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Abstract— Remote Health Monitoring Systems are gaining 

an important role in healthcare by collecting and transmitting 

patient information and providing data analytics techniques to 

analyze the collected data and extract knowledge. Physical 

activity recognition and indoor localization are two of the most 

important concepts in assistive healthcare, where tracking the 

positions, motions and reactions of a patient or elderly is 

required for medical observation or accident prevention. In 

this paper, we propose a novel context-aware data analytics 

framework to classify and recognize the physical activity based 

on the signals received from a worn SmartWatch, the location 

information of the human subject, and advanced machine 

learning algorithms. In this approach, we take into account the 

physical location of the human subject as contextual 

information to improve the accuracy of the activity 

classification. The hypothesis is that the location information 

can get involved in classifier decision making as a prior 

probability distribution to help improve the accuracy of 

activity recognition. The results demonstrate improvements in 

accuracy and performance of the activity classification when 

applying the proposed method compared to conventional 

classifications. 

Keywords-Activity Recognition; Indoor Localization. 

I. INTRODUCTION AND BACKGROUND 

As the number of elderly people grows rather quickly 

over the past few decades and continues to do so ‎[1], it is 

essential to seek alternative and innovative ways to provide 

affordable healthcare to the aging population ‎[2]. A 

compelling solution is to enable pervasive healthcare for the 

elderly or patients with chronic disease at their own homes, 

while reducing the use and dependency of healthcare 

facilities. New technologies, such as Body Sensor Networks 

(BSN) and Remote Health Monitoring Systems (RHMS) 

allow for collecting continuous data and monitoring the 

patients in their home environment. There have been a 

number of studies on end-to-end remote health monitoring 

and medical data analytics using wearable or environmental 

sensors known as Smart Environment or Smart Home ‎[3]-

‎[7]. RHMS has shown substantial potential in reducing 

healthcare costs and improving quality of care ‎[3]-‎[10]. 

Rapid advances in many technological domains including 

electronics, wireless communications, Internet, and sensor 

design has led to the development of effective RHMS that 

can collect varying physiological information, vital signs, 

and physical activity from patients ‎[3]-‎[7].   

Although RHMS have shown promise in reducing 

healthcare costs and improving quality of care, effective 

analysis of the data collected by these systems and the 

potential benefits of utilizing such analysis is by large an 

open problem. One of the key demands in such an assistive 

environment is to promptly and accurately determine the 

state and activities of an inhabitant subject. The physical 

activity recognition and indoor localization provide 

effective means in tracking the positions, motions, and 

reactions of a patient, the elderly or any person with special 

needs for medical observation or accident 

prevention ‎[11]‎[12]. 

Physical activity recognition using wearable sensors or 

smartphones has been a long-standing problem. There have 

been a number of studies on utilizing machine learning 

algorithms to monitor the activities of daily living ‎[24]‎[25]. 

However, in this paper, we propose a novel context-aware 

data analytics framework to classify the physical activity 

based on the signals received from a wearable sensor (e.g., 

SmartWatch ‎[28]), the position information of the human 

subject, and advanced machine learning algorithms. The 

location of a patient can provide important prior information 

that can be used to better classify the physical activity. We 

hypothesize that the location information of the human 

subject can get involved in classifier decision making as a 

prior probability distribution to improve the accuracy of 

activity recognition. In other word, we take into account the 

location of the subject as contextual information to improve 

the accuracy of the activity classification. The results 

demonstrate improvements in accuracy and performance of 

the classifier when applying the proposed method compared 

to typical classifications.  

The rest of the paper is organized as follows: Section II 

describes the systems architecture and main modules for the 

proposed context-aware data analytics framework, Section 

III provides a brief overview of the indoor localization 

technique that we use to come up with the contextual 

information. This localization technique is a novel approach 

developed by the authors. However, since the focus of this 

paper is on data analytics, we just briefly review this 

technique, and use the results as contextual information in 
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our analytics framework. Section IV describes the details of 

the proposed context-aware analytics framework for activity 

recognition, including feature extraction, feature selection 

algorithms, classification, training/testing stages, and the 

context-awareness characteristics of the system. Finally, 

Section V describes the results and conclusion.  

II. RELATED WORK 

Physical activity monitoring and indoor localization are 

important problems in the areas of wireless health and 

assistive healthcare that have raised increasing attention 

recently ‎[12]-‎[37]‎[28]‎[36]. Monitoring the activities of daily 

living with smartphones and devices with these phones have 

been well-studied ‎[4]‎[24]-‎[37]. In particular, Alshurafa, et 

al. ‎[4] presents a comprehensive activity recognition process 

and particularly, looks at activity tracking for a clinical 

environment, and how to guarantee that patients are 

performing the desired activity. Gupta, et al. ‎[37] presents 

an activity recognition system using a single waist-mounted 

accelerometer to classify gait events into six daily living 

activities. SmartWatches have also been used to provide 

activity tracking applications to date ‎[28]‎[35]. Mortazavi, et 

al. ‎[28] provides visual feedback and interface for activity 

repetition counting using SmartWatch. Park, et al. ‎[35] 

develops a watch sensor to track fall, walking, handrelated 

shocks, and general activity. Using a feature extraction and 

selection technique, results are presented in a 10-fold cross 

validation to determine the ability to track elderly patients. 

Park, et al. ‎[35] uses a forward selection technique for 

feature selection and a support vector machine, to obtain 

accuracy results and recall results. In this study, we propose 

a new context-aware activity recognition system that utilizes 

the SmartWatch accelerometer and gyroscope signals, and 

takes into account the location of the subject as contextual 

information to improve the accuracy of the activity 

classification. The results demonstrate improvements in 

accuracy and performance of the classifier when applying 

the proposed method compared to typical classifications. 

III. SYSTEM ARCHITECTURE 

The proposed framework includes two main modules:      

a) Indoor Localization/Tracking Module and b) Context-

Aware Activity Recognition Module. Indoor Localization 

and Tracking Module is responsible for estimating and 

tracking the position of a patient. We use a novel approach 

for localization based on spatial sparsity of target in x-y-z 

space and the Received-Signal-Strength (RSS) between a 

SmartWatch and RF beacons mounted in the building.  

Context-Aware Activity Recognition Module is 

responsible for classifying and recognizing patients' 

physical activities using data analytics techniques based on 

the wearable embedded accelerometer and gyroscope 

signals. This module includes feature extraction, feature 

selection and dimensionality reduction, and context-aware 

classification submodules. In the proposed approach, we 

exploit the location information of the subject (received 

form patient tracking module) to achieve more accurate 

results for activity recognition. Details of these modules are 

described in next sections. 

IV. INDOOR LOCALIZATION AND TRACKING 

As mentioned before, the main focus of this paper is not 

on indoor localization; instead it is on context-aware data 

analytics for activity recognition knowing the indoor 

location of the individual. In other word, we take into 

account the position of the human subject as contextual 

information to improve the accuracy of the analytics engine 

for activity recognition. Thus, in this paper, we only provide 

a brief overview of the novel indoor localization techniques 

that we have developed in our other studies, and then apply 

these techniques to estimate individual's location that will be 

later used in our analytics framework. For more details 

about our developed localization techniques please refer 

to ‎[11]-‎[17]. 

Indoor localization has been a long-standing and 

important problem in the areas of signal processing and 

sensor networks that has raised increasing attention 

recently ‎[11]-‎[23]. One of the key demands in assistive 

environment is to promptly and accurately determine the 

state and activities of an inhabitant subject. Indoor 

localization provides an effective means in tracking the 

positions, motions, and reactions of a patient, the elderly or 

any person with special needs for medical observation or 

accident prevention.   

The classic approach for localization is to first estimate 

one or more location-dependent signal parameters, such as 

Time-Of-Arrival (TOA), Angle-Of-Arrival (AOA) or RSS. 

Then in a second step, the collection of estimated 

parameters is used to determine‎an‎estimate‎of‎the‎subject’s‎

location. The TOA-based methods are usually more 

accurate than RSS or AOA techniques. However, the 

accuracy of the classic TOA based methods often suffer 

from massive multipath conditions for indoor localization, 

which is caused by the reflection and diffraction of the RF 

signals from objects (e.g., interior walls, doors or furniture) 

in the environment ‎[23]. Moreover, it usually necessitates 

using synchronized emitters/sensors to be able to estimate 

accurate time-of arrival or time-difference-of-arrival.  

In ‎[11]-‎[15], we introduced a novel accurate localization 

method based on the spatial sparsity in the x-y-z space. In 

this approach, we directly estimate the location of the 

emitter without going through the intermediate stage of 

TOA or RSS estimation. To this end, we utilize the spatial 

sparsity of the target (SmartWatch worn by a human 

subject) in the X-Y-Z space, and use the convex 

optimization theory to estimate the location of the subject. 

Assume that we divide the X-Y-Z space into fine enough 

grids. By assigning a positive number to each grid that 

contains the target and zeros to all the rest of grid cells, we 

will have a very sparse 3-dimensional grid matrix that can 

be reformed as a sparse vector. Since each element of this 
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grid vector corresponds to one grid point in the X-Y-Z 

space, we can estimate the location of emitters by extracting 

the position of non-zero element (or non-zero elements 

when we have more than one subject to be determined) in 

the sparse vector. To this end, we have to estimate the 

sparsest vector that minimizes the cost between the 

predicted received signal and the actual observed signal 

with respect to the signal model and distance between the 

transmitted signals and the received signals (for details and 

problem formulation please refer to ‎[11]-‎[15]).  

The results demonstrate that the proposed method has 

very good performance even with small number of sensors. 

The results also indicate that, in contrary to the classic 

methods, the proposed approach is a very effective and 

robust tool to overcome multipath issues, which is a very 

serious problem in indoor localization. Furthermore, the 

system works well in noisy environments with low SNRs. It 

implies that, even with low transmitted power (to keep the 

devices small with long battery life), we can still achieve a 

high localization accuracy.  

Figure 1 shows some of the results for patient localization 

and tracking in a sample building using only 4 RF sensors 

mounted at the corners of a building. Figure 1-(a) shows the 

actual trajectory (blue line) of the patient walking around in 

the room, and the estimated path (red line) by the proposed 

system. Figure 1-(b) shows the error defined as the root-

mean-square (RMS) errors for positioning in the X, Y and Z 

dimensions.  

      
       (a) 

   
                                                     (b) 

Figure 1. (a) True position of the patient (in blue) and the estimated 

position (in red), (b) Error in positioning for each location in part (a). 

V. CONTEXT-AWARE ANALYTICS FRAMEWORK FOR 

ACTIVITY RECOGNITION  

Context-Aware Activity Recognition Module is 

responsible for recognizing the physical activities based on 

the accelerometer and gyroscope signals. This work will 

investigate the ability of the SmartWatch to recognize and 

track the necessary activities of human subjects in order to 

better assess their health status. In particular, by identifying 

the transitions between sitting, standing, and lying, this 

work approaches the classification of patient status. 

Monitoring the Activities of Daily Living (ADL) through 

wearable body sensors has attracted extensive attention 

recently ‎[24]-‎[28]. In this study, we propose a context-aware 

activity recognition system based on the signals received 

from embedded accelerometer and gyroscope of a 

SmartWatch, a real-time machine learning based analytics 

engine, and the position information received from the 

indoor localization module.  

Our preliminary results ‎[28] show that the watch can 

provide accurate activity tracking results similar to custom 

sensing environment. However, in this work, we propose a 

context-aware technique by taking into account the indoor 

position of the individual as prior contextual information 

that can modify the classifier model, and consequently 

provide more accurate results for activity recognition. The 

activity recognition module includes feature extraction, 

feature selection, and context-aware classification 

submodules as described in the following. 

A. Feature Extraction and Feature Selection 

The first step is to gathering the patient's activity signals 

from the SmartWatch embedded accelerometer and 

gyroscope. After receiving the signals, the next step is to 

data preprocessing and feature extraction. We use a moving 

average window as a low-complexity low-pass filter for the 

purpose of denoising. Then, a total number of 150 features 

are extracted from accelerometer and gyroscope signals. 

Statistical and morphological features are the most common 

features used for data analytics. Theses feature are extracted 

for each one of the three axes of the accelerometer and 

gyroscope. Some of the extracted features include Mean, 

Standard Deviation, Kurtosis, Skewness, Energy, Variance, 

Median, RMS, Minimum, Maximum, Sum, Average 

Difference, Eigenvalues of Dominant Directions, CAGH, 

Average Mean Intensity, Dominant Freq., Peak Diff., Peak 

RMS, Root Sum of Squares, First Peak, Second Peak. In 

this study, the Samsung Galaxy Gear SmartWatch is used 

for experimentation. It employs a ±2g triaxial accelerometer 

and ±300 degree per second gyroscope sensors.  

Once the features are extracted, a dimensionality 

reduction algorithm is applied to select the most prominent 

features and reduce the redundancy. The conventional 

feature selection algorithms usually focus on specific 

metrics to quantify the relevance and redundancy of each 

feature with the goal of finding the smallest subset of 
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features that provides the maximum amount of useful 

information for prediction. Thus, the main goal of feature 

selection algorithms is to eliminate redundant or irrelevant 

features in a given feature set. Applying an effective feature 

selection algorithm not only decreases the computational 

complexity of the system by reducing the dimensionality 

and eliminating the redundancy, but also increases the 

performance of the classifier by removing irrelevant 

features. In this paper, we tried both wrapper and filter 

methods; the two well-known feature selection categories. 

Wrapper methods usually utilize a classifier to evaluate 

feature subsets in an iterative manner according to their 

predictive power. A new feature subset is used to train a 

predictive model that will later be evaluated on a testing 

dataset to assess the relative usefulness of subsets of 

features ‎[39]. Figure 2-(a) provides an illustration of the 

wrapper feature selection method. 

Filter methods use a specific metric to score each 

individual feature (or a subset of features together). The 

most popular metrics used in filter methods include 

correlation coefficient, mutual information, Fisher score, 

chi-square parameters, entropy and consistency. Filter 

methods are very popular (especially for large datasets) 

since they are usually very fast and much less 

computationally intensive than wrapper methods. Figure 2-

(b) illustrates the steps involved in the filter feature selection 

method. 

 

       

Predictive Model 

Training & Testing

Original Feature Set

Selecting a Feature Subset

Predictive Model 

Performance Assessment

Final Feature Set
     

Original Feature Set

Feature Ranking Based on  

Relevancy & Redundancy

Selecting the Proper 

Number of Features

Final Feature Set
 

                                 (a)                                                       (b) 

Figure 2. Feature Selection: (a) Wrapper method, (b) Filter method. 

  

In this study, after trying several filter and wrapper 

methods, we finally chose only 5 features to keep the 

computational complexity low on the device. The selected 

features includes: minimum of acceleration axis x (min ax), 

average acceleration axis z (avg az), eigenvalue acceleration 

axis z (eigen az), correlation between acceleration axis x 

and y (cor axy), sum gyro axis z (sum gz). 

B. Classification: Training and Testing  

Once the subset of features is selected, a machine learning 

based classifier is applied to classify the motions. In this 

research, we tried various classification algorithms such as 

SVM, Random Forest, BayesNet, and Artificial Neural Net 

(ANN) as the predictor. According to our results, a Random 

Forest classifier with 100 trees provided fast and accurate 

prediction results for our dataset. Random Forest is an 

ensemble learning classification method comprising of a 

collection of decision tree predictors operating based on i.i.d 

random vectors. In this process, each tree casts a unit vote 

for the most popular class ‎[40]. The classifier was supplied 

with training data labeled with 6 labels being the six 

transition movements (sit_to_lie, sit_to_stand, stand_to_sit, 

stand_to_lie, lie_to_sit, lie_to_stand). The recognition 

algorithm must then be validated to ensure the proper 

development of a system to accurately track the state of 

subjects. Figure 3 indicates the Training and Testing stages. 

The next section describes the context-awareness approach 

and how we take into account the location information to 

improve the classifier accuracy. 

C. Context Awareness 

The indoor position of a patient (received from indoor 

localization and tracking module) can provide significant 

prior information about the possible physical activity. For 

example, when we know that the patient is in the kitchen, 

the probability of standing is much higher than lying, 

consequently, the labels are not uniformly distributed 

anymore. Thus, by knowing the approximate position of the 

patient, we will have better understanding about the possible 

activities that the patient can have.  

We hypothesize that the location information can get 

involved in classifier decision making as a prior probability 

distribution to help improve the accuracy of activity 

Gyro X,Y,Z 
Signal

Feature 
Extraction

Feature
Selection

Classifier: 
Model 

Generation

Classifier:
Prediction

Sitting
Standing

Lying

Accelerometer  
X,Y,Z Signal

Signal 
Preprocessing 

Signal 
Preprocessing 

Gyro X,Y,Z 
Signal

Feature 
Extraction

Accelerometer  
X,Y,Z Signal

Signal 
Preprocessing 

Signal 
Preprocessing 

Training 
Stage

Testing
Stage

Figure 3: Regular Physical Activity Classification 
Figure 3. The regular Physical Activity Classification. 
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recognition module. 

Assume that 
1, , NF F  are the classifier input features 

and C  represents the classifier labels. Then, the classifier 

probability model can be expressed as a conditional 

probability 
1( , , )Np C F F  (known as Posterior 

Probability) that can be formulated using the Bayes' 

Theorem as following ‎[41]: 

1
1

1

( , , , )
( , , )

( , , )

N
N

N

p C F F
p C F F

p F F
                      (1) 

The joint probability in the numerator can be reformulated 

as: 

1 1

1 2 1

1 2 1 1 1

( , , , ) ( ) ( , , | )

( ) ( | ) ( , , | , )

( ) ( | ) ( | , ) ( | , , , )

N N

N

N N

p C F F p C p F F C

p C p F C p F F C F

p C p F C p F C F p F C F F 







 (2) 

A "Maximum A Posteriori" (MAP) decision making rule 

can be applied as following to pick the most probable class 

label: 

1

1

( , , )

arg max ( ) ( , , | )

N

N
c

calssify f f

p C c p f f C c  
     (3) 

The term 
1( , , | )Np F F C (called likelihood) is usually 

determined in the training stage. For the case of simplicity 

(e.g., in Naive Bayes classifier ‎[41]), the features can be 

assumed to be conditionally independent. In this case, the 

equation (3) can be simplified to: 

1

1

( , , )

arg max ( ) ( | )

N

N

i i
c i

calssify f f

p C c p F f C c


   
       (4) 

In traditional classification, a uniform distribution is used 

for Prior Probability ( )p C . However, in our approach, we 

hypothesize that the patient's position can provide some 

information about the distribution of the prior 

probability ( )p C . Thus, we can write ( )p C as: 

 
( ) ( , )

( ) ( | )

i

i

i i

i

p C c p C c L l

p L l p C c L l

   

   




                 (5) 

where ( , )p C L  is the joint probability distribution of 

location and activity label. Thus, when the location is 

known, the uniformly distributed Prior Probability ( )p C  

will be replaced by the conditional probability ( | )ip C L l  

and consequently, the equation (4) provides more accurate 

model for activity recognition. 

VI. RESULTS AND CONCLUSION 

A pilot trial has been conducted to collect the data. The 

dataset contains 1200 data samples collected from 20 

subjects. Table I shows the F-Score results for the activity 

recognition using only 5 features in two different cases:       

a) Using conventional classification without considering the 

location information, b) Context-aware activity recognition 

knowing and taking into account the location information. 

As we see, for example in the kitchen, we achieve 7% 

improvement (using 5 features) since knowing the location 

of the subject provides significant information about the 

activity. However, in the living room, we achieve 3% 

improvement, and it totally makes sense, because the 

likelihoods of sitting, lying, and standing in the living room 

are almost similar, and consequently the prior probability 

distribution is closer to the uniform distribution which is the 

pre-assumption for conventional activity recognition too. 

 
TABLE I.  F-SCORE FOR REGULAR AND CONTEXT-AWARE ANALYTICS 

USING ONLY 5 FEATURES  

Location F-Score for conventional 

classification 

F-Score for context-

aware classification 

Kitchen 0.81 0.88 

Living room 0.82 0.85  

Bedroom 0.80 0.84  

 

 
Figure 4. F-Score versus the number of selected features for conventional 

and context-aware activity recognition in kitchen. 

 

 
Figure 5. F-Score versus the number of selected features for conventional 

and context-aware activity recognition in the living room. 

 

Figures 4 and 5 show the F-Score ‎[41] versus the number of 

selected features for conventional and context-aware 

analytics in the kitchen and living room. F-Score is a well-

known measure for classification accuracy, and it can be 

interpreted as the harmonic mean of precision (the fraction 

of retrieved instances that are relevant) and recall (the 

fraction of relevant instances that are retrieved). Thus, F-
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score is an indication of how well the system can identify 

the activity and how strong it is at not mis-predicting.  

For example, for kitchen, we achieved 43% improvement 

using 1 feature and 9% improvement using 5 features in 

activity recognition accuracy, which is a significant 

improvement. Our work in ‎[42] investigates the impact of 

improvement in classification accuracy on cost. 

Again, as we expected, the improvement by using 

context-aware approach is higher in the kitchen compared to 

living room because the probability distribution of various 

activities in the living room is closer to uniform distribution.  
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