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Abstract—This paper develops a model to determine the optimal
number of taxis in a city by examining the trade-off between
the overall profitability of the taxi service versus the customer
satisfaction. We provide a data analytic investigation of taxi trips
in New York City. We model the taxi service strategy by a fleet
management model that can handle arrivals and deterministic
travel times. Under this model, we examine the number of taxis
in a particular period of time and measure the maximum profit in
the overall system and the minimum number of rejected customer
requests. We observe that the maximum profit of the overall
system can be reduced significantly due to reducing the cost of
driving without passenger(s). We present a case study with New
York City Taxi data with several experimental evaluations of
our model with a different period of time during the day and
also with a realistic and a heuristic model. The results provide
a better understanding of the requirement to satisfy the demand
in a different period of time. These data may have important
implications in the field of self-driving vehicles in the near future.

Keywords–New York taxi service; revenue optimization; optimal
routing; linear programming; min-cost network flow problem.

I. INTRODUCTION

Taxis are an essential component of the transportation
system in most urban centers. The ability to optimize the
efficiency of routing represents an opportunity to increase
revenues for taxi services. Vacant taxis on the road waste
fuel, represent uncompensated time for the taxi drivers, and
create unnecessary carbon emissions while also generating
additional traffic in the city. In the not-too-distant future,
fully autonomous vehicles will be the norm rather than the
exception. Taxis could eventually work together to satisfy the
demand of the customers versus compete against each other
to make revenue individually. This can reduce the amount of
traffic on the road and the overall fuel cost significantly. Based
on these ideas, creating a model in which all the taxis work
together to satisfy all the customers would be an interesting
endeavor to explore the number of taxis necessary to satisfy
all the demand.

Previous studies have focused on developing recommenda-
tion systems for taxi drivers [1]–[6]. Several studies use the
global positioning system (GPS) to create recommendations
for both the drivers and the passengers to increase profit

margins and reduce seek times [3] [5]–[7]. Ge et al. [8] and
Ziebart et al. [9] gather a variety of information to generate
a behavioral model to improve driving predictions. Ge et
al. [1] and Tseng et al. [10] measure the energy consumption
before finding the next passenger. Castro et al. [7], Altshuler
et al. [11], Chawla et al. [12], Huang et al. [13], and Qian
et al. [14] learn knowledge from taxi data for other types of
recommendation scenarios, such as fast routing, ride-sharing,
or fair recommendations.

In terms of Linear Programming research, Liang et al. [15]
propose a method of automated vehicle operation in taxi
systems that addresses the problem of associating trips to
automated taxis; however, this research paper is based on
a small case study. It does not provide a feasible model.
Roling et al. [16] describe an ongoing research effort pertaining
to the development of a surface traffic automation system
that will help controllers to better coordinate surface traffic
movements related to arrival and departure traffic in airport
traffic planning. Bsaybes et al. [17] developed framework
models and algorithms for managing a fleet of Individual
Public Autonomous Vehicles with a heuristic model.

In this paper, we are confronting the problem within the
context of managing New York City (NYC) taxis to serve
customers who request a ride. We are investigating a realistic
model with 15 km x 15 km grid combined with a demand of
20,000 rides in 30 minutes. We assume the total business time
is equal to the sum of the total occupancy time plus the total
seeking time. Fundamentally, if we can satisfy the ride requests
with deterministic travel times and minimize the seeking time,
this would provide the maximum profit in the overall system.

The deterministic version of this problem is the min-
cost/max-profit integer problem. The linear and integer ver-
sions for the min-cost “multi-commodity-flow” problem have
been studied extensively in [18] and [19]. In this paper, we
also examine both a realistic and a heuristic model to explore
the difference between the two models with real New York
City Taxi data that is provided to the public. Figure 1 shows
that there are consistent patterns in demand between certain
periods of the day and certain days of the week during June
2013.

The paper is structured as follows. In Section II, we analyze
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Figure 1. (a) to (h) display the day of the week in June. (i) displays the first week of June.

the New York Taxi dataset in 2013. This provides the input
for our linear programming model, which is explained in Sec-
tion III. We assess the performance of the linear programming
model in Section IV, where we conduct numerical experiments
with the realistic model and also the heuristic model. Finally,
the paper is concluded in Section V.

II. DATASET

In our research, we are investigating NYC taxi demand
patterns of a particular day of the week. From each ride record,
we use the following fields: pick-up time, pick-up longitude,
pick-up latitude, drop-off time, drop-off longitude, drop-off
latitude, and traveling time. We omit the records containing
missing or erroneous GPS coordinates. Records that represent
trip durations longer than 1 hour and trip distances greater than
100 kilometers are omitted.

We are interested in observing a consistent demand during
a period of a month. According to timeanddate.com [20], only
three days in the month of June recorded a rainfall. We believe
the weather and temperature can be a factor of the demand.
Figure 1 displays the days of the week in June from Sunday
(Figure 1a) to Saturday (Figure 1g), respectively, and also the
first week of June in Figure 1h.

During the weekday, the lowest demand of the day is from
approximately 04:00 to 05:00, and the highest demand is from
approximately 18:00 to 19:00 followed by 08:00 to 08:30
and the 12:00 to 12:30 period. Based on this observation,
we choose the four different time slots, the lowest demand
of the day 04:00-04:30, the morning traffic 08:00-08:30, the

lunch break 12:00-12:30, and the dinner traffic 18:30-19:00.
Table I displays the maximum, the average, the minimum
demand and the coefficient of variation per minute during four
different time periods in June. The coefficient of variation is
consistent especially for Tuesday and Wednesday. Based on
this observation, we choose June 4th, 2013, the first Tuesday
of June as our main focus.

The analysis of the dataset of the New York Taxi service
is focused on the island of the Manhattan area in New York,
USA. This area imposes a rectangular grid of avenues and
streets. We discretized the grid into a 50 × 50 grid, making
each block in the grid approximately 300 meters × 300 meters.
The choice for a block size of 300 meters is based on the
assumption that a taxi can traverse this distance within 1
minute. Due to the calculation time, we also created a heuristic
model with a 10 × 10 grid, making each block in the grid
approximately 1,500 meters × 1,500 meters and a taxi can
traverse this distance within 5 minutes.

The state of a taxi can be described by two parameters:
the current location, which is an element of the set L =
{(1, 1), . . . , (50, 50)} grid and the current time, which comes
from the set T = {1, . . . , 30}. We will denote the system
state in our model as s = ((i, j), t) = (i, j, t), which we will
elaborate on in Section III.

We select June 4th, 2013 as the date to analyze with an
average of 36.47 requests per minute from 04:00-04:30, an
average of 581.37 requests per minute from 08:00 to 08:30,
an average of 472.43 requests per minute from 12:00 to 12:30,
and an average of 661.90 requests per minute from 18:30 to
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TABLE I. THE TOTAL DEMAND PER MINUTE IN JUNE 2013.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Max 314 63 56 72 80 116 304

04:00-04:30 Average 233.22 39.22 35 49.21 56.86 83.56 55.95
Min 145 20 18 31 40 53 102

% Coefficient of variation 16.50% 18.75% 19.48% 15.45% 16.41% 11.17% 28.09%
Max 174 588 631 643 679 637 284

08:00-08:30 Average 130.07 516.43 562.88 567.71 575.06 539.53 186.95
Min 80 418 502 506 477 439 134

% Coefficient of variation 14.44% 7.42% 5.51% 5.48% 6.96% 7.42% 7.20%
Max 485 562 551 560 568 570 586

12:00-12:30 Average 435.21 462.97 495.86 502.38 501 489.47 477.51
Min 382 389 419 441 420 432 399

% Coefficient of variation 6.10% 8.33% 5.26% 4.17% 6.90% 7.06% 8.06%
Max 526 686 760 735 739 709 722
Min 380 552 563 559 575 565 497

18:30-19:00 Average 456.81 622.58 654.07 642.47 664.57 637.41 593.03
% Coefficient of variation 7.37% 4.33% 5.56% 5.78% 5.34% 5.57% 7.53%

19:00.

III. LINEAR PROGRAMMING

The deterministic version of the taxi routing problem is by
solving a max-profit integer “multi-commodity-flow” problem
for each time period. These problems tend to get large easily
with the number of possible states and resource types, and their
multi-commodity nature presenting an unwelcome dimension
of complexity. Due to this reason, we present both a realistic
and a heuristic model for comparison.

For notational convenience, we denote (x, y) by i and
denote (x′, y′) by j. We are required to serve every customer
demand. However, if there are not enough vacant taxis within
the same grid, the unsatisfied customer demands are not served.
To handle this, we assume that the unsatisfied demands are lost,
and we take the profit from serving a higher revenue demand
to be the incremental profit from serving the demand with a
taxi.

In [21], we assumed that all taxis take a single time period
to travel and all customers have the same taxi preferences. In
this model, we extend our formulation to cover cases where
there are multi-period travel times. For notational convenience,
we assume that demand at a certain location can be served by
a taxi at the same location at the same time and the demand
can be served by the vacant taxi that is able to arrive at the
same location at the same time. For the rest of the section, we
adopt the terminology that an empty taxi driving toward the
next customer is “seeking”.

A. Parameters of the Linear Programming Model

In this subsection, we state the parameters used in the rest
of the model.

Location – realistic (i, j) ∈ L = {1, . . . , 50} ×
{1, . . . , 50}: the area is divided into a grid of
50× 50 grid cells;

Location – heuristic (i, j) ∈ L = {1, . . . , 10} ×
{1, . . . , 10}: the area is divided into a grid of
10 × 10 grid cells; we implement a smaller grid
compared to the realistic model in order to sim-
plify the calculation process.

Time t ∈ T = {1, . . . , 30}: we use minutes as the
interval of a time slot, and a total of 30 minutes
as time horizon.

• Di,j,t describes the number of demand that need to
be carried from grid cell i to grid cell j at time period
t from the original dataset on June 4th, 2013.

• Si,j,t describes the number of empty taxis moving
from grid cell i to grid cell j at time period t from
the original dataset.

• Ti,j,t describes the traveling time from a taxi moving
from grid cell i to grid cell j. We assume the traveling
time is the same at any period of time t. In the heuristic
model, the traveling time is multiplied by 5 to match
the travel time for both models since the grid size is
also increased by a factor of 5.

• xl
i,j,t describes the number of loaded taxis moving

from grid cell i to grid cell j at time period t.

• xe
i,j,t describes the number of empty taxis moving

from grid cell i to grid cell j at time period t.

• cl
i,j describes the net reward from an occupied taxi

moving from grid cell i to grid cell j. We assume
the profit is the same at any period of time t. In the
heuristic model, the cl

i,j is multiplied by 5 to match
the realistic model.

• ce
i,j describes the cost of a vacant taxi moving empty

from grid cell i to grid cell j. We assume the cost is
the same at any period of time t. (Remark: In order
to simplify the model, the cost is half of the reward
and the heuristic model is multiplied by 5 to match
the realistic model.)

• Ri,t,t′ describes the number of taxis in operation that
are inbound to location i at time period t and will
arrive at location i at time period t

′
.

• R describes the number of taxis in the system.

The deterministic version of the problem we are interested in
can be written as:

max
∑
t∈T

∑
i,j∈L

(−ce
i,jx

e
i,j,t + cl

i,jx
l
i,j,t) (1)

117Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-681-1

DATA ANALYTICS 2018 : The Seventh International Conference on Data Analytics



TABLE II. DEMAND AND SEEKING ON JUNE 4TH, 2013

Realistic (50× 50) Heuristic (10× 10)
Actual # of Demand / Driving Missed Actual # of Demand / Driving Missed

Demand Vehicles # of Vehicles empty demand Demand Vehicles # of Vehicles empty demand
04:00-04:30 1,094 650 1.68 628 10 1,035 600 1.73 240 16
08:00-08:30 17,441 8,000 2.18 5,469 7 15,982 7,350 2.17 2,185 30
12:00-12:30 14,173 5,400 2.62 5,213 11 12,800 5,050 2.53 1,699 36
18:30-19:00 19,857 8,200 2.42 5,015 12 18,203 7,650 2.38 1,124 13

subject to

Ri,1,t′ = R, i ∈ L, t ∈ {1}, t′ ∈ T,∑
j∈L

(xe
i,j,t + xl

i,j,t) = Ri,t′,t, i ∈ L, t, t′ ∈ T,

Rj,t′,t+1 =
∑
i∈L

I(t′−t)=τi,j (x
e
i,j,t − xli,j,t) +Rj,t′,t,

j ∈ L, t, t′ ∈ T,

xl
i,j,t ≤ Di,j,t, i, j ∈ L, t ∈ T,

xe
i,j,t, x

l
i,j,t ∈ Z+, i, j ∈ L, t ∈ T.

(2)

which is a special case of the max-profit integer multi-
commodity flow problem.

We evaluate the linear programming approach based on
the New York Taxi dataset on June 4th, 2013 on four
particular times 04:00-04:30, 08:00-08:30, 12:00-12:30, and
18:30-19:00. In our deterministic case study experiment, we
formulate the problem as a max-profit integer problem (1).
From the dataset, we generate the data of Di,j,t, which is the
number of demand from location i to location j at time t. We
also generate the data of Si,j,t, which is the number of empty
taxis driving from location i to location j at time t to seek for
the next passenger(s).

In order to provide a better understanding of our result, we
calculate:

• Demand = Di,j,t,

• Actual seeking = Si,j,t,

• Seeking from our model = ce
i,j ,

• Missing demand = Di,j,t − x∗,li,j,t,

• Actual revenue = cl
i,j ×Di,j,t,

• Revenue from our model = cl
i,j × x∗,li,j,t,

• Actual cost = ce
i,j × Si,j,t,

• Cost from our model = ce
i,j × x∗,ei,j,t,

• Actual profit = actual revenue − actual cost,

• Profit = revenue − cost,

• Lost revenue = cl
i,j × [Di,j,t − x*,l

i,j,t],

where x∗,ei,j,t and x∗,li,j,t are the optimal solutions for xe
i,j,t and

xl
i,j,t, respectively.

One thing to note is that the initial location of the vehicle
was set up based on Ri,1,t′ = R, which means the vehicles
are located to the highest demand profit at the start.

IV. CASE STUDIES AND OBSERVATIONS

In this section, we concentrate on the programming and the
results. We use Rcplex [22] to run our model. In the realistic
model we calculate the result based on the 50 × 50 grid and
a 30-minute interval. Due to the constraints and variables, the
matrix size is approximately 377 million x 188 million. This
requires an approximate 250 GB of memory according to [22],
it took over three hours per calculation. This model is do-able
in terms of calculation, but not scalable making it intractable
for larger problem sizes. Due to this reason, we create the
heuristic model with 10×10 grid to decrease the size such that
it can be handled on a standard desktop computer with 8 GB
of memory. We also increase the travel time in the heuristic
model by 5 to match the increase in size of the grid. The
calculation time with the heuristic model is approximately 10
seconds.

Table II displays the results of four different time periods
using both the realistic and the heuristic model. The heuristic
model has less demand due to having no demand within the
same grid which eliminates just under 10% of the requests each
time period. The demand for the number of vehicles is close in
each model under both the realistic and the heuristic models.
These results indicate that the simplified heuristic model can
still give an accurate approximation of how many taxis we
need to satisfy the demand per period of time.

Table III displays the results of each minute for both the
realistic and the heuristic model for 12:00-12:30 on June 4th,
2013. We decrease the size of the fleet by 1,000 vehicles
and see the percentage difference of the profit. The optimal
fleet sizes are 5,400 for the realistic model and 5,050 for the
heuristic model. When we increase the fleet size by a 1,000,
there will be less driving without the passenger(s) and it does
not provide more profit to the system.

Figure 2 provides a view of the profit comparison for the
realistic model on June 4th, 2013 from 12:00 to 12:30. A
fleet of 5,000 vehicles would satisfy most of the demand and
provide the highest demand in the system.

V. CONCLUSION

We use a linear programming to model the taxi service
and determine the optimal policy to yield the best profit in the
overall system. In Table II, each taxi can cover approximately
1.76, 2.17, 2.60, and 2.40 demand at 04:00-04:30, 08:00-08:30,
12:00-12:30 and 18:30-19:00 time periods, respectively, for
both models.

Table III displays the profit for both the realistic and the
heuristic model. The optimal solution for the realistic model
requires 5,400 vehicles which provide an increased profit of
25,844.50 units to the actual profit and is unable to satisfy
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TABLE III. TABLE OF DEMAND, SEEKING, ACTUAL PROFIT AND DIFFERENCE OF PROFIT WITH DIFFERENT SIZE OF THE FLEET FOR 12:00-12:30 TIME
PERIOD FOR BOTH THE REALISTIC AND THE HEURISTIC MODEL TO COMPARE BETWEEN THEM.

Realistic Model (50× 50) Heuristic Model (10× 10)
Minute Demand Seeking Actual 6, 400 5, 400 4, 400 Demand Seeking Actual 6, 050 5, 050 4, 050

Di,j,t Si,j,t Profit Vehicles Vehicles Vehicles Di,j,t Si,j,t Profit Vehicles Vehicles Vehicles
1 464 409 3,826.5 +917.5 +917.5 +917.5 415 251 3,725 +935 +935 +920
2 490 416 3,951.5 1,021 1,021 1,021 439 277 3,830 +1,060 +1,060 +1,060
3 476 411 4,110 +934.5 +934.5 +934.5 433 255 3,977.5 +932.5 +932.5 +922.5
4 484 374 4,139 +842 +842.5 +842.5 441 219 4,125 +810 +810 +810
5 461 373 3,819 +920.5 +923 +923 417 217 3,892.5 +892.5 +892.5 +892.5
6 462 385 3,777 +956 +959 +959.5 418 243 3,747.5 +962.5 +972.5 +870
7 471 401 4,012 +968 +971 +970.5 423 246 3,902.5 +957.5 +960 +925
8 475 369 4,212.5 +819 +824 +816.5 434 207 4,122.5 +777.5 +777.5 +697.5
9 491 363 4,483.5 +769 +791 +790 456 213 4,532.5 +752.5 +752.5 +722.5

10 479 341 4,224 +828.5 +850.5 +831.5 438 198 4,292.5 +777.5 +777.5 +682.5
11 470 372 4,088.5 +896 +918 +877.5 434 215 4,052.5 +822.5 +820 +622.5
12 441 367 3,479 +882 +915 +871.5 393 221 3,350 +850 +895 +790
13 418 359 3,373.5 +871.5 +923 +789 378 201 3,397.5 +797.5 +857.5 +632.5
14 453 353 3,766 +825 +873 +638.5 406 198 3,662.5 +757.5 +772.5 +410
15 490 326 4,409 +725.5 +777.5 469 454 193 4,365 +695 +690 +340
16 505 342 4,752 +762 +818.5 +414 463 206 4,727.5 +747.5 +767.5 -217.5
17 482 346 4,324.5 +809.5 +865 +485.5 436 201 4,360 +750 +767.5 -97.5
18 500 390 4,206.5 +905.5 +964 +287.5 453 228 4,212.5 +862.5 +902.5 +2.5
19 493 372 4,164 +825.5 +866 +189.5 439 211 4,120 +800 +912.5 -55
20 490 342 4,079.5 +776 +831 +79.5 431 195 3,887.5 +707.5 +737.5 +52.5
21 453 394 3,569.5 +913.5 +996 +422.5 398 220 3,497.5 +797.5 +860 +165
22 437 359 3,758 +813 +892 +322 397 201 3,792.5 +702.5 +800 +167.5
23 504 360 4,509.5 +790.5 +876 +332.5 450 202 4,442.5 +717.5 +747.5 -105
24 479 335 4,262 +746 +827 +158 438 184 4,190 +645 +717.5 +85
25 458 332 3,593 +789.5 +861 +231.5 392 196 3,387.5 +737.5 +822.5 +527.5
26 469 301 4,232.5 +657 +747.5 +240.5 410 167 4065 +605 +600 +170
27 504 319 4,804 +694.5 +759 +298.5 461 179 4715 +635 +625 +50
28 440 344 4,116 +719.5 +768 +516 404 194 4115 +660 +655 +350
29 466 337 3,830 +739.5 +740 +498 433 201 3837.5 +702.5 +687.5 +227.5
30 468 299 3,988 +593 +593 +489 416 179 3942.5 +622.5 +622.5 +402.5

Total 14,173 10,791 121,860 +24,710.5 +25,844.5 +17,616.5 12,800 6,318 120,267.5 +23,472.5 +24,130 +13,022.5
Missing
Demand - - - 0 11 1,469 - - - 0 36 139

11 demands. In the heuristic model, it requires 5,050 vehicles
to satisfy 12,800 demands and it misses 36 demands in that
period. The table also shows that more vehicles to satisfy all
the demand does not provide the highest profit.

As for future discussion, our current model is based on a
50 × 50 grid with a 30-minute time period, which is 2,500
× 2,500 × 30 = 375 million data points on one dimension,
this requires a supercomputer with 2 TB memory and it takes
over three hours per calculation. This is not a feasible method
to solve the model. Creating a model that uses dynamic
programming with value function approximation will reduce
the calculation time and the memory use.

Secondly, having stochastic demand would provide an even
more realistic model, especially when traffic accidents occur
in real time. Lastly, ride sharing is an obvious next step toward
taxi routing research. Can we satisfy all the demand with
limited vehicles and maximize the profit?
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