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Abstract—Hybrid Transactional and Analytical Processing
databases (HTAP, OLxP) are an emerging sector of databases
combining Online Transactional Processing and Online Analyt-
ical Processing in the same system. Such databases yield many
advantages like the reduction of the total cost of ownership or the
elimination of redundant data sets for analytical and live data.
Therefore, both Gartner and Forrester Research see disruptive
potential in HTAP databases. While following a common goal,
the database architectures of HTAP databases are quite diverse.
The solutions range from scaled-up single server systems, using
Multi Version Concurrency Control to keep their data consistent
while at the same time executing thousands of queries, to scaled-
out clusters of many servers using last writer wins approaches
to allow even faster transactional processing. The development
of HTAP databases resulted in various advances in the database
sector like the creation of new index and data structures or
improvements of existing concurrency control implementations.
This paper provides a comprehensive summary of these imple-
mentations, giving an overview of the last decade of research on
the emerging sector of HTAP Processing databases and discussing
fundamental involved technologies.

Keywords—Hybrid Transactional Analytical Processing; HTAP;
Database; Literature Study; OLxP.

I. INTRODUCTION

The need to analyse data in realtime and not to rely on
copies of old databases combined with the growing wish of
companies to gather all data in one database lead to the rise
of Hybrid Transactional Analytical Processing, a term coined
by Gartner [1] in 2014. But, even before that there has already
been active research in the area. This systematic literature
review summarizes the research on HTAP over the past 10
years.

Solving the problems of keeping data in two separated
databases and at the same time reducing the total cost of
ownership by introducing one unified system instead, HTAP
efficiently combines Online Transactional Processing and On-
line Analytical Processing capabilities in one system. There-
fore, both Gartner [2] and Forrester Research [3] see disruptive
potential in HTAP.

In this review, the basics of the different fundamental
architectures for HTAP database systems like HyPer [4] and
SAP HANA [5] are explained. Further different approaches
regarding the concrete implementations and optimization ap-
proaches are introduced. The aim of this systematic literature
review is to reflect the current state of research in an ordered

way, as well as to highlight important decisions leading to
todays implementations.

This remainder of this paper is organized as follows: Section
2 provides background on database processing paradigms cov-
ered in this paper. Section 3 describes the underlying literature
review process in detail. Section 4 discusses the findings and
provides a comprehensive overview of the current development
and research state of HTAP. Finally, Section 5 summarizes the
provided work, supplying all required information in a short
form.

II. BACKGROUND

This section provides some background information regard-
ing the database processing paradigms covered in this paper.

A. Online Transaction Processing

Online Transaction Processing (OLTP) describes a category
of data processing that is focused on transaction-oriented tasks.
The workload is heavily write oriented, consisting of insert,
update and delete operations. The size of data involved is
usually relatively small, while the amount of transactions can
be massive.

Features like normalization and ACID (Atomicity, Consis-
tency, Isolation, Durability) are required by OLTP to function
efficiently. Besides fast processing and highest availability,
data consistency is also one of the most important features
of OLTP databases.

B. Online Analytical Processing

Online Analytical Processing (OLAP) is focused on com-
plex queries for dataset analysis. The workload is read heavy
and can include enormous datasets. In order to efficiently
analyse such big amounts of data, intelligent indexing and
fast read times are necessary. OLAP workloads are resource
heavy and require high performance systems.

C. Hybrid Transactional Analytical Processing

Hybrid Transactional Analytical Processing (HTAP) com-
bines both OLTP and OLAP in one database. Therefore,
writing and analyzing data is efficiently handled in the same
database, removing the need to run two separate systems
and thereby reducing implementation efforts, maintenance and
cost. However, the resource intensive workload of OLAP
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Figure 1. Literature Review Process.

queries and the required high availability of OLTP compete
with each other and require new solutions to work on the
same system.

III. LITERATURE REVIEW METHODOLOGY

Despite the existence of the term HTAP since 2014, many
researchers still did not adopt it. To ensure a comprehensive
and high-quality literature base for the review, several searches
were carried out.

In the study, Kitchenham’s systematic review procedure [6]
was employed. The following steps were pursued:

1) Determining the topic of the research
2) Extraction of the studies from literature considering

exclusion and inclusion criteria
3) Evaluation of the quality of the studies
4) Analysis of the data
5) Report of the results

The reviewing process (Figure 1) was conducted via Google
Scholar as this search engine provided far more results than
other search engines, which also included most results of the
other engines. Searches with other engines did not return the
desired quantity of material with the used queries, preventing
a sophisticated review of the topic.

Using Google Scholar, the volume was appropriate but the
quality was still lacking, mainly because the term HTAP is still
not used by all research conducted on this topic. To counter
this, three different searches were conducted all using different
search terms to gain a sufficient literature base regarding
quantity and quality. Quality in this context refers to the
overall consistency of the provided content and the adherence
to scientific standards.

The search was carried out using (1) ”htap” ”data ware-
house” OR ”OLTP” ”OLAP” (returning 183 entries), (2)

HTAP OR OLAP OLTP hybrid database (returning 200 en-
tries) and (3) hybrid transactional analytical processing (re-
turning 200 entries). Only publications from 2010 or later were
considered. The latter queries returned more papers, but were
reduced to the 200 most recommended papers, since quality
and relevance were continuously decreasing.

Only papers accessible without additional fees and written
in German or English were taken into account. Further, theses
were not considered in this paper. These criteria left 147 (1),
178 (2) and 179 (3) papers to refine further. With title and
abstract based elimination, the papers lacking a combination
of required key words or only mentioning HTAP as a side
note were excluded. After that step, 55 (1), 44 (2) and 56 (3)
papers were left for further analysis. This leaves a total of 94
papers (deducted duplicated paper from the different queries)
for a final review.

Of these 94 papers, 15 were found to be of insufficient
quality and 19 did not focus on the topic of HTAP databases or
on fundamental technologies for those. The 60 papers, which
were found scientifically significant and fulfilling the quality
requirements were finally reduced to 41, deducting papers
providing only outdated non-fundamental information.

IV. FINDINGS AND DISCUSSION

The methods to create HTAP databases, their functionality
and their optimizations take many different approaches. The
contents of the papers were organized into the following
sections according to the kind of information provided.

A. Fundamental Architecture

HTAP databases build up a new database sector and there
are many databases which were newly developed for this
workload, e.g., [4][7][8]. However, some existing databases
also have been upgraded to handle HTAP workloads like SAP
HANA [5], initially an OLAP database, and PostgreSQL [9],
initially an OLTP database, proving that existing databases can
be extended to handle HTAP.

Comparing the reviewed database architectures, two main
storage paradigmas can be clearly identified with the reviewed
solutions: (1) heavily main memory focused databases, keep-
ing all of their (hot) data in memory like HANA [10], HyPer
[4], BatchDB [8] and Hyrise [11], as well as (2) cloud/shared
disk data stores, keeping some data in memory but relying on a
persistent out of memory data store accessible by all instances,
e.g., Wildfire [12] and Janus [13].

Further, a Non-Uniform Memory Access (NUMA) archi-
tecture is a base requirement for most main memory HTAP
databases like SAP HANA [10], AIM [14], BatchDB [8],
Hyrise [11] and HyPer [4] enabling multiple cores to access
each others memory.

1) Scaling out and up: Another big difference in HTAP
databases is their scaling approach. Systems like HyPer [4]
(commercialized by Tableau) or Hyrise [11] are deployed
on single servers utilizing NUMA to scale-up onto multiple
cores, thus creating multiple nodes. This approach can reduce
processing time as no data transfer between different servers
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is required and all data can be accessed in memory. As a
downside however, large systems require a strong server with
a large main memory. Both HyPer and Hyrise also provide
scale-out approaches, normally keeping their OLTP processing
on the main server, e.g., ScyPer [15].

Like Hyrise and HyPer - SAP HANA [16] keeps the OLTP
workload on one machine, utilizing NUMA to use as many
cores as required and available, but implements scaling the
OLTP workload out to other servers as a base feature. Using
HANA Asynchronous Parallel Table Replication (ATR) the
database distributes its data amongst multiple replicas enabling
a more efficient OLAP approach.

BatchDB [8] also handles the OLTP workload on the main
server. The OLAP workload can be either executed on a
different node of the same machine, or an entirely different
server.

Contrarily, Wildfire [17] (commercialized as IBM BD2
Event Store) utilizes a fully distributed approach. Heavily
relying on Apache Spark, all requests pass Sparks API and
get distributed across multiple Spark executors. These execu-
tors delegate the transactional and analytical requests to the
Wildfire engine daemons. All daemons use their main memory
as well as solid-state drives (SSDs) and are connected to
one shared data storage, e.g., a cloud data store. With this
approach more throughput can be achieved, but ACID on the
other hand is no longer possible. The latest research on the
Wildfire system, Wildfire-Serializable (WiSer) [18] also offers
high availability besides HTAP. It is furthermore optimized for
Internet of Things workloads.

Like Wildfire, SnappyData [19] also uses Spark as a core
component to scale out the system to a database cluster.
Therefore, the system enables more information to be kept
in memory without the need for one expensive server.

Janus [13] also uses a distributed setup but implements the
query distribution on its own with execution servers. These
delegate the query to a corresponding row partitioned server
for OLTP workloads or a column partitioned server for OLAP
workloads.

2) Data/Table Structure: When dealing with OLTP and
OLAP workloads, finding the right table format can be dif-
ficult. HTAP databases therefore employ different table and
data structures. Wildfire [17] exclusively uses column oriented
tables since they are the most efficient solution for OLAP
workload.

SAP HANA [10] implements a row-store query engine and
a column-storage engine to combine the advantages of both
technologies. Thus, it is possible to save data in row or column
tables. The column layout is the default, more optimized,
option.

HyPer [20] and Hyrise [11] both use columnar stores with
self implemented data models. Hyrise further presented a
hybrid column layout in an older version [21], combining
simple one-attribute-columns with rows. This is planned to
be implemented again in the new version, but has low priority
and is work in progress.

Opposed to this, PostgreSQL [9] continues to use its row
data storage for OLTP, but has a column store extension
for OLAP workloads, merging the delta from the row store
continuously in the column store.

SnappyData [19] follows a hybrid approach, where the fresh
data is stored in an in-memory row-store and is moved in an
on-disk column-store after aging.

The Cloud data store Janus [13] is fully hybrid, utilizing
row partitions for OLTP and column partition for OLAP.
Via a redo-log inspired batching approach and a graph-based
dependency management, the delta from the row replicas can
be merged into the column replicas.

The Casper prototype [22] uses a tailored column layout
to support mixed read/write workloads more efficiently. With
this approach, runtime column adaptations are possible.

Flexible Storage Model (FSM) [23] presented a tile based
architecture to allow a transition from OLTP optimized tables
to OLAP optimized tables depending on the hotness of data.
The data is saved in a row oriented manner at the beginning
and, depending on the hotness, is tile-wise transitioned to an
OLAP column oriented tile structure.

3) Saving and Partitioning Data: For scale-up focused
databases, removing data from main memory to larger, more
cost efficient stores (e.g., hard drives), or efficiently compress-
ing its size, is crucial. HyPer uses horizontal partitioning and
saves its hot data uncompressed on the main memory. The cold
data can also be kept in memory. Instead of evicting data to a
disk, the data is compressed into self implemented Data Blocks
[20] and kept in main memory. However, it is possible to evict
them to secondary storage solutions if preferred (e.g., Non-
volatile random-access memory) and use them as persistent
backups. The compression technique is chosen based on the
data actually saved in the Data Block.

Utilizing Small Materialized Aggregates (SMAs) including
meta data like min and max values, irrelevant compressed data
can easily be skipped in searches. If data cannot be skipped
on SMA basis, Positional SMAs (PSMAs), another lightweight
indexing structure developed by the HyPer team, can be used.
These help to determine the range of positions in the Data
Block were the relevant values are located.

Hyrise [21] solves this problem using horizontal partition-
ing and by saving data in 2 kinds of columns: Memory-
Resident Columns for hot data in memory, allowing fast
access, and uncompressed row-oriented Secondary Storage
Column Groups for cold data on hard drives. As the cold data
is saved uncompressed, the cost of accessing it is reduced in
comparison to classical compressed approaches.

Furthermore, the data is organized in so-called chunks [11]
similar to Data Blocks. Chunks can be mutable as long as
they are not full. As soon as they reach their capacity they
transition to an immutable append-only container. They also
have indexes and filters on a per chunk basis like Data Blocks,
allowing faster search and access operations.

Smart Larger Than Memory [24] stores cold data in files
on the hard drive decoupled from the database. Modifications
to the data are no longer possible. The entries can only be
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deleted. This happens via removing the reference entry in
memory without accessing the cold data and thereby saving
time. Updating cold data is possible, but the update is a hidden
delete of the cold data index and an insert of new hot data. To
fully take advantage of SmartLTM the read operations always
check the main memory entries first. If the data cannot be
found, cuckoo filters or SMAs are used to locate the data in
the files on the hard drive.

Finally, partitioning workloads in an intelligent manner
without extra statistical data structures is possible, too. As
presented by Boissier and Kurzynski [25], physical horizontal
data partitioning as well as the adapted aggressive data skip-
ping approach can skip up to 90% of data on OLAP queries.

B. Concurrency

Handling multiple versions of data is a crucial part of all
HTAP databases. Current OLTP and OLAP operations require
a solution to parallelize data access.

The most common approach is Multi Version Concurrency
Control (MVCC). It is utilized in combination with a delta
by PostgreSQL [9], SAP HANA [10] and in new versions of
HyPer [26].

Hyrise [27] is also using MVCC, but is following a look
free commit approach, replacing the delta.

SnappyData and BatchDB [8] also use MVCC oriented
approaches. SnappyData [7] relies on GemFire to handle
concurrent access and snapshots, while BatchDB [8] uses
MVCC on its OLTP replica, while updating the isolated OLAP
replica batch-wise.

Although HyPer is now using MVCC with delta, it initially
used the fork systemcall to create multiple isolated in-memory
snapshots [28]. Utilizing a copy on write approach to reduce
memory consumption OLAP queries could be executed on
snapshots while the OLTP operations updated the main mem-
ory entries.

In addition to the MVCC on its main OLTP replica, SAP
HANA [16] further uses ATR with a replication log system to
synchronize its multiple server architecture. This synchronizes
data with sub-second visibility delay between the replicas.

Wildfire [17] chooses speed over concurrency as already
mentioned. Therefore, a simple last writer wins approach is
used by the Wildfire engine.

While most systems nowadays use some implementation of
MVCC, research on more efficient snapshotting techniques is
still being carried out, e.g., [29]. Inspired by earlier HyPer
implementations, another research project on snapshotting,
AnKer [30], uses a customized Linux kernel with an updated
fork system call. This updated fork, called vm snapshot,
enables high frequency snapshotting. Through vm snapshot
the researchers are able to snapshot only the used columns.
This significantly outperforms the default fork used initially
by HyPers implementation, providing a possible alternative to
MVCC systems.

Wait free HTAP (WHTAP) [31] utilizes snapshotting for
concurrency as well. In this dual snapshot engine approach
data for OLAP and OLTP are stored in different replicas, using

a five state process and two deltas. In this process, the deltas
form the OLAP and OLTP replicas are switched and the old
OLTP delta is merged into the OLAP replica which takes effect
without slowing the analytical queries down.

C. Garbage Collection

MVCC implementations require performant garbage collec-
tion to prevent large amounts of versions to slow down the
transactions on the database. SAP HANA [10] uses timestamps
and visibility bits to track versions of their data. Data gets
created/edited with a timestamp. When all active transactions
can see this version the timestamp is replaced with a bit
indicating the visibility. If the row is no longer visible to any
snapshot, it can be deleted with the next delta merge.

HyPers garbage collector Steam [26] follows a similar
approach. The main difference is that the garbage collector
is called with every new transaction instead of being a back-
ground task like with SAP HANA. This approach called eager
pruning removes all versions not required by any transaction.
This happens by checking every time the chain is extended
whether all versions included in the version chain are used by
a transaction. With eager pruning the version chain can only
be as long as the amount of different queries.

Due to its heavily distributed architecture with many data
sets saved in main memory and SSDs on the different
servers, Wildfire follows a different solution and implements
a lazy garbage collection approach [17]. When performing
lazy garbage collection, data is only deleted if there is no
possibility that a query could require it. However, the concrete
implementation is not explained.

D. Query Handling

The ways to access the concurrent data differ significantly
from database implementation to implementation.

1) Query Handling in Scale-up Systems: The systems Hy-
Per [32] and Hyrise [11], primarily engineered for scale-
up solutions working on one dataset, implemented the query
operators as C++ code in their database. The missing variables
are inserted via just in time compilation. After the insertion,
the code is compiled to LLVM assembler code, allowing fast
query execution. As mentioned before, the two databases also
have prototype scale-out options, but focus on the scale-up
approach.

Another approach is to dynamically schedule memory and
computing resources actively [33]. With this approach, the
cores are assigned to the OLAP or OLTP workload as required,
always trying to maximize productivity and the database
throughput.

2) Query Handling in Scaled-out Systems: Scale-out sys-
tems are separated in two groups: On the one hand, systems
keeping the OLTP workload on one server, scaling only the
OLAP workload to other servers, as e.g., SAP HANA [16] or
BatchDB [8]. On the other hand, systems distributing OLTP
and OLAP workloads over multiple servers, e.g., Wildfire
[12][17] and SnappyData [7][19].
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BatchDB [8] and HANA [16] both handle their OLTP work-
load on a single server, scaling-up via NUMA as described
earlier. For OLAP workloads they are able to scale out onto
multiple servers working on replicas of the main data.

Wildfire [12] and SnappyData [19] contrarily scale out via
Apache Spark, allowing OLTP and OLAP transactions to be
executed on a cluster of nodes dealing with big data and
streaming workloads. Wildfire [12] executes OLTP queries on
the fresh data on Wildfire daemons. OLAP workloads can be
executed via Spark Executor as requests to the daemons or
directly accessing the shared data of the Wildfire database
cluster. With this approach, old data can be consumed from
the shared file system without slowing down OLTP throughput
while the latest data can still be received if required.

3) Query Language: While the databases offer many new
functionalities to access and modify data, Structured Query
Language (SQL) is still commonly supported. The database
systems SAP HANA [5], Wildfire [17], Hyrise [11], HyPer [4],
SnappyData [7] and AIM [14] all enable basic SQL queries
to interact with the database. However, many of them further
provide new optimized ways to interact with the data.

Wildfire [17] and SnappyData [7] provide data access via
an extended version of the SparkSQL API. SnappyData also
further extends the Spark Streaming API.

SAP HANA [5] provides more specific access through
SQL Script and Multidimensional Expressions (MDX). The
database is also is natively optimized for the ABAP language
and runtime. This allows to bypass the SQL connectivity stack
by directly accessing special internal data representations via
Fast Data Access (FDA). The Native For All Entries (NFAE)
technique further modifies the ABAP runtime to allow even
more performance improvements.

Hyrise [11] provides a command-line interface which al-
lows SQL queries but also provides additional visualization
and management functions. Furthermore, the wire protocol
of PostgreSQL allows access through common PostgreSQL
drivers and clients.

HyPer [32] uses HyPerScript as its query language. HyPer-
Script is a SQL-based query language and therefore allows
base SQL statements as well. The features consist of passing
whole tables as query parameters and providing the possibility
to use query results in a later part of the query, removing the
need to query the same value multiple times.

E. Indices

To allow efficient data access and querying on multiple
servers and/or different versions of data, the right index struc-
ture is of special importance in HTAP databases. Wildfire’s
multi-version multi-zone index Umzi [34] employs a LSM-
like structure with multiple runs. It divides index runs in
multiple zones and implements efficient evolve operations to
handle zone switches of data. Further Umzi uses a multi-tier
storage using SSDs and memory caching with self-updating
functionality for fast execution while persisting the indexes
on Wildfires shared data.

HyPer developed the Adaptive Radix Tree (ART) [32] based
on the radix tree. ART uses four different node types that can
handle 4, 16, 48 and 256 entries. The maximum height for
the tree is k for k-byte trees. To further reduce the tree height
and required space, the tree is build lazily, saving single leaf
branches higher in the tree. Additionally, path compression is
used to remove common paths and to insert them as a prefix
of the inner node thereby removing cache inefficient one-way
node chains.

SAP HANA [10] and Hyrise [11] both use B-Trees. Hyrise
further supports the ART index from HyPer [32] and a group-
key-index, implemented by the Hyrise project.

BatchDB utilizes a simplified version of the look-free Bw-
Tree [8]. The version relies on atomic multi-word compare-
and-swap updates.

In 2019, a predictive indexing approach [35] was introduced
to cope with the dynamic demands of a HTAP database.
Predictive indexing increases the throughput by up to 5%.
In this approach, a machine learning system calculates the
optimal index structure for the data according to the workload.

The Multi-Version Partitioned B-Tree (MV-MBT) [36] is
another recent research in the indexing sector for HTAP
databases from 2019. This extension of partitioned B-Tree
creates a version aware index, able to maintain multiple
partitions within a single tree structure, sorted in alphanumeric
order.

Likewise proposed in 2019, the Parallel Binary Tree (P-
Tree) [37] is an extension of a balanced binary tree relying on
copy-on write mechanisms to create tree copies on updates.
With this approach, the indices become the version history
without requiring other data structures.

F. Big Data on HTAP Databases

Wildfire was created with big data as its primary use
case [17]. Through the distributed design of its big data
platform, Wildfire is able to concurrently handle high-volumes
of transactions as well as execute analytics on latest data. At
the same time, the system is able to scale onto many machines
because of its close integration of Apache Spark. The usage of
an open data format further enables compatibility with the big
data ecosystem. Nowadays, the commercial version IBM Db2
Event Store is capable of handling more than 250 billion events
per day [38]. SnappyData [19] is an analogically capable big
data platform with an architecture similar to Wildfire.

The SAP HANA database can be used as part of the SAP
HANA data platform to handle big data workloads [39]. Using
a combination of different SAP products, namely SAP Synbase
ESP and SAP Synbase IQ, as well as smart data access
frameworks as Hadoop, Teradata or Apache Spark, the SAP
HANA data platform is a fully functional big data system with
SAP HANA in its core.

HyPerInsight [40] provides big data capabilities in the area
of data exploration on the HyPer database. The goal is to
minimize the required user expertise with the dataset while
simultaneously supporting the user with the formulation of
queries. The support for lambda functions in SQL queries
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allows user defined code to be executed within the queries.
In combination with the HTAP HyPer system as the database,
data mining on real-time data is possible.

G. Recovery and Logging

As many HTAP databases rely on volatile main memory as
primary storage and the other systems utilize distributed data
sets, recovery in case of failure is of special importance. Data
loss has to be prevented and downtime must be minimized.

SAP HANA instances log data persistently on the local drive
for recovery on failure or restart purposes [5]. The logging
approach is inspired by SAP MaxDB.

As already explained, HANA works with ATR in its dis-
tributed architecture [16]. Following the store-and-forward ap-
proach, the data is replicated to multiple servers. An algorithm
then compares the record version IDs of the incoming data
and stored data, requesting the resend of lost log entries if
deviations occur.

Recovery for the latest version of Hyrise is still work in
progress [11], but recovery for older versions of Hyrise was
explained [27]. The database dumps the main partition of the
table as a binary dump on the disk and records the delta to a
log via group commits to hide the latency. At checkpoints, the
delta partitions are also saved as a binary dump on the drive.
If recovery is required, the main dump and delta dump from
a checkpoint are restored and an eventually existing delta log
is replayed on the table, restoring the old state.

BatchDB logs successful transactions on its OLTP replica
in batches via command logging on durable storage [8]. In
case of a failure, the database can recover from these logs.
The OLAP replica itself has no durable logging and has to
recover from the main OLTP replica on failure.

SnappyData [7] uses Apache Sparks logging and recovery
mechanisms, logging transformations used to build Sparks Re-
silient Distributed Datasets (RDDs). Saving RDDs to storage
is also possible. In SnappyData the combination with GemFire
however allows Spark to save the RDDs in GemFires storage
instead of the persistent storage of the server. Small recoveries
can be handled directly by GemFires eager replication, leaving
batched and streaming recovery to Spark, in combination with
the GemFire storage.

Further, a peer-to-peer (p2p) approach is used in Snap-
pyData clusters. Any in-memory data can be synchronously
replicated from the cluster. Additional to the replication via
the p2p approach, data is always replicated to at least one
other node in the cluster.

H. Benchmarking

The combination of OLTP and OLAP workloads on one
database also created the need for new benchmarks covering
this sector. In 2011, CH-benCHmark [41] was introduced. The
CH-benCHmark is based on the TPC-C and TPC-H bench-
marks. It executes a transactional and analytical workload in
parallel on a shared set of tables on the same database. The
benchmark can also be used for single workload databases.

In 2017, HTAPBench [42] was published. This benchmark
is able to compare OLTP, OLAP and hybrid workloads on
the database. Its main difference to CH-benCHmark lies in its
Client Balancer, controlling the coexisting OLAP and OLTP
workloads.

Hyrise [11] implements a special benchmark runner to
easily execute benchmarks.

I. Stream Processing

Streaming as a special case of OLTP is an emerging use
case for HTAP database systems. In 2016 scientists from ETH
Zürich in cooperation with Huawei presented AIM [14], which
is a high performance event-processing and real time analytics
HTAP database. The three-tiered multi node system processes
events at one tier, stores the data at a central tier and finally
analyses the processed data in real time on the third tier. AIM
however, is optimized for a special streaming use case from
the telecommunications industry.

In early 2019, the research team around HyPer compared
modified versions of HyPer with AIM and Apache Flink [43]
in order to determine the current state of streaming capabilities
of main memory database systems (MMDB). While MMDBs
are still inferior to dedicated streaming frameworks like Flink,
the HyPer team was confident, that HTAP databases could
catch up with some adjustments, even implementing some
of those on HyPer. The main areas requiring improvement
are network optimization, parallel transaction processing, skew
handling and a strong distributed architecture.

SnappyData aims to solve OLTP, OLAP and streaming all
in one product [19] with their tight integration of Apache
Spark and GemFire. In an evaluation, SnappyData was able to
outperform both Spark on TPC-H queries as well as MemSQL
on all kinds of throughput. The focus with SnappyDatas stream
processing lies on complex analytical queries on streams,
which are not possible with default stream processor solutions
[7].

SAPs approach for big data, SAP Big Data [39], supports
streaming as well. Since it uses other SAP products to achieve
it and is not a part of the base SAP HANA database infrastruc-
ture, but rather is built on top of it, it is not further discussed
in this paper.

J. Future

HTAP databases are a new sector which has evolved over the
past 10 years. On an annual basis, companies and researchers
contribute new ideas to lift their database above the com-
petition. Currently, the newest trends tend to lead into three
directions:

1. Heterogenous HTAP (HHTAP/H2TAP): with new hard-
ware supporting heterogenous parallelism, HHTAP becomes
a possibility. In this approach, CPUs and GPGPUs can ac-
cess shared memory and divide the workload between both.
Complex OLAP queries are solved on the GPGPUs, leaving
the OLTP workload for the CPUs. The Caldera [44] prototype
proved the feasibility for HHTAP. Early 2020, the data store
GridTables [45] was published and proved the concept again.
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However, in their summary, the authors of GridTables pointed
out that there are still many research issues left to be solved.
Further, early in 2020, a paper was published about GPU
accelerated data management [46] explaining how to fully
exploit hardware isolation between CPUs and GPUs and
presenting a SemiLazy access method to reduce the required
data transfer.

2. Streaming workloads: as described in detail in the pre-
vious section, stream processing is a possible use case for
HTAP databases. Because of the optimization for high OLTP
throughput and the ability to analyse these data streams in
the same system, HTAP databases are an emerging alternative
to current stream processing solutions. While still inferior to
dedicated stream processors, the research on such solutions
saw an increase in interest over the last years, e.g., by the
HyPer team [43] and dedicated streaming HTAP databases
like SnappyData [19] and AIM [14].

3. Optimization: while the bigger part of the 2010s was
spent on researching for new systems [4][5][27], the last
quarter focused on their optimization. Few new database sys-
tems were proposed and research started optimizing existing
systems even further [26][30][37].

Further solutions using machine learning are slowly emerg-
ing. These allow databases to adapt on their own according to
current workload and requirements. However, there is still not
enough research to speak of an own trend and it can rather be
viewed as another kind of optimization research. An example
for such research is the presented predictive indexing approach
[35].

K. Open Source and Free Versions

Some of the database systems summarized in this paper
provide open source and/or free solutions. SnappyData [47]
is available with a getting started guide covering the basic
usage. The source code can be found on GitLab. The project
is licensed with the Apache License, Version 2.0.

MemSQL [48], is available, well documented and can be
used for smaller projects up to 4 nodes for free. Many
extensions are available at the official GitHub account.

Hyrise [49] is available under the MIT license. However, as
it is a research database, breaking changes may occur more
frequently.

The free MemSQL version and a basic SnappyData setup
can already be used on low end systems, naming 8GB main
memory as their minimal requirement to operate efficiently.

To try a HTAP database without a setup process, HyPer
can be used. The HyPer research version is provided as a
simple web tool for exploration and testing [50]. This version,
however, is running on a low end system and cannot be used
in production.

V. CONCLUSION

In this paper, we have shown that HTAP databases are
nowadays serious alternatives to traditional database solutions.
The existence of a market for commercial products like SAP
HANA, IBM Db2 Event Store and Tableau further reinforces

our findings. Moreover, we have highlighted differences of
existing approaches regarding key properties like the fun-
damental architecture, concurrency, or big data capabilities.
Thus, this study can aid both researchers and practitioners in
the process of selecting a matching HTAP solution. Finally,
by providing a comprehensive overview of current research
approaches as well as productive solutions, this study helps to
identify trends and point out directions for future research. The
following paragraphs provide a brief summary of our findings.

Open source and free HTAP products place HTAP databases
on the same level as current database systems, allowing the in-
tegration in other products and exploring this new technology
without financial risks.

The combination of OLTP and OLAP queries on one
database efficiently reduces the total cost of ownership and
allows a narrower tech stack for companies. The possibility to
analyse data in real time further validates HTAP databases as
a productive solution with a great added value compared to
conventional databases.

Many different implementations, providing different advan-
tages, are available and can be used as required by the cos-
tumer. Solutions using main memory as a primary/sole storage
as well as solutions relying on shared data storages exist and
are both valid options. Powerful single server database systems
allow a slim tech stack while still being faster than most
traditional OLTP and OLAP optimized databases. Distributed
multi server clusters allow more fail-safe and easier to scale
solutions, while at the same time requiring less performant ma-
chines. SnappyData and MemSQL, for example, can already
be executed on machines with 8GB of memory, scaling up
from there.

Over the last years, new indices, filters, data structures and
replication techniques were developed, optimizing performant
HTAP systems even further. The future seems to be heading
in three main directions: HHTAP - utilizing new heterogenous
hardware to include the GPUs in HTAP databases and allow
even more efficient architectures.

Streaming - HTAP databases optimized for streaming are
making a combination with external stream processors un-
necessary, further reducing the total cost of ownership and
reducing the size of the required tech stack.

Optimization - while the bigger part of the 2010’s was spent
on developing the base technologies and databases themselves,
the last quarter was primarily spent on optimization, still
leaving much room for improvement.

Machine learning for self adapting databases also could be
an emerging sector in the future, but currently there is not
enough research in this direction to call it a trend.
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