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Abstract—Coronal mass ejections are colossal bursts of magnetic
field and plasma from the Sun. These eruptions can have
disastrous effects on Earth’s telecommunication systems and
power grid infrastructures costing millions of dollars in damages.
Hence, it is imperative to construct intelligent predictive processes
to determine whether an incoming coronal mass ejection will
produce devastating impacts on Earth. One such process, called
“stacked generalization,” is an ensemble strategy that incorpo-
rates the predictions from a diverse set of models (base-learners)
by using them as inputs for another model (a meta-learner). The
goal of this meta-learner is to deduce information about the biases
from the base-learners and improve generalization to make more
accurate predictions. In this work, 30 models are chosen from
the R package caret to serve as base-learners in order to predict
a geomagnetic storm index value associated for 2,811 coronal
mass ejection events that occurred between 1996 and 2014. Two
meta-learners are explored: 1) standard linear regression 2) non-
negative elastic net regression. Results show that for this dataset,
stacked generalization with the latter meta-learner produces the
lowest error and performs significantly better than any of the
base-learners executed individually. Not only does non-negative
elastic net regression have predictive advantages, but it provides
sparser solutions and more reliable inferences at the meta-
level compared to linear regression. This, in turn, encourages
the idea of parsimony and consequently, improves the overall
generalization behavior of this technique.

Keywords–geomagnetic storms; stacked generalization; regular-
ization; predictive modeling.

I. INTRODUCTION

Coronal Mass Ejections (CMEs) are massive explosions of
magnetic field and plasma components from the Sun (shown
in Fig. 1). Typically, a CME travels at speeds between 400
and 1,000 kilometers per second [1] resulting in an arrival
time of approximately one to four days [2]; however, they
can move as slowly as 100 kilometers per second or as
quickly as 3,000 kilometers per second (or around 6.7 million
miles per hour) [3]. These phenomena can contain a mass
of solar material exceeding 1013 kilograms (or approximately
22 trillion pounds) [4] and can explode with the force of a
billion hydrogen bombs [5]. Naturally, CME events are often
associated with solar activity such as sunspots [3]. During the
solar minimum of the 11 year solar cycle (the period of time
where the Sun has fewer sunspots and hence, weaker magnetic
fields), CME events occur about once a day. During a solar
maximum, this daily estimate increases to four or five. One
plausible theory for these incidents taking place involves the
Sun needing to release energy. As more sunspots develop,

more coronal magnetic field structures become entangled;
therefore, more energy is required to control the volatility
and convulsion. Once the energy surpasses a certain level,
it becomes beneficial for the Sun to release these complex
magnetic structures [1]. When this force approaches Earth, it

Figure 1. LASCO coronagraph images [3], courtesy of the NASA/ESA
SOHO mission.

collides with the magnetosphere. The magnetosphere is the
area encompassing Earth’s magnetic field and serves as the
line of defense against solar winds. The National Oceanic and
Atmospheric Administration (NOAA) describes this event as
“the appearance of water flowing around a rock in a stream”
[6] as shown in Fig. 2. After the solar winds compress Earth’s

Figure 2. Rendering of Earth’s magnetosphere interacting with the solar wind
from the Sun [7], courtesy of the NASA’s Goddard Space Flight Center.

magnetic field on the day side (the side facing the sun), they
travel along the elongated magnetosphere into Earth’s dark side
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(the side opposite of the Sun). The electrons are accelerated
and energized in the tails of the magnetosphere. They filter
down to the Polar Regions and clash with atmospheric gases
causing geomagnetic storms. This energy transfer emits the
brilliance known as the Aurora Borealis, or Northern Lights,
and the Aurora Australis, or Southern Lights, which can be
seen near the poles.

While mainly responsible for the illustrious Northern
Lights, geomagnetic storms have the potential to cause cata-
clysmic damage to Earth. Normally, the magnetic field is able
to deflect most of the incoming plasma particles from the Sun.
However, when a CME contains a strong southward-directed
magnetic field component (Bz), energy is transferred from
the CME’s magnetic field to Earth’s through a process called
magnetic reconnection [8][9][10] (as cited in [11]). Magnetic
reconnection leads to an injection of plasma particles in Earth’s
geomagnetic field and a reduction of the magnetosphere to-
wards the equator [1]. Consequently, more energy is amassed
in the upper atmosphere, particularly at the poles. Moreover,
this energy is impressed upon power transformers causing
an acute over-saturation and inducing black-outs via geomag-
netically induced currents (GICs) [12]. Some other residuals
of this over-accumulation of energy include the corrosion of
pipelines, deteriorations of radio and GPS communications,
radiation hazards in higher latitudes, damages to spacecrafts,
and deficiencies in solar arrays [13]. These ramifications pose
a significant threat to global telecommunications and electri-
cal power infrastructures as CMEs continue to be launched
towards Earth [14]. From a business perspective, risk factor
mitigation is an absolute necessity within the global business
environment [15]. This can be accomplished using advanced
analytical techniques on data collected about these phenomena.

The subsequent sections of this work read as follows. Sec-
tion 2 briefly introduces some previous studies on predicting
geomagnetic storms. Section 3 provides introductory detail
about the basics of the methodology used, the dataset studied,
and the experimental strategy. Section 4 displays and discusses
the results. Section 5 concludes with a summary and postulates
areas for future work.

II. BACKGROUND INFORMATION

A. Predicting Dangerous CMEs
CMEs present an ever-increasing threat to Earth as society

becomes more dependent on technology, such as satellites
and telecommunication operations. Nevertheless, because of
this increase in technology, more data has been collected
about these acts and solar wind in general. This, in turn,
has allowed for empirical models to be developed. Burton,
McPherron, and Russell [16] presented an algorithm to predict
the disturbance storm index (DST) value [17] based on solar
wind and interplanetary magnetic field parameters. The DST
value is a popular metric to assess geomagnetic activity.
Expressed in nanoteslas (nT) and recorded every hour from
observatories around the world, it measures the depression of
the equatorial geomagnetic field, or horizontal component of
the magnetic field; thus, the smaller the value of the DST,
the more significant the disturbance of the magnetic field
[1]. Many researchers have used this information for building
forecasting models to predict geomagnetic storms [18][19].

However, many of these systems only use in-situ data,
or data that can only be measured close to Earth. To im-

prove prediction, studies have included data from both initial
CME observations and the near-Earth solar wind condition
[20][21][22], especially considering CMEs remain the source
of major geomagnetic disturbances [23][24][25] (as cited in
[26]). These have ranged from using logistic regression [21]
to neural networks [27][28] to make predictions based on this
combination of data. Aside from the work by Dryer et al.
[20], which used an ensemble of four physics-based models
to predict shock arrival times, the idea of using ensembles of
models has not been very prevalent in the literature. Stacked
generalization is a type of ensemble that uses the individual
predictions from a set of base models as inputs for another
model to make a final prediction. This strategy has been the
backbone of successful schemes in areas such as predicting
financial fraud [29], bankruptcy [30], and user ratings in the
famous Netflix Prize competition [31]. Therefore, leveraging
more advanced ensemble frameworks for predictive modeling
has the opportunity to increase accuracy in this field.

B. Stacked Generalization
The idea of stacked generalization was originally proposed

by David Wolpert [32]. It can be simplified in the following
way:

• Construct a dataset consisting of predictions from a
set of level 0 (or base) learners using a training and a
test set. Refer to this as the metadata, MD.

• Generate a level 1 (or meta) learner that utilizes the
predictions made at the previous level as inputs. That
is, train the meta-learner on MD as opposed to the
original training data.

Often times, the predictions from the base-learners are de-
termined via k-fold cross-validation [33]. Define the dataset
S = {(yi,xi), i = 1, ..., n} where xi is a vector of predictor
variables and yi is the corresponding response value for the ith
observation. Specifically, split the dataset S into k near equal
and disjoint sets such that S1, S2, ..., Sk. Let S−k = S − Sk
and Sk be the training and test sets, respectively. Execute the
base-learner on the first S−k parts and produce a prediction for
the held-out part Sk. Repeat this procedure until each subset
of S has been used as a test set. Extract all the hold-out
predictions to create MD. Because generating the metadata
is an independent process across each base-learner, it can be
parallelized for faster computation. That is, each base-learner
can be trained at the same time. This is key as time plays a
pivotal role in geomagnetic storm prediction [22].

The meta-learner’s purpose is to gain information about
the generalization behavior of each learner trained at the
base-level. Popular choices for meta-learners have been linear
models [34], especially those with a non-negativity constraint
on the estimated coefficients in regression type problems
[35][33]. While this ensemble strategy leverages the strengths
and weaknesses of the base-learners, it can be prone to over-
fitting [36]. Therefore, in order to combat this issue, employing
regularized linear methods can perform better than their non-
regularized counterparts. Reid and Grudic [37] experimented
with three regularization penalties: ridge [38], lasso [39]],
and elastic net [40]. The authors showed that using stacked
generalization with ridge regression as the meta-learner per-
forms well on multi-class datasets. Their findings make sense
given the advantages of ridge regression for highly correlated
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data [38], a natural consequence of well-tuned base-learner
predictions. In addition, they commented that using the lasso
and elastic net penalties can promote sparse solutions that can
reduce the size of the ensemble at the meta-level. Pruning the
size of an ensemble model has been explored in other works
[41][42][43]. It can lead to better generalization and promote
the necessary diversity in the base-learner predictions, or the
ensemble members [32].

C. Review of Ridge, Lasso, and Elastic Net

Recall the ordinary least squares (OLS) solution for the
coefficients in linear regression [44]:

β̂ols = (X ′X)−1X ′Y (1)

where X is the predictor matrix of dimension n × (p + 1)
and Y is the vector of outcomes of dimension n × 1 for n
observations and p predictor variables. In particular,

X =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p

1
...

...
. . .

...
1 xn1 xn2 . . . xnp

 Y =


y1
y2
...
yn


Alternatively, equation (1) can be written as

β̂ols = argmin
β

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 (2)

When multicollinearity exists in the predictor matrix X ,
estimates for β can become erratic and demonstrate a large
amount of variability. Large positive values of β cancel out
with equally large negative values which cause issues for
meaningfully interpreting the coefficients [38] [44]. This stems
from the predictor matrix X ′X being nearly singular. Hoerl
and Kennard [38] showed that a smaller mean square error can
be achieved through the use of adding a positive constant λ to
the diagonal of the predictor matrix

β̂ridge = (X ′X + λI)−1X ′Y (3)

such that I is a p× p identity matrix. This makes the solution
invertible even if the predictor matrix is not full rank. Hastie,
Tibshirani, and Friedman [44] defined ridge regression as a
shrinkage method which can be expressed as an optimization
problem

minimize
β

{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

}

subject to
p∑
j=1

β2
j ≤ t, t ≥ 0

(4)

such that t controls the amount of shrinkage, or penalty, to
introduce.

The ability of ridge regression to effectively penalize the
coefficients in a continuous fashion mitigates the unstable
behavior of the coefficients in the presence of multicollinearity.
However, this penalty only shrinks the coefficients towards

zero; hence, no variable selection is taking place. Tibshirani
[39] posited lasso which imposes the following formulation:

minimize
β

{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

}

subject to
p∑
j=1

|βj | ≤ t, t ≥ 0

(5)

This constraint allows for some of the coefficients to shrink
completely to zero for a sufficiently small t. While this has
become a wildly popular technique due to its sparse nature,
it can have some drawbacks. For instance, it may only select
one predictor variable from a highly correlated group. Hence,
Zou and Hastie [40] offered the elastic net penalty

minimize
β

{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

}

subject to
p∑
j=1

((1− α)β2
j + α|βj |) ≤ t, t ≥ 0

(6)

which is a convex combination of both ridge and lasso penal-
ties. Note that when α = 0 this reduces to the ridge penalty
while α = 1 is equivalent to lasso. Thus, the elastic net can
shrink coefficients to exactly zero while also handling groups
of correlated predictor variables.

D. A Suitable Meta-learner

As noted before, it has been shown that a non-negative
constrained linear model performs well in stacked gener-
alization for regression tasks. Given the popularity of the
penalty functions mentioned in the previous section, a natural
extension is to implement a meta-learner that combines these
constraints into one model. Recently, Mandal and Ma [45]
proposed an efficient multiplicative iterative path algorithm to
estimate the entire regularization path for a variety of non-
negative generalized linear models with ridge, lasso, and elastic
net penalties. Therefore, to capitalize on the results of previous
works, this work institutes a regularized linear model with
a non-negativity constraint as the meta-learner. That is, with
the elastic net Gaussian objective function [46], the following
optimization problem is formed:

minimize
(β0,β)∈Rp+1

{
1

2n

n∑
i=1

(yi − β0 − x′iβ)2

+ λ
[ (1− α)

2
||β||22 + α||β||1

]}
subject to β, λ ≥ 0, 0 ≤ α ≤ 1

(7)

In this case, λ has a one-to-one correspondence with t
and is considered the shrinkage parameter. By regularizing the
coefficients with both a non-negativity constraint and a penalty
function, sparse solutions may be realized, even in the presence
of high correlation. This meta-learner will be referred to as the
non-negative elastic net (NNEN). For comparison, standard
linear regression will also be implemented at the meta-level.
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III. METHODOLOGY

A. Data
Four sources are considered to construct the experimental

dataset: near-Earth CME information provided by Richardson
and Cane [47] [48], OMNI 2 hourly averaged solar wind data
at one AU from the Coordinated Data Analysis (Workshop)
Web [49], CME measurements given by the Large Angle and
Spectrometric Coronagraph (LASCO) located on the Solar and
Heliospheric Observatory (SOHO) satellite [50], and some
Sun characteristics recorded by NOAA [51]. These data are
combined so that each CME has been assigned interplanetary
variable values (such as Bz) prior to the DST minimum during
a predicted area of effect on Earth. Establishing these values
before the DST minimum gives a lead time prior to the climax
of the geomagnetic storms and allows for a more realistic
prediction scenario. Also included are the initial measurements
about the speed and size of a CME at the time of ejection from
the Sun and daily Sun characteristics on the day of ejection.
After filtering out missing values and some unnecessary rows,
a dataset composed of 2,811 CME events from 1996 to 2014
with 28 predictor variables is ready for analysis.

B. Implementation
1) Experimental Set-up: The analysis is performed in the

R environment version 3.2.5 [52], mainly by using the caret
(Classification And REgression Training) package [53]. This
package allows for a streamlined user interface for applying
various sets of predictive models from different packages. It
has options to perform several resampling techniques to tune
model parameters and create visualizations of model perfor-
mance. The stacked generalization framework is constructed
using models from this package. The amount of parameter
tuning for all models is assigned at caret’s default value with
the final parameter combinations determined by those which
deliver the lowest root mean square error (RMSE).

The RMSE is calculated from an average of ten repeats
of 10-fold (10× 10) nested cross-validation to ensure a good
estimation of error in the presence of parameter tuning [54].
Furthermore, significance tests between the meta-learner and
the individual base-learners are conducted on the population
of RMSEs (100 estimates from the 10 × 10 nested cross-
validation) using the corrected repeated k-fold cross-validation
test [55]. It is important to test for significant differences to
investigate if the extra computation of stacked generalization is
worth the effort compared to simply using the best performing
model [56]. All base-learners and meta-learners are trained
over the same folds with the only difference being that the
meta-learners use MD as its inputs instead of the CME predic-
tor variables. MD is generated using 10-fold cross-validation
[34]. Note that this cross-validation is separate from the nested
cross-validation used to estimate the error.

2) Learners: Care is taken to make sure a diverse set
of base-learners is utilized [41]. The complete list of the 30
models chosen can be found in Table I. As for implementing
the NNEN, a custom model is created within the caret frame-
work using the nnlasso function from the nnlasso R package
developed by Mandal and Ma [57]. It is important to use a
custom model so that this learner is trained on the same folds
as the other learners and so that the variable selection takes
place within the training folds [44]. As with the popular glmnet
function in the glmnet package [58], two main parameters are

TABLE I. LIST OF BASE-LEARNERS

Name caret Method

Bayesian Lasso Regression blasso
Bayesian Regularized Neural Network brnn
Bayesian Ridge Regression bridge
Boosted Linear Model BstLm
Boosted Tree bstTree
Classification and Regression Tree rpart
Conditional Inference Random Forest cforest
Conditional Inference Tree ctree
Cubist cubist
Extreme Gradient Boosting with Linear Booster xgbLinear
Extreme Learning Machine elm
Generalized Additive Model using Splines gamSpline
k-Nearest Neighbors kknn
Lasso and Elastic Net Regression glmnet
Least Angle Regression lars
Linear Regression lm
Linear Regression with Stepwise Selection leapSeq
Multi-Layer Perceptron mlp
Multivariate Adaptive Regression Splines earth
Neural Network with Feature Extraction pcaNNet
Non-Convex Penalized Quantile Regression rqnc
Partial Least Squares pls
Quantile Random Forest qrf
Random Forest ranger
Self-Organizing Map bdk
Spike and Slab Regression spikeslab
Stacked AutoEncoder Deep Neural Network dnn
Stochastic Gradient Boosting gbm
Supervised Principal Component Analysis superpc
Support Vector Machine with Radial Basis Function Kernel svmRadialSigma

tuned in nnlasso: the mixing weights of the ridge and lasso
penalties α and the amount of shrinkage to be applied λ.
For this work, three values of α, {0, 0.5, 1}, are tested for
each iteration in the 10 × 10 nested cross-validation process.
For determining the amount of shrinkage, the values of λ are
identified the same way as in caret’s implementation of glmnet.
For the comparison meta-learner, linear regression is executed
at the meta-level by calling caret’s lm method.

IV. RESULTS AND DISCUSSION

Table II reflects the results of the analysis. The first
column lists both meta-learners and the ten most accurate
base-learners ranked in ascending order by the average RMSE
displayed in the second column. The third column represents
the average RMSE for those CME events which triggered a
strong geomagnetic disturbance (DST value ≤ −100 nT) [59].
The asterisk denotes instances where a significant difference
between NNEN and the other learners are not found at the
conventional 0.05 significance level.

Not surprisingly, the top five base-learners are all bagging
or boosting ensemble models. However, NNEN yields the
lowest RMSE compared to these and all the other learners,
even for the strong CME events. In addition, NNEN performs
statistically better than all of the base-learners for all CME
events and better than the majority for the strong ones. This
provides evidence that the implementation of stacked gener-
alization here has more predictive power than using just one
model. Ting and Witten [34] indicated in their analysis that
stacked generalization delivers substantial improvements in ac-
curacy for larger datasets. This is likely due to a more accurate
estimation from the cross-validation process when generating
the metadata. Hence, it is probable that with more data, stacked
generalization can continue to enhance geomagnetic storm pre-
diction. While the predictive improvements may seem minor at
a higher cost in computation, this work, as well as others, show
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that this ensemble technique can lead to statistically significant
improvements even against sophisticated, well-tuned models.
Because of the danger that these geomagnetic storms present,
even marginal improvements can make a difference.

TABLE II. PREDICTIVE PERFORMANCE

Learner All CMEs Strong CMEs

NNEN 17.64 45.35
Linear Regression 17.75* 45.38*

Random Forest 18.17 49.50
Cubist 18.19 47.61*
Conditional Inference Random Forest 19.06 54.28
Boosted Tree 19.10 51.87
Stochastic Gradient Boosting 19.38 52.33
Extreme Gradient Boosting with Linear Booster 19.46 51.97*
Multivariate Adaptive Regression Splines 19.81 53.29
Generalized Additive Model using Splines 20.06 55.56
Bayesian Regularized Neural Network 20.11 54.24
k-Nearest Neighbors 22.12 67.11

Although it shows its superiority over the base-learners,
NNEN does not perform statistically different than simply us-
ing linear regression as the meta-learner with only very minor
increases in predictive performance. While these techniques
may seem equal here, recall that linear regression does not
inherently perform variable selection; thus, it utilizes all 30
base-learner predictions. In addition, any attempt at making
any inference regarding the coefficients at the meta-level is
frivolous due to the high amount of correlation and likely
presence of negative coefficients. On the other hand, NNEN
selected only 19.39 ensemble members on average during the
resampling process. Furthermore, some interpretation regard-
ing the contribution of each ensemble member to the final
prediction can be made by analyzing the positive, non-zero
coefficients. Hence, NNEN should be preferred over standard
linear regression for this dataset since it can produce sparser
and more interpretable solutions with statistically similar error.
The quality of being able to dynamically select which base-
learners are most useful for prediction at the meta-level may
help improve on the fixed form bias issues of stacked gener-
alization mentioned by Vilalta and Drissi [60].

Further study of the performance of the base-learners offers
interesting directions for future work, specifically with the use
of quantile models. The Quantile Random Forest finishes as the
26th least accurate base-learner with a value of 31.60; however,
its RMSE on strong CME events has a value of 46.02, which is
nearly as accurate as the NNEN. Given that these strong CME
events do not occur very often (131 in this dataset) but pose the
most risk to society, it makes sense to adapt the meta-learner
to focus on a specific quantile as opposed to the conditional
mean. In this way, by focusing more on the outliers, better
predictions can be made on the more important observations.
Naturally, a balance would need to be constructed so that the
predictions for weaker storms are not rendered useless.

V. SUMMARY

In this work, stacked generalization is used to predict
geomagnetic storms driven by CMEs. Using data from a
variety of sources, this technique is executed on a realistic
dataset to investigate its predictive performance against using
only one statistical model or machine learning algorithm.
Based on insights from previous research about regularization
and pruning, a NNEN model is implemented. NNEN shows its

advantages on this dataset in terms of predictive accuracy while
using fewer base-learner predictions. Future work consists of
implementing more data for geomagnetic storm prediction to
see if further improvements can be made with this methodol-
ogy. In addition, increasing the number of base-learners can
give NNEN more opportunities to find an optimal combina-
tion of ensemble members. Moreover, exploring the usage of
regularized quantile methods can provide a useful alternative
than typical mean predictions. Given the potential cataclysmic
damage that CMEs can wreak on telecommunications and
power companies, advanced techniques for improving accuracy
are an absolute necessity for saving these industries millions
of dollars.
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