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Abstract—We investigate the connectivity within different incre-
mental sets of Japanese Kanji characters. Individual characters
constitute the vertices in the network, components shared between
them provide their edges. We find the resulting networks to
have a high clustering coefficient and a low average path
length, characterizing them as small worlds. We examine the
statistical significance of these findings and the role of the
degree distributions. We review the evidence that the small-world
topologies of these networks are due to the successive elimination
of components in the writing system and discuss the implications
of the results for language evolution.
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small-world networks; phase transition; Zipf’s law; Gelb’s hypoth-
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I. INTRODUCTION

Small-world networks are sparsely connected networks that
have a high cluster coefficient (CC) in combination with a
low average path length (APL) [1]. The CC on a vertex A
which is adjacent to vertices B1, . . . , Bn, is the number of
edges between nodes B1, . . . , Bn divided by the maximum
of n(n − 1)/2. As such, the CC on A expresses A’s local
interconnectivity; the CC of a network is the average of all its
vertices. The APL is defined as the average number of edges in
the shortest path between all pairs of vertices in the network,
and as such expresses its global connectivity.

In real-life, small-world networks have been found in a
broad variety of fields: power grids [1], neuronal networks
in nematode worms [2], the primate brain [3] [4], the World
Wide Web [5], and networks of social relationships [6]. Some
evidence suggests that small-world topologies are an emergent
property resulting from self-organization in a population of
communicating agents [7]–[11]. Small worlds have also been
found in language networks of co-occurring words [12], and
even more specifically, in far eastern writing systems. An
investigation in Chinese characters sharing ‘radicals’ [13]
appears to be closest to ours. These authors investigated
the network topology of modern-day Chinese characters and
found small-world properties, as well as a non-Poisson degree
distribution. Even though Chinese and Japanese characters
differ considerably nowadays, computational results of these

authors are comparable to ours and others in the field. On
a slightly higher level, various research teams constructed
networks of co-occurring characters [14], words [14]–[16]
and phrases [17] in Chinese. Like [13], these authors find
small-world properties, possibly indicating that the same self-
organizing forces shaping logographic languages at character
level are also shaping writing systems on a larger scale.

Interestingly enough, a similar word level investigation
was conducted in Japanese two-Kanji words as well [18]
[19]. Despite the difference in characters and methods, these
authors also find small-world networks, affirming consistent
sharing of characters between words in logographic languages.
But as it turns out, an investigation of network topologies in
Japanese at character level is still missing. It is this gap that
our investigation hopes to fill, conjoining all aforementioned
investigations, and as such interconnecting the field of research
on network structures in Japanese and Chinese writing systems
at both word and character level.

The structure of the paper is as follows. We discuss the
Japanese writing system in Section II. We then proceed to
show that Kanji is a small-world network in Section III. In
Section IV we state our conclusions, provide a discussion on
the results, and discuss possible extensions of our work.

II. THE JAPANESE WRITING SYSTEM

A writing system reflects the history of the civilization
in which it emerged, and some writing systems have devel-
oped a striking level of complexity. The Japanese language,
notably, employs four character sets: Hiragana, a 46-piece
syllabic script; Katakana, also 46 characters, is similar to
Hiragana though mainly used for foreign words, expressions
and emphases; Kanji, a logographic symbol script related
to the Chinese characters, and finally Romaji, the Roman
alphabet, used mostly for numbers, advertisements and in pop
culture. All four character sets are represented in the following
sentence:

マークは明日、月曜１０時にあの寺で待っています。

Tomorrow, Monday, at 10 o’clock, Mark
will be waiting near that temple
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Table I. THREE TIMES THE CHARACTER FOR ‘FUN’ OR ‘ENTERTAINING’.
NOTICE THE DIFFERENCE IN COMPOSITIONAL STRUCTURE, ESPECIALLY
REGARDING THE ‘THREAD’-COMPONENT (THE ‘LITTLE SIDEBURNS’ IN

THE TRADITIONAL CHARACTER).

simplified (modern day) Chinese
樂 traditional Chinese, Cantonese, Taiwanese
楽 Japanese

The first three characters: マーク, ‘Mark’, are Katakana;
the number 10 is written in Romaji. The characters: は,
に, あ, の, で, っ, て, い, ま, and す are Hiragana. The
remaining characters:明,日,月,曜,時,寺, and待 are Kanji.
Japanese words are usually comprised of Katakana only (マー
ク), Hiragana only (あの), Kanji only (月曜, 時, 寺) or a
combination of Kanji and Hiragana (待って). In Kanji-only
words, combinatorial deployment of characters shows close
correspondence to word compounds in other languages. For
instance, the single character word for ‘gold’ (金) and the
single character word for ‘fish’ (魚) are commonly combined
into a single two-Kanji word金魚, meaning ‘goldfish’. Fishing
(釣) and stick (竿) make ‘fishing rod’ (釣竿). Estimations
for the total number of existing Kanji characters range from
40,000–100,000 and new characters could theoretically still be
added today [20], but the vast majority of these characters are
rarely used. Although all far eastern logographic languages are
thought to stem from the same source, there are considerable
differences between Japanese Kanji, Chinese characters, and
the writing systems in Taiwan and Hong Kong nowadays.
Japan has some unique Kanji and a post-war simplification
effort in China resulted in a substantial difference between the
sets (see Table I). Japanese, Cantonese (from Hong Kong) and
Taiwanese characters did not undergo such simplification, but
nonetheless diverged over time, and are different from Japanese
Kanji too.

Many complex Kanji characters can be seen as compounds
of elementary building blocks. We will call these building
blocks components, and a clear distinction should be made
from a Kanji’s radical, which is traditionally the Kanji’s
component used for dictionary indexing. As an example,
the single-component character 日 (meaning ‘day’ or ‘sun’)
and the single-component character 月 (meaning ‘moon’) are
combined into a two-component character 明, which means
‘bright’. Only the sun-component, however, is considered to be
its radical. Both Japanese and Chinese dictionaries traditionally
recognize 214 radicals, but many modern electronic Kanji
dictionaries employ a 252-piece component file, from which
any and every combination of components can be selected
for character lookup. It is this 252-piece set, which has
considerable overlap with but is not identical to the traditional
214-piece radical set, that was used for this investigation. The
exact specification of the 252-component KRADFILE can be
found on [21].

Japanese Kanji is organized into several cumulative sets.
The KyouIku (“education”) is a 1,006-piece set of commonly
used Kanji maintained by the Japanese ministry of education.
It covers roughly 90% of the Kanji used in the Japanese
corpus and is used to determine which characters should
be learned by Japanese children in each year of elementary
school. The JouYou (lit.: “commonly used”) is a set of 1,945
Kanji characters and has also been maintained by the Japanese

Figure 1. Graph of the Kanji from the example sentence mentioned in the
introduction. Vertices represent individual Kanji characters, connected if they

share at least one component as identified by the label.

ministry of education, since 1981. It is a superset of KyouIku,
extending it by 939 characters learned in secondary school,
covering 98.66% of the Kanji used in the Japanese corpus
and contains all Kanji allowable in governmental documents.
Finally, the JIS X.0208 is a Japanese Industrial Standard
defining a 6,355-piece character set, which extends the JouYou
by another 4,410 characters, covering 99.98% of all Kanji
characters used. Our focus will be on these three character sets,
in particular with their intrinsic structures. These structures,
as we will show, share characteristic properties with other
spontaneously evolved self-organized complex systems.

III. KANJI IS A SMALL-WORLD NETWORK THROUGH
SHARED COMPONENTS

We may envisage the cumulative sets of Kanji characters
as networks, in which the vertices are characters connected by
an edge if they share at least one component (see Figure 1).

An undirected network of n vertices can have a maximum
of n(n− 1)/2 edges; all three networks have a small fraction
of this, classifying them as sparse. Omitting disconnected
vertices, the KyouIku network has 1,004 nodes and 73,173
edges (density 14.53%), the JouYou network has 1,943 nodes
and 292,234 edges (density 15.49%), the JIS.X.0208 has 6,355
nodes and 3,354,225 edges (density 16.61%).

In literature, values for CC and APL in real-life small-
world networks have mostly been compared to theoretical val-
ues of CC and APL in Erdös-Rényi (ER) random networks [22]
and to those of actually randomized networks [1] of similar
numbers of vertices and edges. A stricter comparison can be
made by randomly cross-wiring pairs of edges, a procedure
known as the Maslov-Sneppen (MS) algorithm [23]. This algo-
rithm randomly selects two pairs of connected vertices (v1, v2)
and (v3, v4) such that all four vertices are different and then
rewires them to (v1, v4) and (v3, v2). Repeating this operation
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Table II. FROM EACH KANJI NETWORK, WE CONSTRUCTED 1,000 ERDÖS-RÉNYI RANDOM NETWORKS AND 1,000 MASLOV-SNEPPEN RANDOM NETWORKS
BY 106 ITERATIONS OF THE RESPECTIVE ALGORITHM. BOTH ER-RANDOMIZATIONS AND MS-RANDOMIZATIONS WERE USED AS DIFFERENT NULL

HYPOTHESES TO TEST THE STATISTICAL SIGNIFICANCE OF THE VALUES FOR CC AND APL FOUND IN THE KANJI NETWORKS.

ER-randomized MS-randomized
actual mean (µ) std.dev. (σ) z-score mean (µ) std.dev. (σ) z-score

Kyoulku CC 0.629 0.145 2.178 · 10−4 2.218 · 103 0.330 1.377 · 10−3 2.169 · 102
Kyoulku APL 1.962 1.855 3.129 · 10−14 3.440 · 1012 1.900 7.620 · 10−4 8.196 · 101
Jouyou CC 0.604 0.155 6.072 · 10−5 7.395 · 103 0.321 5.198 · 10−4 5.446 · 102
Jouyou APL 1.888 1.845 0.437 · 10−14 9.760 · 1011 1.858 2.724 · 10−4 1.089 · 102
JIS.X.0208 CC 0.582 0.166 3.203 · 10−5 1.298 · 103 0.321 1.200 · 10−4 2.174 · 103
JIS.X.0208 APL 1.843 1.834 0 ∞ 1.836 5.165 · 10−5 1.360 · 102

for a large number of iterations effectively randomizes the
network, but preserves the exact degree distribution.

For assessing the statistical significance of the actual CC
and APL of the three Kanji networks, we generated 1,000
ER-randomized networks and 1,000 MS-randomized networks
from each of the three Kanji networks by rewiring the original
networks 106 iterations with the respective methods. The CC
of all three Kanji networks is far larger than that of either
an ER-random network or a MS-random network making
them highly clustered (Table II). It should be noted that the
significant difference between CC for MS-random networks
and ER-random networks also suggests that the exact degree
distribution might play a crucial role in facilitating the high
clustering coefficient of these networks (Figure 2). The APL-
values of the networks are relatively low, making the networks
globally well-coupled despite their low edge density.

The KyouIku network has two vertices with degree zero
(面, meaning ‘surface’ and 飛, meaning ‘to fly’). As dis-
connected vertices lead to undefined path lengths, these two
vertices were excluded from the experiments. The network’s
best-connected Kanji vertex is 速, meaning ‘fast’, which has
450 edges, connecting almost half the network. The characters
in KyouIku contain a total of 219 different components of
which 30 are used only once. The most common component is
the enclosure component口 which is shared by 181 characters
in the set. The JouYou network, like the KyouIku network, also
had two isolated vertices removed from calculations (again 面
and 飛). In this network, the Kanji vertex with the highest
degree is 籍, meaning ‘one’s family register’, which has 922
connections, connecting almost half the JouYou network. In
this set of characters, there are 237 different components of
which 13 are used for one character only. The enclosure
component 口 is again the most common component, being
present in 345 different characters. The JIS.X.0208-network
is a connected network; there is a path from every vertex to
every other vertex. Only one Kanji vertex in the network (飛,
meaning ‘to fly’) has exactly degree one (being adjacent only
to飜, meaning ‘to turn over’). In this network, the most edges
on a single vertex is 3,001, for 檀 (meaning ‘cedar’), which
is thereby connected to almost half the network. Again, the
enclosure口 is the most occurring component, which is shared
by 1,325 Kanji vertices in this network. The rarest components
are 鬯 and 鼎 both appearing only once. Plotted vertex degree
histograms show irregular distributions for all three networks,
meaning that they do not qualify for the characteristic of being
scale-free [24] (Figure 2).

IV. DISCUSSION AND FUTURE WORK

The clusters in the Japanese Kanji sets are an immediate
result of the distribution of components among characters. Any
single component completely interconnects all characters hav-
ing that component, effectively creating an integrated module,
often increasing the network’s CC significantly. However, this
has possibly not always been the case; the 2nd century A.D.
dictionary Shuōwén Jiězı̀ (“Explaining Simple and Analyzing
Compound Characters”), describes 9,353 characters indexed by
540 radicals and possibly containing an even larger number of
components. None of the far eastern logographic languages has
nearly that many components nowadays, signifying the number
must have dropped dramatically through time.

This considerable reduction in visual complexity might
have been symbiotically accompanied by another interesting
development. Research has shown that the pronunciation of a
modern-day Kanji closely corresponds to the components it
contains [25]–[27]. For instance, the single-component Kanji
中, meaning ‘middle’ is pronounced as chuu, but so are very
different compound Kanji containing the same component:
忠 (‘loyal’), 沖 (‘shore’), 仲 (‘relation’), 虫 (‘insect’), 狆
(‘Japanese Spaniel’). It might be somewhat problematic to un-
derstand how these five Kanji would actually share a quantity
of meaning (in this case the concept of ‘middle’) but clearly,
they do share their pronunciation.

Together, these observations may be interpreted as support
for Gelb’s hypothesis. In his influential study, Ignace Gelb
hypothesized that characters in human written languages tend
to evolve from picture-based logographic symbols to sound-
based alphabetic symbols through time, with the “degree
of abstractness serving as the main index of sophistication”
[28], [29]. Interestingly enough, the statistical footprint of
both Kanji characters and their components seems to provide
further support for this theory. Although words in Japanese are
distributed very much like words in non-logographic languages
(Russian, Arabic, Spanish), following Zipf’s law [30]–[33],
the frequency distribution of individual Kanji characters more
closely resembles those of alphabetic letters in Cyrillic, Arabic,
and Roman scripts (Figure 3) but perhaps more surprisingly
– so does the set of individual components. So, even if Kanji
and Kanji components would be pure logographic symbols and
word-like carriers of meaning, their statistical behavior tells a
different story, classifying them as letters like б, л, ш, й,
m, u, ñ, d, , , , . more than anything else.

The composition of Kanji characters is often primarily
explained through its combined meanings of their components
(e.g., in textbooks [34], [35]) but these explanations might
be of mnemonical or folkloristic nature more than historically
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Figure 2. Degree distributions (left) of Kanji networks (top: KyouIku, middle: JouYou, bottom: JIS X.02.08) show apparent featureless patterns. However,
log-log plots of the cumulative networks of the same plots (right-hand side) show largely linear tendencies on the central part. The red line corresponds to both

the exponent and the interval used for the specific network, the text directly below is the value of its exponent. The values in the inset boxes are fitting
intervals and fitting errors. All fits were done with Fityk on Linux by the Levenberg-Marquardt method from random initial conditions.

accurate accounts of Kanji construction. If the interpretation of
our findings is correct, modern-day Kanji, at least to some ex-
tent, behave more like alphabetic letters than like logographic
pictures. From this perspective, clustering (or small-worldness)
in a network of Japanese (or Chinese) characters might just be
a side effect of a much larger process: that of a language being
in the midst of a phase transition from being picture-based to
being alphabet-based.
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Figure 3. Written words in Japanese, as in most other languages, closely follow a power law distribution known as Zipf’s law in linguistics (left). But even
though single Kanji characters are often interpreted as carriers of meaning, their statistical behaviour more closely resembles that of letters in non-logographic

writing systems (top right), and the same goes for its components.
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