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Abstract—Machine Learning models and Artificial Intelligence
algorithms are required to provide powerful predictions to
support the decision process of operators in the FinTech sector,
characterised by an extensive use of credit scoring models
and digitalised financial services. In such a context, the model
predictive accuracy assessment represents a basic requirement.
On the one hand, literature provides several predictive accuracy
measures but, on the other hand, these measures are typically
computationally intensive or are based on subjective criteria.
In this paper a solution is provided through a novel predictive
accuracy measure, we called Rank Graduation Accuracy (RGA),
which is based on the distance between the predicted and
observed ranks of the response variable. The RGA presents
properties which allow to fulfill the need of ensuring reliable
predictions improving the model predictive accuracy assessment
in highly complex situations.

Keywords–Machine Learning models; Artificial Intelligence-
based systems; Predictive accuracy; Credit Scoring models.

I. INTRODUCTION

A very key point in the application of Machine Learning
(ML) and Artificial Intelligence (AI) methods is the evaluation
of their predictive accuracy. The predictive accuracy require-
ment is basic especially in banking and FinTech sectors where
data have to be exploited in order to draw conclusions from
them and predict future trends. To do this, more accurate re-
sults have to be performed to allow organizations to detect new
risks (in terms of default predictive accuracy). This objective
is more evident when dealing with AI systems, which have
a black-box nature resulting in automated decision making
which in turn can classify a user into a class associated with
the prediction of the individual behavior, without explaining
the underlying rationale. In order to avoid that wrong actions
are taken as a consequence of “automatic” choice, predictive
accuracy measures have to be as much as possible reliable.

Several researchers have proposed, along the years, statis-
tical measures aimed at evaluating predictive accuracy [4] [7].
Likewise, the increasing availability of computational power
has allowed to translate these measures in statistical softwares
giving rise to direct comparisons between different types of
predictive models on the same data. But model comparison
methods are not universal, since depending on the nature of
response variable to be predicted. Our proposal is motivated
by the several applications of machine learnings models in
credit rating, where the response variable usually takes a binary
nature. In this case, predictive accuracy can be assessed in
terms of false positive and false negative predictions providing,
for a given set of cut-off points, the Receiver Operating

Characteristic (ROC) curve, whose main summary measure
corresponds to the area under it (Area Under the Receiver
Operating Characteristic curve - AUROC). If on the one hand,
the AUROC is widely employed, on the other hand it suffers
from some drawbacks due to subjective choice of the cut-
off points. With the aim of overcoming this restriction, [10]
proposes to resort to the Somers’ D measure [11] in the context
of credit rating accuracy measurement. Even if the Somers’
D is independent on the subjective choice of cut-off points,
Somers’ D is highly computational intensive.

Our purpose is to introduce a new predictive accuracy
measure which, due to its construction, is based on objec-
tive criteria and less computational intensive than its main
competitors. The novel predictive accuracy measure appears
as a derivation of a recent research contribution in the field
of dependence analysis illustrated by [3] and is based jointly
on the comparison between the observed and the predicted
response variable ranks and on the employment of the actual
values of the response variable corresponding to both ranks.

The rest of the paper is organized as follows. In Section II,
an overview of the mainly used predictive accuracy measures
is introduced. In Section III, our new proposed predictive
accuracy measure is presented and discussed. In Section IV,
an application to credit scoring data is illustrated. In Section
V, concluding remarks, together with details on future works,
are provided.

II. BACKGROUND

Credit scoring models typically involve a binary response
variable denoting the borrower’s default. Given the binary
nature of the response variable, the most commonly employed
predictive accuracy measure is the AUROC [2] [7].

Let n denote the total number of borrowers, such that
n = nD + nND, where D and ND are the defaulting and
non-defaulting borrower sets. Let SD and SND be the credit
score random variable, for the defaulting and non-defaulting
borrowers, respectively.

For a specific cut-off value c, FD(c) and FND(c) are the
sensitivity (true positive rate) and 1-specificity (false positive
rate) of a credit scoring model based on the cut-off value c.
Let FD(c) and FND(c) be the sensitivity (true positive rate)
and 1-specificity (false positive rate) of a credit scoring model
based on the cut-off value c, such that FD(c) = P (SD ≤ c)
and FND(c) = P (SND ≤ c) [1].

For a given set of cut cut-off values c = {1, . . . , C}, the
ROC curve is characterised by the set of points with coor-
dinates (FD(c), FND(c)) or, equivalently, by (GNDi

, GDi
),
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where GNDi
=
∑n

i=1 pNDi
, GDi

=
∑n

i=1 pDi
, pNDi

=
P (SNDi

= si), pDi
= P (SNi

= si) and i = 1, . . . , n. From
this, it follows that the AUROC is computed as

AUROC =
1

2

n∑
i=1

(GDi
+GDi−1

)(GNDi
−GNDi−1

).

The AUROC maesure is equal to 0.5 for a random model
without any predictive accuracy and is equal to 1 for a perfect
model. In the intermediate situations, AUROC takes values in
the range (0.5, 1).

An alternative measure of predictive performance is the
Somers’ D measure [11]. Let Y be a response variable and
X be a predictor variable, and let us denote with n the total
number of borrowers. Let the variable Y values be arranged
in a non-decreasing sense, i.e., Yi ≤ Yj for i < j. Thus, we
can define the quantity cij as follows

cij =

{
+1, if Xi < Xj , Yi < Yj
−1, if Xi > Xj , Yi < Yj
0, otherwise.

(1)

The Somers’ D measure, pointed out with DXY , is for-
malized as follows:

DXY =
1

nu

n∑
i=1

∑
j>i

cij , with nu =

n∑
i=1

∑
j>i

1[Yi 6=Yj ]. (2)

Some specifications are needed:

• DXY takes values in the close range [−1,+1] and
does not depend on the chosen cut-off points;

• DXY is computational intensive since, given N obser-
vations to be predicted, it computes

(
N
2

)
combinations;

• in the case of a multivariate model, depending on
more than one explanatory variable, the Somer’s D
can be extended by replacing the values of X with
the predictions derived from the model, which can be
function of all the explanatory variables. Let us denote
this extension with DŶ ,Y ;

• since the focus is not on the direction of concordance,
the absolute value of DŶ ,Y has to be considered.

III. METHODOLOGY

Let y be a vector of the observed values to be predicted and
let ŷ be the vector of the corresponding predicted values, com-
puted through a specific model f(X), where X is the matrix
containing the observations on the explanatory variables. Our
goal is to compare different models: ŷ = f1(X), ŷ = f2(X),
. . ., using a general methodology based on the concordance
curve.

A. The concordance curve
Let Y be a target variable and let X1, X2, . . . , Xp be a set

of p explanatory variables. The Y values, re-ordered in non-
decreasing sense, can be used to build the Y Lorenz curve,
denoted with LY . More formally, the curve is characterised by
the following pairs: (i/n,

∑i
j=1 yrj ), for i = 1, . . . , n, where

ri indicates the (non-decreasing) ranks of Y .

The same Y values can also be used to build the Y dual
Lorenz curve, denoted with L

′

Y , obtained by re-ordering the Y
variable values in a non-increasing sense. More formally, the
curve is characterised by the following pairs: (i/n,

∑i
j=1 ydj

),
for i = 1, . . . , n, where di indicates the (non-increasing) ranks
of Y .

Likewise, the predicted Ŷ values can also be re-ordered,
in a non-decreasing sense. Let r̂i, for i = 1, . . . , n, indicate
the (non-decreasing) ranks of Ŷ . A third curve, named concor-
dance curve and denoted with CY , can be provided by ordering
the Y values with respect to the ranks of the predicted Ŷ
values, r̂i. Formally, the concordance curve is characterised by
the pairs: (i/n,

∑i
j=1 yr̂j ), for i = 1, . . . , n, where r̂i indicates

the (non-decreasing) ranks of Ŷ .
To illustrate the previous concept, Figure 1 reports, for a

given set of test values Y , and the corresponding predictions
Ŷ : the Lorenz curve, the dual Lorenze curve and the concor-
dance curve, together with the bisector curve (i/n, i/n), for
i = 1, . . . , n. To ease the illustration, all values have been
normalised using the sum of all Y values: (nȳ), where ȳ
indicates the mean of Y .

From Figure 1, we note that the Lorenz curve and its
dual are symmetric around the bisector curve, and that the
concordance curve lies between them. Note also that, when
r̂i = ri, for all i = 1, . . . , n, the concordance curve is equal
to the Lorenz curve, and a perfect concordance between the Y
values and the corresponding predictions arises. On the other
hand, when r̂i = di, the concordance curve is equal to the
dual Lorenz curve and a perfect discordance between the Y
values and the corresponding predictions emerges. In general,
for any given point, a discrepancy between the Lorenz curve
and the concordance curve arises only when the predicted rank
is different from the observed one. We finally remark that,
when the Ŷ values are all equal each other, the concordance
CY curve perfectly overlaps with the bisector curve. In this
case, the model has no predictive capability, as it coincides
with a random prediction of the Y values.

B. Our proposal: the RGA predictive accuracy measure
The concordance curve, and its relationship with the Lorenz

and the dual Lorenz curve can be exploited to summarise the
“distance” between the Y and the Ŷ values, in terms of the
“discrepancy” between their corresponding ranks. In this way,
we fully address the ordinal requirement for credit scores. A
novel predictive accuracy measure, we call Rank Graduation
Accuracy (RGA), is introduced starting from a function C of
CY and LY defined as:

C =

∑n
i=1

{
i/n− (1/(nȳ))

∑i
j=1 yr̂j

}∑n
i=1

{
i/n− (1/(nȳ))

∑i
j=1 yrj

} , (3)

where yrj are the Y variable values ordered according to
the ranks rj ; yr̂j are the same values but ordered according to
the ranks r̂j .

From (3), we note that the C index is a function of the
y-axis values of the points lying on the concordance curve
CY and of the y-axis values of the points lying on the Lorenz
curve LY . Indeed the numerator of the index in (3) compares
the distance between the set of points lying on the bisector
curve and the set of points lying on the concordance curve
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Figure 1. The LY and L
′
Y Lorenz curves and the CY concordance curve.

CY , while the denominator compares the distance between the
set of points lying on the bisector curve and the set of points
lying on the Lorenz curve LY .

It can be shown that C fulfills the following properties,
whose proofs can be found in [5]:

• −1 ≤ C ≤ +1: specifically, when 0 < C ≤ +1, Y
and Ŷ are concordant and when −1 ≤ C < 0 they
are discordant;

• C = +1 if and only if CY = LY (full concordance):
the concordance curve CY overlaps with the Lorenz
curve LY ;

• C = −1 if and only if CY = L
′

Y (full discordance):
the concordance curve CY overlaps with the dual
Lorenz curve L

′

Y .

Remark Note that, when some of the Ŷ values are equal
to each other, the original Y values associated with the equal
Ŷ values can be substituted by their mean, as suggested by
[3]. This adjustment is coherent with the definition of a model
without predictive capability. To illustrate this point, suppose
to consider a general model f(X) with only one explanatory
variable, such that Ŷ = E(Y |X) = E(Y ) = ȳ holds for any
value of X . Since a re-ordering problem arises if the response
variable values are associated with equal estimated values, the
response variable values corresponding to the same estimated
values are replaced by their mean. As a result, the resulting
concordance curve CY overlaps with the bisector curve, whose
co-ordinates are given by the set of pairs (i/n, i/n). This
can be easily shown considering the normalised set of pairs
(i/n,

∑i
j=1 yr̂j/nȳ), characterising the concordance curve

CY . In the case in which ŷi = ȳ, ∀i = 1, . . . , n, we obtain
(i/n,

∑i
j=1 yr̂j/nȳ) = (i/n,

∑i
j=1 ȳ/nȳ) = (i/n, iȳ/nȳ) =

(i/n, i/n).
Looking more closely at (3) note that, when different

models are compared, the denominator does not change, while

the numerator does. It is therefore intuitive to compare models
in terms of differences between the distances expressed by the
numerator of formula (3), leading to the following:

Cnum =

n∑
i=1

{
i/n− (1/(nȳ))

i∑
j=1

yr̂j

}
. (4)

The above measure suffers from a drawback: positive
values of the index may be compensated by negative values,
leading Cnum to take a value equal to zero. To overcome
this problem, we resort to the squared distance between the
set of points lying on the concordance curve CY and the set
of points lying on the bisector curve. Indeed, as the bisector
curve defines the situation of a random, non predictive model,
for which the Y values are independent on the Ŷ , we can
interpret the squared distance as the difference between the
observed and the expected concordance values of Y , where
by expected we mean the concordance values that we would
have with a random model. If we divide the difference by
the expected values themselves, we obtain the RGA (Rank
Graduation Accuracy) measure as:

RGA =

n∑
i=1

{
(1/(nȳ))

∑i
j=1 yr̂j − i/n

}2

i/n
. (5)

Through some manipulations, an equivalent version of (5)
can be further derived as

RGA =

n∑
i=1

{
C(yr̂i)− i/n

}2
i/n

, (6)

which emphasises the role of the quantity C(yr̂j ) =∑i
j=1 yr̂j∑n
i=1 yri

, that represents the cumulative values of the (nor-
malised) response variable.

Note that the RGA index takes values between 0 and its
maximum value RGmax, which is obtained when the predicted
ranks order the response variable values in full concordance
(full discordance) with the observed ranks. It can be used to
normalise the values of the RGA index, obtaining a measure
that is bounded between 0 and 1. It is worth remarking that
all models with the same predicted ranks provide the same
value of the RGA index. This issue has not to be intended
as a limitation of our proposal being the goal of the measure
to assess the model attitude in providing a re-ordering of the
observed values, which is as much as possible similar to the
original ordering.

C. The RGA for scoring models
When assessing the predictive accuracy of credit scoring

models in terms of our diagnostic measure, the response
variable Y values can be re-ordered according to the predicted
values P (yi = 1), which indeed take real values. Thus, the
computation of the RGA index involves only the values 0 or
1, according to the absence or the presence of the attribute
of interest, which in this case is the non-default or default
occurance.

The possible behaviors of the concordance curve in the
binary case is illustrated in Figure 2. Figure 2 illustrates the
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three alternative scenarios that can arise, if Y and Ŷ are: a)
perfectly concordant, b) perfectly discordant and c) partially
concordant (discordant). Looking more closely at Figure 2
note that the CY concordance curve has a behavior which is
similar to the ROC curve. However, while the ROC curve
is built ordering cut-off points in an arbitrary way, the CY

concordance overcomes this subjectivity issue, as the ordering
is based on the predicted values themselves. This is indeed a
further advantage of our proposal presenting as an objective
predictive accuracy diagnostics.
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Figure 2. The LY and L
′
Y Lorenz curves and the CY concordance curve.

We finally remark that, in the binary case, the number
of points on which the concordance curve is constructed is
equal to the number of observations. For each observation,
the RGA index compares the values of the actual response,
which in the binary case can be either 0 or 1, ordered in one
case according to the ranks of the observed response, in the
other according to the ranks of the predicted response. We have
perfect concordance (Figure 2 a)) when the ranks coincide on
all observations; perfect discordance (Figure 2 b)) when the
ranks are in reverse correspondence.

IV. APPLICATION TO CREDIT SCORING MODELS

The aim of this section is to show the RGA measure
behavior when assessing the predictive accuracy of alternative
logistic regression models employed in credit scoring applica-
tions. The models are applied to data supplied by a European
External Credit Assessment Institution (ECAI), specialized in
credit scoring for P2P platforms and focused on SME com-
mercial lending. The dataset includes a set of information on
the end-of-year 2015 financial ratios (calculated from balance-
sheet variables) related to 15,045 South-European SMEs, for
which the specification about the status (0 = active, 1 =
defaulted) one year later (2016) is provided. For more details
about the data, see [6].

In Table I, the financial ratios employed to predict com-
pany’s status are reported. Table I shows that, to predict the
company’s status in 2016, 23 financial ratios from 2015 are
available.

TABLE I. LIST OF FINANCIAL RATIOS EMPLOYED AS
EXPLANATORY VARIABLES.

ID Formula or Description
1 Total Assets/Equity
2 (Long term debt + Loans)/Shareholders Funds
3 Total Assets/Total Liabilities
4 Current Assets/Current Liabilities
5 (Current assets - Current assets: stocks)/Current liabilities
6 Shareholders Funds + Non current liabilities)/Fixed assets
7 EBIT/interest paid
8 (Profit or Loss before tax + Interest paid)/Total assets
9 Return on Equity (ROE)
10 Operating revenues/Total assets
11 Sales/Total assets (Activity Ratio)
12 Interest paid/(Profit before taxes + Interest paid)
13 EBITDA/interest paid (Solvency ratio)
14 EBITDA/Operating revenues
15 EBITDA/Sales
16 EBIT Dummy (=1 if EBIT<0, 0 otherwise)
17 Profit before tax Dummy (=1 if Profit before tax<0, 0 otherwise)
18 Financial Profit Dummy (=1 if Financial Profit<0, 0 otherwise)
19 Net Profit Dummy (=1 if Net Profit<0, 0 otherwise)
20 Trade Payables/Operating Revenues
21 Trade Receivables/Operating Revenues
22 Inventories/Operating Revenues
23 Turnover

Following the standard cross-validation approach, the
dataset is split into a training and a test subsample, corre-
sponding to 70% and 30% of the sample. A stepwise logistic
regression is performed on the training dataset. From Figure
3, which provides the R output of the stepwise procedure, it
results that that 17 variables over the original 23 variables are
selected with α = 5%. For each variable, the corresponding
estimated coefficients are also reported. In order to fulfill
the model parsimony requirement, variables which are not
significant at a level of 1%, are removed leading to select
only 9 variables.

By using the estimated coefficient values reported in Figure
3 and derived from the implemented stepwise procedure, the
predicted response values Ŷ are computed for a set of models
that are obtained considering all the subsets of the 9 selected
predictors, whose number of predictors is let vary from 1 to
8. For each model, the RGA, Somers’ D and AUROC are
determined.

A comparison of the measures in terms of model selectivity
is also provided by assessing the capability to order models
by performance and choose the best among them. We first
assess selectivity, for a given model dimension. To this aim,
the boxplots in Figure 4 represent the distribution of the three
measures for different model dimensions: from 1 predictor
to 8 predictors. From the boxplots in Figure 4, it arises that
the variability of the RGA measure across the models of the
same dimension is always larger than that associated with
the other measures, except in the case of only one predictor.
This result shows the attitude of the RGA measure to order
models and discriminate between them, by resorting to their
predictive accuracy. On the contrary, Somers’ D works better
in the one dimensional case and this is motivated by the
usual use of Somers’ D as an exploratory tool for variable
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selection. From a methodological viewpoint, the better model
selection power of the RGA measure, with respect to the
AUROC, stems from the different construction. While the
AUROC is calculated at a selected set of cut-off points, the
RGA is calculated at all response values making it more
sensible to model variations. Moreover, if on the one hand
increasing the number of cut-off points would improve the
AUROC performance making it similar to that associated with
the RGA, this “modus operandi” may lead the AUROC-
based approach more computationally intensive. Somers’ D
is also calculated at all response values but, differently from
RGA, employs an additional data transformation, based on the
binarisation of model errors, which makes it less sensible than
the RGA.

As the last step, model selectivity is assessed by comparing
different model dimensions. To do this, RGA, Somers’ D
and AUROC measures are computed on the best model -
the one for which the analyzed measure is maximum - for
model dimensions that go from 1 to 8. Figure 5 displays the
relative change in the maximum value of the three measures,
as the number of predictors increases. From Figure 5, it
arises that the RGA measure dominates the others in terms
of relative change, for all dimensions, allowing us to further
show the RGA measure superiority in ordering models and
discriminating between them.

Figure 3. Logistic regression output for the model selected trough the R
stepwise procedure.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new measure to evaluate the predictive
accuracy of a credit scoring model was presented.

The new measure, called RGA, is based on the compu-
tation of the cumulative values of the response variable, re-
ordered according to the ranks of the values predicted by a
given model.

Figure 4. Distribution of RGA, Somers’ D and AUROC over the models
estimated on credit rating data. The eight plots correspond to different model
dimensions; reading from left to right, and from top to bottom: models with
1, 2, 3, 4, 5, 6, 7 and 8 predictors.

Compared with the other most commonly used predictive
accuracy measures, the RGA has the advantage of respecting
the ordering requirement for borrowers, and of being inde-
pendent on the choice of cut-off points, differently from the
AUROC, and similarly to Somers’ D. Nevertheless, on the
contrary of the Somers’ D, the RGA is less computational
intensive.
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Figure 5. Relative change of RGA, Somers’ D and AUROC, as a function
of the number of predictors.

The proposed measure appears mathematically sound and
easy to implement. Moreover, it has been found quite effective
in both a real and a simulated credit scoring application. It
overperforms Somers’ D and AUROC in model ordering and
in discriminating between “good” and “bad” models.

Due to its properties, we believe that the main beneficiaries
of the proposed measure may be regulators and supervisors,
interested in assessing and validating the credit risk models
employed by banks and financial technology companies.

Future extensions of the research will be addressed both
to the methodological and application contexts. In the former
case, the development of a statistical testing procedure would
provide to the predictive accuracy assessment a significance
measure. In the latter case, the extensive application to several
other application fields, involving the implementation of other
machine learning models, would further shed light on the ade-
quacy of our proposal as a suitable criterion for the evaluation
of the predictive accuracy in multiple scenarios.
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