such as geometric transformations or
color space transformations. With these techniques, multiple
images can be generated out of one original image to enhance
the data set. Advanced techniques, based on Deep learning
augmentation make use of Generative Adversarial Networks
(GANs). These augmentation techniques will be used in this
work, especially for generating new images for the NEU-DET
data set [7].

He et al. in [8] developed a defect detection system to
precisely classify and locate the damage on a steel plate
surface. They used the NEU-DET data set [7] which is used
in this work too. A detailed explanation of the data set will
be given in Section III. He et al. used deep learning methods
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and gained a very high classification accuracy of almost 99%.
The difference to our work is the usage of a lightweight neural
network for faster training and predictions. Furthermore, we
only want to use a small part of the data set to simulate
a small data set and evaluate the trained models on the
whole. Our small data set will be enhanced by augmentation
techniques explained by Tschuchnig in [9]. He describes the
process of augmenting images of online accessible celebrity
faces data set with DCGAN networks to improve the training
results. Tschuchnig DCGAN network generates images of
64x64 pixels, which is not sufficient enough for the data set
used in this paper. In this work the size of 128x128 images
will be generated.

In [10], Perez and Wang compared traditional augmentation
techniques with GAN augmentation on the tiny-imagenet-200
data set [2]. The difference to this work is that Perez and
Wang used a GAN to do style transformations instead of
generating new images. They came to the conclusion that it is
not worth, because traditional augmentations performed better
and had three times less computing time than the GAN style
transformation.

In [11], Li et al. data set of six different steel surface
damages is used. They also used a specialized You Only
Look Once (YOLO) network. Their YOLO model can classify
and localize the damage in the steel surface images. In this
work, we try to classify similar defects with a smaller data
set and with a smaller CNN (Convolutional Neural Network)
architecture.

Other works of surface inspection deal not only with steel,
but also with textile processing like Stübl et al. in his work
[12] or with transparent materials like Satorres et al. in [13].
Zamuner and Jacot did it even with watch parts in [14].

III. NORTHEASTERN UNIVERSITY DATA SET

The data set we use for the augmentation experiments and
evaluation is provided from the Northeastern University (NEU)
and public available at [7]. The data set contains images
with six different steel surface damages: Crazing, inclusion,
patches, pitted surface, rolled inscale and scratches. Each of
the six classes contain 300 samples, 1800 images in total. For
doing the augmentation experiments we decreased the data
set and removed three classes of the data set. So we only
had to deal with the three classes, crazing, patches, inclusion,
shown in Figure 1. Further, the data set of 300 images per steel
surface image class is reduced to the range of 10 to 50 (3.3
to 15% of the original data set). This allows to generate 250
to 290 images by augmentation and evaluate the achievable
classification accuracy, either by using the small data set
complemented by augmented images or by using the original
data set. Further detailed explanation about the augmentation
of steel surface images can be found in Section IV.

IV. AUGMENTATIONS

A common problem in machine learning with deep neural
networks are data sets containing too few data samples. The
success of deep learning models are highly dependent on the

(a) Crazing (b) Patches

(c) Inclusion

Fig. 1. Steel Surface Image Classes

underlying data. Consistency, accuracy, and completeness of
data sets are essential for the achievement of good classi-
fication results by neural networks. There are a couple of
challenges to collect image samples for specific domains.
In Roh et al. [15], the challenges are divided into data
improvement of existing data, manual or weak labeling of
data, and the data acquisition. All these challenges result very
often in a weak data set, with too few numbers of samples.
One approach to extend the data set is by using augmentation.
Image augmentation is the technique to increase the size of
the training set without acquiring new images. The basic
augmentation technique is duplicating images with some kind
of variation (e.g., flipping) so the model can learn from more
examples. Ideally, we can augment the image in a way that the
features of an original data set are preserved, but the changes
within the image are enough to add some variation. Usually,
images from the data set are inverted vertically or horizontally,
randomly zoomed, stretched, rotated or noise is added to them.
A newer method to extend a data set is by using DCGAN
Networks to generate new samples. By giving the network
many samples of one class, the network learns class-specific
patterns in images and generate new images out of a noise
vector to expand a given data set. When used correctly in
industry, a lot of time can be saved when filling a huge data
set, thus preventing financial losses.

A. Common Basic Augmentation

As explained in the introduction, a data set with little data
can be expanded by augmentations. The most commonly used
augmentations are image transformations. To do so, we used
the Augmentor Python package available from [16]. With
this technique, we can generate multiple images from every
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image in the original data set. For example, Figure 2 shows
an original image from the class patches with the different
augmentations we used in this work. We use random horizontal
and vertical flipping, random zoom 0-20% and random rotation
in a range from -180 degree to +180 degree. All of these
augmentations are applied with a certain probability to every
image, which means that sometimes all augmentations are
applied and sometimes only a few. With basic augmentations,
such as flipping and rotation, features from the original image
still remain. With augmentation like random zoom, features
get scaled. This is an obstructing factor when analysing the
size of any preexisting damage. But, since it is not relevant in
this case, random zoom is used in this work.

(a) Original Image (b) Flip Left Right

(c) Flip Top Bottom (d) Random Zoom

(e) Random Rotate (f) All Together

Fig. 2. Common Image Augmentations

B. Augmentation with DCGANs
This technique of augmentation can be used to generate

real-looking samples for the data set preserving the features
of the original images. The general architecture of a DCGAN
network can be seen in Figure 3. A GAN consists of two
concatenated models, the Generator and the Discriminator
network. The Generator creates fake images out of an N-
dimensional noise vector. The Discriminator gets real and fake

images as input and determines whether an image is real or
not. The adversarial loss is provided by the Discriminator to
the Generator which then creates images, that are as close
as possible to real images. [17]. The assumption is, that these
new images are expected to be variations of the original image,
preserving the features of the original image, but that has not
been proven yet.

V. EXPERIMENTAL SETUP USING DCGANS FOR
AUGMENTATION

In this section, we explain the neural network architecture,
the training method and the evaluation method.

A. Preparation of the Data Sets

We want to show that a small data set enhanced with
generated samples from a trained DCGAN model performs
better than a model trained without the generated samples. To
do so we took subsets of 10, 20, 30, 40, 50 samples per class
from the full data set of 300 samples per class and trained
DCGAN models for each subset. Each subset requires three
models, one for each class. All models were trained for 3000
epochs. Checkpoints of the generator were saved after 600,
1200, 1800, 2400 epochs and the last. That makes a total
number of 15 models, each on five different checkpoints. In
Figure 4, we can see a generated image for each class from
the best performing generator model. The full result of the
models can be seen in Section VI.

B. DCGAN Network Architecture

A DCGAN consists of a generator and a discriminator. For
both, the architecture of Shrestha was taken from his blog
article in [18]. The dimension of the noise vector which is
the input for the generator is 100 and it generates an image of
128x128 pixels. The generator has 24 layers. The discriminator
has 22 layers and takes 128x128 pixel images as input. The
output of the discriminator is a binary decision if the input
image is a real image or a generated fake image from the
generator.

C. Convolutional Neural Network Description

Since the used data set has been trained successfully on
a deep convolutional neural network by He et al. in [8], the
approach in this work is to train it on a lightweight convolu-
tional neural network shown in Table I, to measure only the
improvements with the different augmentation techniques.

TABLE I. NEURAL NETWORK ARCHITECTURE

LAYER FILTERS OUTPUT SHAPE ACTIVATION
Input Layer - (128, 128, 3) -

Conv2D 64 (128, 128, 64) relu
MaxPooling2D - (64, 64, 64) -

Flatten - 262144 -
Dense 64 (64, 64, 64) relu

Output Layer - 3 softmax

It consists of an input layer that takes images of 128x128
pixels as input, only one convolutional layer with 64 filters
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Fig. 3. Generative Adversarial Network

(a) Crazing (b) Patches

(c) Inclusion

Fig. 4. Augmentation by DCGANs

and Rectified Linear Unit (ReLU) activation function, one
maxpooling layer, one flattening layer, one dense layer with
64 units and ReLU activation function and the output layer
with 3 neurons for class probabilities provided by the softmax
activation function.

D. Training Setup

Every model was trained with the same hyperparameters
as described in the Table I above to compare the results.
The networks were trained with the architecture from I for
100 epochs on the different data sets. As optimizer we used
Adam (short for Adaptive Moment Estimation) which has a
learning rate of 0.001 initially. The loss function is categorical
cross-entropy because multiclass classification is used. Each
epoch took 120 images from the image generator for training

and 30 for validation. While training, the models weights got
saved every time the validation loss improved. If the model
did not improve in at least every 7 epochs, the learning rate
got decreased by the factor of 0.1 to enable fine-tuning of the
weights.

E. Evaluation Setup
After training, the trained models loaded the weights of the

best performing epoch and got evaluated on the whole original
data set, consisting of 300 images per class. The results will
be given in the next section.

VI. EXPERIMENTAL RESULTS

A. Original Data Set

Fig. 5. Original data set

The results from the models trained on the original 300
samples per class data set are given in Figure 5. It can be see
seen that the trained model performed quite well with an ac-
curacy of 98.7% even without augmentations . Additional data
samples of random flips and rotations improved the accuracy
by 1% and the loss from 0.08 to 0.02 with flips and 0.03 with
rotations. The model with random zoom augmentation did not
improve. Most likely the features of the original image are not
preserved by this augmentation method. The model that used
all augmentations together wasn’t as successful, adding image
variations that are too far from the original images.
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B. Neural Networks Trained with Reduced Data Set

The results from the neural network models trained on the
reduced data sets are illustrated at Figures 6 to 10. As

Fig. 6. 10 Samples per Image Class

Fig. 7. 20 Samples per Image Class

Fig. 8. 30 Samples per Image Class

expected, it shows that these models perform much worse than
those from the original data set. The models from 10 and 20
samples per class almost never reached a validation loss below
1. The different augmentations showed us that random flips
and rotations always improve the validation accuracy but not
the validation loss significantly. The best performing model

Fig. 9. 40 Samples per Image Class

Fig. 10. 50 Samples per Image Class

from the reduced data set in terms of accuracy was the one
with 40 samples per class, augmented with random rotations.
It reached 90% validation accuracy but with a validation loss
of 0.72. The best performing model in terms of validation
loss was the one trained with 30 samples per class augmented
with random rotations. It reached 0.37 validation loss and 85%
validation accuracy. Combined it is a drawback to the original
data set of 9% validation accuracy and 0.96 validation loss.
Surprisingly, it was not the models trained with 50 samples per
class. This might be connected to the images being selected
randomly out of the original data set for every reduced data
set, therefore the quality of the 40 was better than the quantity
of the 50 images per class.

C. Neural Networks Trained with DCGAN Generated Data
Set

As described in Section V, the DCGAN models provided
generated data sets for each subset. They are all listed in Table
II. On these generated data sets, models were trained the same
way as the original and reduced data sets were trained.

The results show that data sets from 10 and 20 samples
per class lead to a very significant loss. Using 30 samples
per class is more efficient, but the best results were achieved
with 40 and 50 samples per class. These DCGAN augmented
data sets outperformed other augmentations on the reduced
data sets in loss and accuracy. The best model was trained on
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TABLE II. RESULTS WITH GAN GENERATED DATA SETS

SAMPLES PER CLASS
+ 300 AUGMENTED EPOCH ACCURACY LOSS

10 600 80% 0.87
10 1200 73% 1.13
10 1800 67% 2.13
10 2400 75% 1.12
10 3000 71% 2.19
20 600 78% 0.62
20 1200 74% 0.72
20 1800 61% 1.17
20 2400 74% 0.77
20 3000 71% 1.03
30 600 88% 0.49
30 1200 86% 0.38
30 1800 86% 0.47
30 2400 82% 0.61
30 3000 84% 0.56
40 600 88% 0.32
40 1200 92% 0.23
40 1800 88% 0.31
40 2400 89% 0.32
40 3000 88% 0.30
50 600 87% 0.47
50 1200 87% 0.55
50 1800 85% 0.35
50 2400 87% 0.40
50 3000 84% 0.56

a data set generated out of 40 samples per class after 1200
epochs. It reaches a validation accuracy of 92% and a loss of
0,23 which is in terms of accuracy 2% better and in terms of
loss 0.14 better than the best models from the reduced data sets
together. A full comparison of the best models with different
techniques can be seen in Figure 11.

As expected the overall best model was trained on the
original data set with a validation accuracy of 99% and a val-
idation loss of 0.02. From the reduced data sets, the DCGAN
augmented data set outperformed every other augmentation
used in this work with an accuracy of 92% and a loss of
0.23. The best models with common augmentations reached
an accuracy of only 90% and a loss of 0.37.

Through DCGAN augmentation we reached improvements
of 2% accuracy and 0.14 loss towards common augmentation
techniques. The trade-offs to the original data set were 8%
accuracy and 0.21 loss.

VII. CONCLUSION AND OUTLOOK

The goal of this work was to enhance a shortened data
set with DCGAN generated images and to train a model that
performs better on the original data set than models from the
shortened data set with common augmentation techniques. In
the end, our results show that a well trained DCGAN network
can generate images to improve a data set with limited image
samples for such a use case in steel surface damages.

One drawback of this method is that all DCGAN models
generated images from the same checkpoint. In this work,
it is basically the average best models for each class. For
further research DCGANs from different checkpoint epochs
and classes could be used to improve the quality of the data
set quality even more. One observation was that a good variety

of generated samples is needed. To do so, the model should
not train too few epochs and not too many. If the model trains
too little, it likely generates more noise and if it trains too
much, the model always generates the same image.

One other observation from the common augmentation
techniques was that if you put all augmentations together,
the model performs worse than with only one or without
any augmentation. We assume that in this case there are too
many variations possible within one picture, which weakens
the model. This will be part of further investigation.

We can conclude that this method can improve the quality
of a small data set, but it cannot replace the quality of a large
data set.
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