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Abstract—The EU-FP7 project iTesla developed a toolbox
aimed to assess dynamic security of large electrical power
systems, taking into account the forecast uncertainties due to
renewable energy sources and load. Important inputs to the
toolbox consist in the forecasts and the realizations of thousands
of active power injections from renewable generators, and of
active and reactive power absorption of the load, in the high
voltage French transmission grid, collected into hourly historical
time series. Data show a deep variety of distribution functions and
profiles in the time domain. In this context, the statistical analysis
of historical dataset is very important in order to characterise and
manage such a large variability of distributions. In particular,
the potential multimodality of the variables has to be identified
in order to adapt the sampling technique developed in the iTesla
toolbox, thus assuring accurate results also for this subset of
variables. Moreover, clustering some variables can help reduce
the dimensionality of the problem, which represents an important
advantage while analysing security on very large power systems.
The paper describes four algorithms: one looks for the number
of distribution’s peaks and classifies the variables into unimodal
or multimodal; the second and the third cluster and combine
multimodal variables to obtain unimodal ones, because they are
more suitable for the subsequent computation. All of them are
part of an advanced tool for automatic data description, that
pre-processes the raw data and produces descriptive statistics on
them. The Separation Algorithm is the last one, it back-projects
the sum of two series into the original components.

Keywords—Multimodality; Gaussian Mixture; Cluster; Time
series.

I. INTRODUCTION

Power system security assessment is a theme of great
interest for the Transmission System Operators (TSO), because
they have to operate the system under the uncertainties due to
renewable not programmable sources, load, and unexpected
events due to climate change. The EU FP7 project iTesla [1]
[2] led by the French TSO, Réseau de Transport d’Électricité,
and co-funded by the European Commission, developed a tool
to perform dynamic security assessment in an on-line envi-
ronment, where uncertainties are dealt with by analysing the
historical series of forecasts and realizations of the electrical
power grid in an off-line environment. The project’s output is

a free toolbox, described in [3], available on GitHub [4] and
usable to assess the security of any network.

The testing phase suggested further activities concerning
two aspects: the choice of the most suitable set of data to
train the model in the off-line part, in order to assure the most
accurate result when applied in the on-line case; and an in-
depth statistical description on the forecast errors. This last
activity leads to a twofold consequence: the modification of
the iTesla model to consider the peculiarity of some input
series; the clustering of some input series, that are combined
into a smoother one that is evaluated with higher accuracy
by the model, together with a dimensionality reduction of the
problem [5]–[7]. In any case, in order to perform security
analysis on the grid, the tool needs plausible samples for the
original variables before clustering, so it requires a Separa-
tion Algorithm that divides the combined variables into their
original components.

This paper is organized as follows: Section II gives an
idea of the entire algorithm for the data analysis; Section
III accurately describes the time series classification into
unimodal and multimodal; Section IV proposes two clustering
algorithms and the Separation Algorithm; Section V shows
one application; Section VI draws the conclusion.

II. PREPROCESSING

The input data are composed of two sets: snapshots of
active and reactive powers related to thousands of injec-
tions/absorptions in the French electrical High Voltage (HV)
and Extra High Voltage (EHV) transmission grid, hourly
values over one month (or more), and their forecasts done the
day before. The variables under statistical analysis are time
series of forecast errors computed by

errorhour,node = snapshothour,node − forecasthour,node
∀hour ∈ {hourmin, hourmax}

(1)

Each time series refers to an injection or absorption, that
often has different characteristics from others, in both profile
and distribution: some are continuous, others focus their values
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on a finite number of levels. Several peculiar features can be
detected, such as the presence of outliers and/or of a seasonal
smooth profile.

Furthermore, there are many problems that have to be solved
before starting the algorithm: first, it is necessary to remove
the variables not significant from a statistical point of view
(with too many missing values, or too many constant values,
or with a variance too low); then, the outliers are detected
and deleted; finally, some overall statistical information are
computed, like moments and linear correlation [5].

III. MULTIMODALITY DETECTION

The proposed algorithm for separating multimodal variables
from the unimodal ones is composed of four steps, as in
Fig. 1: detection of the peaks, fitting by using a Gaussian
Mixture, comparison with conventional asymmetric unimodal
distributions, application of bimodal index. The algorithm is
applied to each forecast error variable independently.

A. Find Peaks

For each time series, the first algorithm step constructs a
histogram with more than 10 average samples per equidistant
bin, and then it detects all the bins that are local maxima; one
local maximum is considered a peak only if its previous and
its next local maxima are lower than it. The peaks lower than
10% of the highest one are not considered. The result is a
too numerous set of peaks, where usually some of them are
not significant: it is necessary to better define the number of
modes of the variable’s density distribution.

B. Gaussian Mixtures

The model tries to fit the variable’s distribution function
with a Gaussian Mixture [8], that is a combination of two
or more unimodal Gaussian components, each one with a
mean, a variance and proportion. A loop tests the best mixture,
changing the number of components from 1 until the number
of peaks detected in the previous step; the best solution
has lowest Bayesian Information Criterion (BIC) [9]. During
each fitting, the Expectation-Maximization (EM) algorithm
[10] finds the best set of the k parameters of each mixture
components in an iterative way, maximizing the Likelihood
(L) function by applying the Maximum Likelihood Estimation
method (MLE); repeating three times each fitting, the best case
has lowest Akaike’s Information Criterion (AIC) [11]. Being
n the number of variable’s elements,

BIC = −2ln(L)+k ·ln(n); AIC = −2ln(L)+2k. (2)

The EM algorithm stops when it converges, i.e., when
the error between L and real data is lower than a given
tolerance; if 100 iterations are reached without convergence,
the Mixture is discarded and another one with different number
of components is tested. If the best fit is a Normal distribution,
the algorithm stops and analyses the next variable.

Fig. 1. Algorithm for Multimodality Detection.

C. Comparison with Unimodal Distributions

Many variables, up to this point classified among the mul-
timodal ones, have a platykurtic and skewed distribution, and
they are approximated by a Mixture composed of two or more
components that are not well separated at a visual inspection.
This step looks for a unimodal asymmetrical distribution that
fits the variable in a better way than the Gaussian Mixture,
choosing between six distributions: Weibull, Logistic, Gamma,
Log-Normal, Generalized extreme value and T-location scale.
The best fitting is obtained by the MLE method until conver-
gence.

If the BIC index of one unimodal distribution is lower
than the BIC of the best mixture, the algorithm classifies the
variables as unimodal and analyses the next variable.

D. Bimodal Index

Variables classified as multimodal up to this point are
subjected to a final step: the computation of a bimodality
index, Ashman’s D index [12]. It is used with the mixture
of two distributions with unequal variances, σ2

1 and σ2
2 . Let

µ1 and µ2 their averages, the mixture is unimodal if and only
if

D =
√
2
|µ1 − µ2|√
σ2
1 + σ2

2

≤ 2 (3)

It means that if the components are not well separated, the
distribution could be better fitted by a unimodal distribution. If
a mixture contains three or more components, the Ashman’s
D index is computed for each pair of components, and the
global distribution is multimodal if at least one D index is
higher than 2.
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Fig. 2. Local maxima (red points) and peaks (black crosses) detected by the
module Find Peaks.

Fig. 3. Mixture with two components detected by the module Gaussian
Mixture.

Fig. 4. Seven distributions detected by the module Unimodal distributions.
Ashman’s index = D < 2.

One example explains how the multimodality algorithm
works: Fig. 2 displays 13 local maxima of which 3 peaks;
Fig. 3 presents the best Gaussian Mixture with 2 components;
Fig. 4 shows that one unimodal distribution fits the variable
almost as good as the Mixture (their BICs differ for only 20
points); finally, the Ashman’s D index is lower than 2, so the
variable is classified among the unimodal set.

IV. CLUSTERIZATION

The original iTesla tool provides very accurate results in
case of unimodal variables identified in the previous section.
Two consecutive developments have been achieved: the for-
mer is to modify the iTesla tool to manage the multimodal
variables, as described in [5]–[7], the latter is to combine the

multimodal variables to get a unimodal one, as proposed in
this section. Two clusterization algorithms are described, one
based on correlation and distance concepts and the other on
the physical connection of the variables: for each specific ap-
plication, the selected algorithm is the one which produces the
highest number of clusters. In the iTesla tool, the multimodal
not clustered variables are treated by a specific module.

Each clustering algorithm can generate some cluster, each
one with two or three variables, and transform them into one
unimodal variable, reducing the problem dimensionality. In its
final part, the iTesla module applies new simulated realizations
of the original variables on the grid to compute a new system
states: to this purpose a Separation Algorithm decomposes the
samples of the aggregated variables into the original ones.

A. Algorithm Based on Hierarchical Clustering

Each variable comes from an electrical node, that has a
specific geographical position; different events can happen
and induce two nodes to have a similar behaviour: the linear
correlation identifies this kind of relationship. But only if two
correlated nodes are close, it is probable that this liaison is
physically justified by the operational practice on the system.

Fig. 5 shows the algorithm to select the variables, cluster
them and check the clusters. The algorithm works separately
two times, once on the active power variables and once on the
reactive power ones. The first step is always to group together
all the multimodal variables.

The distance function is based on the linear correlation
Pearson index: two variables X and Y are close if they are
highly correlated:

dist(X,Y ) = 1− |corr(X,Y )| . (4)

Then, the hierarchical clustering produces a set of clusters
composed of two variables at most; the next step verifies if
they are equal in a particular meaning: X and Y are equal if
their difference is higher than 1 MW (Mvar) for at most the
3% of their records. Given N the number of variable elements,

given J = {1, 2, .., N} , I = {j1, j2, ..j3%N} ⊂ J
if |Xj − Yj | < 1 ∀j ∈ J \ I

⇒ X = Y

(5)

The reason of this equality is the sensitivity of measurement
instruments, 1 MW (Mvar), together with the error propagation
from measurement to this elaboration. Furthermore, there
could be some outliers in the time series differences, that are
estimated at most in the 3% of each variable’s population.

The next step applies the nearest neighbour algorithm to ver-
ify the geographical distances: if variable Y falls between the k
nodes closest to variable X , the cluster remains, otherwise it is
filtered out. A trial and error approach sets parameter k equal
to 50 because it is a good trade off between the neighbour’s
number of the urban nodes, where they are very concentrated,
and the countryside where they are rare. When k decreases,
also the number of good clusters gets lower.

In the final step, the time series clustered together are added:
if the sum’s distribution function is multimodal, the cluster is
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Fig. 5. Clusterization Algorithm.

eliminated, otherwise it remains and the clustered variables
are treated as one smoother unimodal variable.

B. Algorithm Belonging to the Same Substation (ABSS)

In the electrical grid, a substation can be represented by
busbars containing switches. When the switch is closed, all the
busbars work like a unique electrical node; when it is open,
the busbars are split into two half-busbars, each one working
like an independent electrical node; the power injection or
absorption at the substation level at each instant is the power
at all the busbars. The combination of switch statuses in the
entire grid, called grid topology, impacts the values because
they are not always measured and the state estimator arbitrar-
ily splits the overall substation injection/absorption when no
individual data is available: the right value is unpredictable
at single node level, but foreseeable at substation level. The
variables belonging to the same substation have the same first
7 characters in their names.

From a mathematical point of view, the forecast errors of the
electrical nodes that lie in a substation are large, with generally
an irregular distribution and many peaks, but the forecast error
at the substation level has better statistical properties, often
showing a unimodal distribution.

The strategy adopted is to cluster the multimodal variables
in the same substation, adding their time series in order to
obtain one unique time series with a smoother distribution.
The algorithm:

1) Considers separately the variables of active and reactive
power.

2) Groups the variables (usually two or three) that are in
the same substation.

3) Removes the clusters containing equal variables, like
defined in Equation 5.

4) Sums the two or three time series of clustered together
variables.

5) For each group, it checks if the resulting sum is
unimodal: if yes, the cluster remains, otherwise, it is
eliminated.

C. Separation Algorithm

In the iTesla work flow, the clustered variables are sent to
the sampling module, aimed to generate plausible realisations
of the same variables. However, in order to perform studies
on the grid, it is necessary to back-project these samples of
clustered variables into the samples of original variables, one
for each electrical node of the system.

Given the sum of clustered variables in the overall system,
the Separation Algorithm have to split them to assign a value to
each single variable, preserving the cluster sum. The physical
aspect is the most important: it must preserve the overall
variability of the system, avoiding that one variable has a too
high variance, because it can lead to a computational problem
of system stability without any correspondence in the reality. It
is important to preserve also the correlation between variables,
if present.

Two splitting algorithms are proposed, respectively for two
and three clustered variables.

The fundamental formula at the base of all the reasoning is
the variance of the sum of two variables.

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ) (6)

Suppose that the historical time series are Xo and Yo, their
unimodal sum is Zo. The iTesla platform has to simulate new
values for the system variables, preserving the original distri-
butions: it estimates a new sum Zn; the Separation Algorithm
tries to split Zn in Xn and Yn, with both variances not too
high and with linear correlation similar to the original series:
it estimates Xn, and computes Yn like difference between the
sum and Xn, in order to not modify the sum Zn = Xn + Yn.
For the sake of simplicity, in this explication Zo = Zn. So it
remains

V ar(Xo) + V ar(Yo) + 2Cov(Xo, Yo) =

V ar(Xn) + V ar(Yn) + 2Cov(Xn, Yn)
(7)

Since the variable Xn will be calculated considering its de-
pendence from Zn, its variance decreases, while the remaining
sum increases:

V ar(Xo) ≥ V ar(Xn)

V ar(Yo) + 2Cov(Xo, Yo) ≤ V ar(Yn) + 2Cov(Xn, Yn)
(8)

Separation Algorithm for Two Variables: Given:
• Xo, Yo the original variables
• Zo = Xo + Yo
• Zn the new sum generated inside the iTesla tool, for

testing model it is Zn = Zo.
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The algorithm works as follows:
• if |corr (Xo, Yo)| ≤ 0.9 then

– it calculates average µX|Z and variance σX|Z of Xn

conditioned to Zn

– it generates the distribution NX|Z (µX|Z , σX|Z)
– it extracts randomly one realization of Xn from
NX|Z

– it computes Yn = Zn −Xn

• if |corr (Xo, Yo)| > 0.9 then
– ratio = |Xo|

|Xo|+|Yo|
– Xn = sign(corr(Xo, Zo)) · ratio · Zn

– compute Yn = Zn −Xn

Separation Algorithm for Three Variables: Given:
• Xo, Yo, Vo the original variables
• Zo = Xo + Yo + Vo
• Zn the new sum generated inside the iTesla tool, for

testing model it is Zn = Zo.
The algorithm works as follows:
• ratio1 = |Xo|

|Xo|+|Yo|+|Vo|
• Xn = sign(corr(Xo, Zo)) · ratio1 · Zn

• ratio2 = |Yo|
|Xo|+|Yo|+|Vo|

• Yn = sign(corr(Yo, Zo)) · ratio2 · Zn

• Vn = Zn −Xn − Yn

V. CASE STUDY

The implementation and the testing phase are done with
Matlab 2017b.

The analysed dataset is composed of the time series of
forecast and realizations of 3194 withdrawal/injections in the
electrical French transmission grid, each one with 654 records
collected once per hour from 2013/03/01 00:30 to 2013/03/01
23:30, concerning loads and renewable sources. The variables
under study are the forecast errors, obtained by the Equation
1.

The preprocessing keeps 3122 significant variables, 80% of
the original dataset.

A. Multimodality

Fig. 6 reports the results of the application of the algorithm
for the multimodality detection. It can be noticed that the
number of detected multimodal variables (700 out of 3122) is
significant, which justifies the need for a proper management
of the multimodal variables in the iTesla tool.

B. Clusters

The two Clustering Algorithms find different numbers of
clusters. The Clustering ABSS finds 42 clusters with 2 vari-
ables and 11 with three variables, while the other algorithm
finds 28 clusters with two variables: in this application case
the ABSS is preferable to reduce the problem dimensionality
because it clusters 117 variables. An example of cluster is in
Fig. 7: the histograms of three multimodal variables related to
the same substation are shown in blue, while their unimodal
sum, that is the total production or absorption of the substation,
is shown in magenta.

Fig. 6. Classification process operated by the Multimodality Algorithm on
the test case.

Fig. 7. Example of three clustered variables within same substation.

C. Separation Algorithm

Given the 42 clusters composed of two variables, 11 clus-
ters with three variables, the sum’s decomposition into the
contributions of two (or three) variables has to preserve the
total variability caused by the clustered stochastic variable
in the system, i.e., each component does not have a too
big variance with respect to the original variables. Table I
shows the statistical description of three examples of new
variables obtained with the decomposition method described
above. The last column is the difference between total standard
deviation of the original variables and those of new variables:
total variation = (σA + σB)new − (σA + σB)orig; if
this value is negative, the original variables have an overall
variability higher than the new case, so the decomposition
algorithm does not add variability to the system. If the total
variation is positive, the new variables have higher standard
deviations compared to the original ones; in these cases, it is
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TABLE I. COMPARISON BETWEEN ORIGINAL VARIABLES AND NEW ONES, OBTAINED BY DECOMPOSITION OF THEIR SUM. MW FOR
ACTIVE POWER AND Mvar FOR REACTIVE POWER.

Var µA µB σ2
A σ2

B CovAB σA σB corrAB σ2
A + σ2

B σA + σB total variation
1 original 3.26 -1.54 84.4 134.1 -35.4 9.2 11.6 -0.3 218.5 20.8 1.04
1 new 3.25 -1.58 60.6 196.7 -54.7 7.8 14 -0.5 257.3 21.8 -
2 original 0.84 -2.61 36.7 32 -20.7 6.1 5.7 -0.6 68.7 11.7 0.5
2 new 0.91 -2.70 26.8 49.4 -24.5 5.2 7 -0.7 76.2 12.2 -
3 original 2.66 -1.50 182.2 125.3 -126 13.5 11.2 -0.8 307.5 24.7 -1.46
3 new 3.17 -0.98 116.3 155 -108 10.8 12.5 -0.8 271.3 23.3 -

Fig. 8. Histograms and scatter plots of the original variables A and B. v1 is
variable A, v2 is variable B.

Fig. 9. Histograms and scatter plots of variables obtained by the separation
of the sum A+B. A3 si variable A, B3 is new variable B.

desirable a low value. Looking at the results, the averages of
original and new variables are very similar, the variances of
variable A decreases while those of B increase; considering
the standard deviations, they increase a little and their sum
in original variables have a very small difference from their
sum in new variables. One graphical comparison is shown in
Fig. 8 (original variables) and Fig. 9 (splitted variables): the
distributions of the splitted variables are smoother than those
of the original ones, but they preserve the direction of the
correlation and the standard deviations.

Considering all the 53 clusters, in 17 cases the variation
is positive, but the worst case is 4.15 MW/Mvar, while all
the other differences are lower than 2 MW/Mvar. These
values demonstrate the goodness of this Separation Algorithm
considering its objective.

VI. CONCLUSION

The paper has presented some algorithms to detect the
multimodality of power system forecast errors and to cluster
multimodal variables into aggregated variables with smoother
statistical properties. The need for these algorithms comes
from the application of an advanced toolbox for power system
security assessment developed in the EU project iTesla. The
results of the application of the first algorithm show that it
is effective in identifying the set of multimodal variables,
which can be a significant fraction of the total amount of
variables, in a real life operational environment in power
systems. Moreover, the tests on the clusterization techniques
show that few pairs or triples of multimodal variables can be
reduced into unimodal aggregated variables. The last simula-
tions also show that the back-projection techniques used to go
back from the samples of clustered variables to the original
components are effective in generating reasonable samples
of each individual original component without altering the
variability in the system. The proposed techniques are general
and can be applied to any kind of data.
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