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Abstract— The sheer volume of the very large datasets is the 

major obstacle in mining of the data because the size of the 

dataset is above the handling abilities of the traditional 

methodologies.  A considerable vertical reduction over and 

beyond the reduction prescribed by pre-mining processes is 

needed to overcome the problem.  However, the reduced 

version of the dataset ought to preserve the intrinsic properties 

of the original dataset in reference to a specific mining goal (a 

robust reduction); otherwise, it is a useless reduction. This 

research effort introduces and investigates the neighborhood 

system as a robust data volume reduction methodology in 

reference to the mining goal of “prediction”.  Two well-known 

prediction algorithms of ID3 and Rough Sets are employed to 

determine the perseveration of intrinsic properties in the 

reduced datasets. The results obtained from 10 pairs of 

training and test sets revealed that the proposed reduction 

methodology is a robust one and it also reduces noise in data 

which in turn improves the prediction outcomes.  The average 

percentage measures of: (i) the correct prediction increases by 

26%, (ii) the false positive decreases by 36%, (iii) the false 

negative decreases by 89%, and (iv) the unpredictable objects 

increases by 136% which is the indicative of a reliable system.   

Prediction of no decision for an object is always preferred over 

prediction of a false positive or a false negative decision.  The 

neighborhood-based reduction system also increases the 

granularity of the dataset which is different from the increase 

in the granularity through the use of a generalization process. 

 

 Keywords—Data Mining; Big Data; Data Volume 

Reduction; Neighborhood System; Property Preservation; 

Organic Discretization. 

I. INTRODUCTION 

 A very large dataset may be mined for the purpose of 

association analysis, concept analysis, decision support 

analysis, market analysis, and prediction, to name a few.  

The sheer volume of a very large dataset is the major 

obstacle in mining the data because the size of the dataset is 

beyond handling abilities of the traditional methodologies. 

Any methodology used for reducing the size of the dataset 

must be able to preserve the intrinsic properties of the very 

large dataset; otherwise, the methodology is not a robust 

one.   

 To remove, or at least ease, the volume obstacle, 

partitioning methodologies have been contemplated [1].  In 

any partition-based methodology, the very large dataset is 

divided into partitions either randomly or based on some 

criteria suggested by the mining goal.  The mining of each 

partition takes place separately.  However, the mining 

outcome (intrinsic properties) of a very large dataset is not 

equivalent of the union of the intrinsic properties of the 

individual partitions.  Reader needs to know that the parallel 

processing plays a big role in mining of very large datasets 

and datasets are segmented for use by the parallel processor 

[2]. This segmentation is different from partitioning because 

during the segmentation process the dataset is perceived as 

one entity, whereas the partitioning process perceives each 

partition as a separate dataset. 

 Clustering-based methodologies may also reduce the 

volume of data [3].  The common practice is that a cluster of 

records of the very large dataset is replaced by the seed of 

the cluster.  The inclusion of a record in a cluster is based 

on the fact that the sum of its attribute distances from the 

corresponding attributes of the seed is less than a threshold 

distance.  The problem with clustering is that it is influenced 

by the sum of the individual attribute’s differences and not 

by the differences of the individual attributes.  As a result, a 

cluster satisfies a condition that does not guaranty the true 

homogeneity of its record members. Replacing a cluster of 

non-homogenous records with its seed has a dire effect on 

the preservation of the properties of the large dataset. 

 In this paper, we propose a methodology, neighborhood 

system, for volume reduction of very large datasets.  We 

also empirically show that the reduction methodology is a 

105Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

mailto:Rayhashemi@gmail.com
mailto:Romtinian@gmail.com
mailto:Azita.G.Bahrami@gmail.com
mailto:Mattr.Antonelli@gmail.com
mailto:n_bryan28@hotmail.com


robust one.  That is, the reduced dataset preserves the 

intrinsic properties of the original dataset.   

 The organization for the rest of the paper is as follow: 

The previous work is presented in Section two.  The 

methodology is the subject of Section three.  The empirical 

results are covered in Section four.  The conclusion and 

future research are discussed in Section five.  

II. PREVIOUS WORKS 

 The data reduction has been explored by researcher for 

four different purposes of data storage, data transmission, 

data presentation and data mining.  For data storage, 

basically, data is compressed to take less space. A 

compressed dataset may be decompressed as needed.  

Numerous data compression techniques have been reported 

in literature [4][5].  Some compression techniques are lossy 

and some are lossless.  Use of lossy techniques compresses 

data in a way that it cannot turn completely into its original 

form upon applying the decompression process.  In contrast, 

data compressed by using the lossless compression 

techniques turned into the original dataset after 

decompression.   

 For data transmission, data is reduced during its 

preparation for the transmission and usually returns to its 

original form at the destination.  For example, prior to 

transmission of an image through a communication channel, 

the image is reduced to lower the communication time and 

be adapted to the communication channel limitations [6][7]. 

 For data presentation, data is reduced using different 

way of its presentation.  For example, visualization of data 

presents data in a reduced form [8][9].  As another example, 

collection of a high volume of raw data is used for building 

a product.  By doing so, the final product becomes the 

reduced version of the raw data [10][11]. 

 For data mining, data is reduced horizontally and 

vertically prior to applying any data mining methodology.  

The horizontal data reduction means removing the 

redundant attributes from a dataset.   Entropy analysis, 

correlation analysis, relevancy analysis, and rough sets are 

some of the well-known methods for performing the 

horizontal reduction [12][13][14][15].  The vertical 

reduction reduces the number of records in a dataset.  This 

is done through collapsing the duplicated records and in 

some cases removal of conflicting records.  Such reduction 

is a part of the pre-mining process and the reduced datasets 

often have slightly less number of records than the original 

datasets.  For very large datasets, a considerable vertical 

reduction in addition to the vertical reduction prescribed by 

the pre-mining process is needed.  However, the reduced 

version of the dataset ought to preserve the intrinsic 

properties of the original dataset; otherwise, it is a useless 

reduction. 

 In this paper, we propose and investigate a robust 

vertical reduction methodology that is able to (a) reduce the 

size of dataset beyond pre-mining reduction and (b) 

preserve the intrinsic properties of the original dataset.  To 

the best of our knowledge, there is no such investigation 

reported in the literature. 

III. METHODOLOGY 

  We present, first, the neighborhood system as a new 

methodology for reducing the volume of a dataset.  Second, 

we introduce formal definition of the intrinsic properties (or 

simply properties) of a dataset along with the methodology 

for testing the property preservation.  Finally, we present the 

organic discretization in support of property preservation. 

A.  The Neighborhood System 

 A dataset is a collection of records and each record has 

n attributes U = {A1, . . ., An}.  Consider records Ri: (v1, . . ., 

vn) and Rj: (v’1, . . ., v’n), (values of vk and v’k belong to 

attribute Ak).  Rj is the neighbor of Ri in reference to U, if  

|vi-v’i| ≤ r  (for 1≤ i ≤ n). r is a radius threshold.  All the 

neighbors of Ri within a given dataset make the 

neighborhood of Ri.  It is true to say that every record is 

also a member of its own neighborhood.  The following 

notation is used to denote the neighborhood of Ri: N(Ri)[U, r].  

If Rj is in N(Ri)[u,r], then Ri is also in N(Rj)[u,r].  

 Since the threshold radius can take many different 

values, the record Ri may have many, not necessarily 

distinct, neighborhoods.  This is true for all the records in 

the dataset.  The neighborhoods of every record of a dataset 

are collectively referred to as a neighborhood system of the 

dataset. 

 Hashemi et al. [16] divide the neighborhood system for 

each record into three regions of closest, closer, and close 

neighborhoods. These regions for Ri are defined as Closest 

(Ri) = N(Ri)[U, r=0], Closer (Ri) = N(Ri)[U, r=a], and Close (Ri) 

= N(Ri)[U, r=b, where b>a].  The three regions are also known as 

the workable neighborhoods of Ri.   

TABLE I:  A DATASET. 

Records A1 A2 A3 A4 A5 

R1 1 2 1 3 4 

R2 1 1 2 2 2 

R3 2 2 3 1 2 

R4 1 2 1 3 4 

R5 2 3 2 2 3 

R6 3 1 3 1 2 

R7 2 1 1 2 3 

R8 3 2 2 3 3 

 

 As an example, consider the dataset of Table 1. For the 

record R1, the workable neighborhoods are: 

Closest(R1) = {R1, R4} 

Closer(R1) = {R1, R4, R5, R7} 

Close(R1) = {R1, R2, R4, R3, R7, R5, R6, R8} 

For identifying the closer and close neighborhoods of R1, 

we use a = 1 and b = 2.  Therefore, the closest, closer, and 

close neighborhoods of R1 include those records of the 

dataset that their attribute values differ from their 
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corresponding attribute values in R1 by zero, absolute value 

of one, and absolute value of 2, respectively.    

 Since, in this research effort, the goal of the mining of a 

very large dataset is to perform “prediction”, we assume 

that each record has an extra attribute of decision, Table 2. 

 The decision attribute does not play any role in finding 

a neighborhood.  However, the decision attribute is used to 

assign a certainty factor to any neighborhood of interest. 

For example, the certainty factor for the Closer(Ri) is   = 

N/|Closer(Ri)|, where N is the number of records in the 

Closer(Ri) who have the same decision value as Ri.  As a 

result, the certainty factor for the Closest(R1), Closer(R1), 

Close(R1) are 1, 1,  and 5/8, respectively. 

TABLE II: A DATASET WITH A DECISION ATTRIBUTE. 

Records A1 A2 A3 A4 A5 Decision 

R1 1 2 1 3 4 1 

R2 1 1 2 2 2 0 

R3 2 2 3 1 2 0 

R4 1 2 1 3 4 1 

R5 2 3 2 2 3 1 

R6 3 1 3 1 2 1 

R7 2 1 1 2 3 1 

R8 3 2 2 3 3 0 

 

1)  Record Tree  
 Let us focus on the record Ri and its closer 

neighborhood.  Initially, the record tree of the Ri is the 

presentation of Closer(Ri) in form of a tree for which Ri is 

the root and the neighbors of  Ri are the children.  The tree 

is assigned a certainty factor and a signature.  The certainty 

factor of the tree is the same as the certainty factor of the 

Closer(Ri).  The signature of the tree is a record with the 

same number of attributes as Ri and the value for attribute 

Am of the signature is the average of values of attribute Am 

for all the records in the record tree. 

 Each child, Ci, of the tree is expanded as a new sub-tree 

by the records in Closer(Ci).  The new sub-tree is pruned 

based on the following criteria:  

a. If a child of Ci is already appeared as a node 

somewhere in the tree, the child is pruned. 

b. If the Euclidean distance of a child of Ci from the 

signature of the tree is greater than a given threshold 

value, the child is also pruned.   

 After the expansion of Ci, if any of its children 

survived the pruning process, the record tree of Ri becomes 

a new tree with a new certainty factor and a new signature.  

The process of expansion of the new record tree for Ri 

continues in a breadth-first fashion until it cannot be 

expanded any longer.  All the records that are part of the 

totally expanded record tree of Ri will not have their own 

record trees and cannot be a part of another record tree.  

However, the building of the record trees for the remaining 

records of the dataset is a continual process.   

 Selection of Ri for building its record tree is not a 

random act. Ri is selected such that its closer neighborhood 

has the highest certainty factor among all the closer 

neighborhoods of the dataset.  In case of a tie, Ri has the 

highest cardinality.  If having a tie persists, Ri is selected 

randomly among the qualified records. 

 The signature of the record tree for Closer(Ri) acts as a 

representative of all the records in the neighborhood and 

replaces all of them.  Let us assume that the process of 

building record tree for the records of a dataset produces T 

record trees.  The ratio of |dataset|/T is the reduction factor.  

For the dataset in Table 2 and for the Euclidean distance 

threshold of 3.7, only two record trees are produced: see 

Figure 1.  Therefore, the reduction factor is 8/2 = 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Record trees for the dataset of Table 2 along with their certainty 

factors and signatures. 

B.  Properties of a Dataset 

 So far, the proposed neighborhood system is able to 

reduce a given very large dataset, V, by factor of K into a 

new dataset, V’. In this section, we define the intrinsic 

properties and describe the methodology for checking the 

preservation of the properties of V by V’.  

 The properties of a very large data set are a sextuple, 

(V, G, A, F, Q, E), where:  

V  is a very large dataset, 

G is the goal of the mining process 

A is a methodology used for reaching the goal of G. 

F  is resulting set of findings applying A on V, 

Q is the quality measure for F.  The quality of F is 

usually measured by using another dataset (E). 

E is the entity involved in measurement of the quality 

for F.    

 = 4/5 

Signature:  

1.8, 2, 1.4, 2.6, 3.4 

 = 2/3 

Signature:  

2, 1.34, 2.67, 1.34, 2 

Reduction factor = 8/2 = 4 

R2 

R3 

R6 

R4 

R1 R5 R7 

R8 
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 The quality measure of F needs an explanation.  Let us 

assume G is “prediction” and A is the “ID3” algorithm [17].  

The outcome of applying A on V is a set of prediction rules, 

F.  The quality measure for F is the quality of the prediction 

for the test records using F.  Thus, the test set is E. 

 As another example, let us assume G is “basket 

analysis” and A is the “Apriori” algorithm [18].  The 

outcome of applying A on V is a set of frequent itemsets, F.   

The quality measure of F is the collection of the quality 

measures for each frequent itemset which is presented in 

pair of (support, confidence).  Calculation of support and 

confidence are done using records in V.  Therefore, V is the 

entity involved in quality measure of F.   

Definition: Let V’ be a reduced version of V and the mining 

goal for both V and V’ be the same.   Let also A be a 

well-established algorithm for reaching the goal.  In 

addition, let F and F’ be the two sets of findings 

produced by applying A on V and V’.  In addition, let Q 

and Q’ be the quality measures of F and F’, respectively, 

calculated using the same entity E.  The properties of V 

and V’ are: (V, G, A, F, Q, E) and   (V’, G, A, F’, Q’, E).  

If Q’ = Q, then the properties of V has been preserved by 

V’.  If Q’ > Q then V’ has not only preserved the 

properties of V but also reduced noise in data.   

 Let us assume that the algorithm A cannot be applied 

on V’ due to the fact that data in V’ is continuous, whereas 

data in V is discretized (required by the algorithm A).  To 

remove this obstacle, either data in V’ needs to be 

discretized or algorithm A needs to be replaced by another 

algorithm that can process both discrete and continuous 

data. The first option is more logical because it does not 

limit the list of algorithms that can be applied on V’.  As a 

result, we introduce our own discretization methodology 

named organic discretization in the following sub-section.  

C.  Organic Discretization 

 The majority of the discretization methodologies, 

reported in literature, have an artificial discretization theme 

[19][20].  For example, the interval between the maximum 

and minimum values of an attribute is divided into a number 

of equal width smaller intervals and each small interval is 

assigned a discrete value that replaces all the values within 

the small interval.  Such discretization is artificial and does 

not consider any characteristics of the values of the 

attribute.  Although some of the methodologies such as bin-

based and radius-based try to ease the problem, but they 

cannot avoid artificially discretizing the data [2].  There are 

more sophisticated discretization methodologies that are so 

labor intensive that their use is not cost effective [2]. 

 In this section, we propose an organic discretization 

methodology that uses the closeness of values in an attribute 

for discretization.  The methodology is simple and organic.  

Because of that the intervals represented by discrete values 

do not  have necessarily the same width and the width of 

each interval is decided by the data itself. 

 In this methodology, the values of the attribute are 

sorted in ascending order and the differences between every 

two adjacent values are measured.  A user selects a 

preferred small difference, Pd.  The end point of a current 

interval is decided based on the differences between the 

value located in locations L and L+1 in the list of sorted 

values and Pd.  If Pd is zero, then every unique value belongs 

to a new interval. If Pd is too large, then the entire attribute 

becomes one interval. The best choice for Pd to discretize an 

attribute of dataset V’ is to generate the same or close 

number of intervals—and therefore, discrete values—for the 

attribute as there is for the corresponding attribute in V.  

The reason stems from the fact that some mining algorithms 

choose attributes with more discrete values over those with 

less number of attributes or vice versa.  Since the goal is to 

investigate the preservation of the properties in reduced 

datasets, we want to remove any biases causing by the 

number of discrete values. 

 The following algorithm provides the details of the 

organic discretization approach: 

 

Algorithm Organic 

Input:   A dataset with n attributes of A1, . . ., An. Data of 

the dataset is continuous.  Two threshold values of 

td and tcount. 

Output: The discretized dataset. 

Step1.  Repeat for each attribute Ai 

Step2. B = Ai, sorted in ascending order.   

Step3.   C[i] = ABS(B[i]-B[i+1]).  

Step4.   Locate in C those elements with value > td and 

Collect their indices in array D. 

Step5.   top = 1; bottom = 1; Count = 0; //Top and 

bottom are pointers pointing to the first element 

of interest in array  B and first element of 

interest in D; 

Step6.   Repeat Steps 7 to 9 while top < |B|; 

Step7.  If D= , then bottom = |B|; 

Step8. Those values in array B from B[top] to 

B[D[bottom]] make an interval, Int, 

represented by a discrete value which is the 

median of the values in the interval; count++; 

Step9.  top = top + |inter|;  Remove the first element of 

D; 

Step10. If count > tcount, then increase tcount; go to 

Step2; 

Step11.  End; 

 The variation of the algorithm may be considered by 

the choosing a different value to represent the interval 

produced in Step 8. We used the median value to represent 

the interval. 

IV. EMPIRICAL RESULTS 

 In a glance, we: (i) generate 10 pairs of the training and 

test sets out of the original dataset, (ii) generate the reduced 

version of the same 10 training sets using the neighborhood 
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system and the organic discretization approaches, (iii) select 

a mining goal and a well-known algorithm to achieve it.  If 

the average results produced by applying the well-known 

algorithm on the second ten pairs (the reduced ones) is the 

same or better than the average results produced by 

applying the algorithm on the first ten pairs (the original 

ones), then the reduced version of the training sets has 

preserved the intrinsic properties of the original dataset; 

Otherwise, the intrinsic properties have been damaged and 

the reduction methodology is not robust. 

 To provide the details of the process, the “prediction” is 

our mining goal and the algorithm to achieve the goal is the 

well-known ID3 algorithm.  We have a dataset with 1000 

records and each record has 8 attributes.  Each one of the 

first seven attributes has six possible discrete values.  The 

last attribute is a decision and it has two possible values of 1 

and 0. One may point out that the dataset is not a very large 

dataset.  However, here our goal is to show the proof of 

concept.   

 Ten percent of the records with decision 1 and ten 

percent of the records with decision zero have been set aside 

to make one test set.  Among the remaining m records, m1 

of them has decision one and m2 of them has decision zero 

(m = m1 + m2 and m2 <m1).  We pick m2 records out of 

the m1 records with decision one along with the entire m2 

records with decision zero and make the training set.   

 By repeating the same process, we generated 10 pairs 

of the training (Tr) and test (Ts) sets such that         

   (for i = 1 to 10, j = 1 to 10, and i  j) and            
(for i = 1 to 10).  Since the original dataset is made up of the 

discrete values, so the training and test set pairs. 

 We have also generated:  

1. A reduced version of each training set by applying 

the neighborhood methodology on the set (the 

reduction factor of the training sets was varying 

from 3.2 to 4.55 for different training sets). As a 

result, we produced 10 reduced training sets.  The 

data of the reduced training sets were no longer 

discrete values. 

2. A discretized version of each reduced training set 

by applying the organic discretization methodology 

on the set.  It was clear that the new discretized 

values in the training set did not have the same 

meaning as the discrete values in the corresponding 

test set.  Therefore, the discretization intervals of 

data established by the organic discretization of the 

training set were used to discretize the original test 

set.   

 To sum-up, we ended up having 10 pairs of the training 

and test sets build out of the original dataset and 10 pairs of 

the same training and test sets with the new discrete values 

influenced by the neighborhood methodology.  The first and 

the second 10 pairs are referred to as the Original and 

Reduced sets, respectively. 

 To investigate the preservation of the properties, we 

took the following step for each training and test pair in the 

Original and Reduced sets: 

 ID3 was applied on the training set and the prediction 

rules were obtained and used to predict the decision for 

the records of the test set.  The quality of the prediction 

was measured by calculating the percentage of the 

number of correct predictions, false positives, false 

negatives, and not predictable records.  The quality of 

the prediction for the Original pairs and Reduced pairs 

are shown in Table 3 and Table 4, respectively. 

TABLE III: THE QUALITY MEASURES OF THE PREDICTION 

PROCESS FOR THE ORIGINAL SET USING ID3. 

Original 

Pairs 

% Correct 

Predictions 

% 

False 

(+) 

% 

False 

(-) 

% Not-

predictable 

1 47.6 48 5 0 

2 59.5 29 11 0 

3 64.3 34 2 0 

4 57.2 31 11 0 

5 40.5 52 7 0 

6 61.9 24 11 2 

7 78.6 12 9 0 

8 47.6 41 11 0 

9 54.8 26 11 7 

10 52.4 36 9 2 

Avg. 56.4 33.3 9.7 1.1 

TABLE IV: THE QUALITY MEASURES OF THE PREDICTION 

PROCESS FOR THE REDUCED SET USING ID3. 

Reduced 

Pairs 

% Correct 

prediction 

% 

False 

(+) 

% 

False 

(-) 

% Not-

predictable 

1 66.7 24 0 10 

2 76.2 19 0 5 

3 66.7 26 1 7 

4 71.4 17 1 11 

5 71.4 21 1 7 

6 76.2 12 2 10 

7 69 14 0 17 

8 66.7 24 0 10 

9 64.3 12 1 23 

10 73.8 12 2 12 

Avg. 70.24 18.1 0.8 11.2 

  

 Since the average performance of ID3 on the Reduced 

set is much better than the average performance of ID3 on 

the Original set, the intrinsic properties of each test set has 

been preserved.   

 One may raise the following question: Is the property 

preservation possible using a prediction algorithm other 

than ID3?  To answer this question we also conducted the 

same experiment using the Rough Sets algorithm 

[15][21][22][23].  The results for the Original and Reduced 

sets are shown in Table 5 and Table 6, respectively. 
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 The Average prediction performance of the Rough Sets 

approach on the Original and the Reduced sets support the 

findings through the use of ID3.     

V. CONCLUSION AND FUTURE RESEARCH 

 The results of Tables 3, 4, 5, and 6 reveal that the 

proposed reduction methodology preserves the intrinsic 

properties of the original dataset.  Considering all four 

tables, the average percentage measure of: (i) the correct 

prediction increases by 26%, (ii) the false positive decreases 

by 36%, (iii) the false negative decreases by 89%, and (iv) 

the unpredictable records increases by 136% which it is the 

indicative of a reliable system.   Prediction of a “no 

decision” for an object is always preferred over prediction 

of a false positive or a false negative decision.   

TABLE V: THE QUALITY MEASURES OF THE PREDICTION 

PROCESS USING ORIGINAL SET AND ROUGH SETS. 

Original 

Pairs 

% Correct 

Prediction

s 

% 

False 

(+) 

% 

False 

(-) 

% Not-

predictable 

1 40.2 38 11 10 

2 53.1 22 16 9 

3 60.8 14 15 10 

4 41.7 27 11 10 

5 40.4 38 9 12 

6 55.7 24 12 8 

7 62.9 12 15 10 

8 75.8 12 7 5 

9 66.8 16 10 7 

10 40.1 36 19 5 

Avg. 53.75 23.9 12.5 8.6 

TABLE VI: THE QUALITY MEASURES OF THE PREDICTION 

PROCESS USING REDUCED SET AND ROUGH SETS. 

Reduced 

Pairs 

% Correct 

prediction 

% 

False 

(+) 

% 

False 

(-) 

% Not-

predictable 

1 68.3 18 5 9 

2 72.9 19 2 7 

3 62.2 28 1 9 

4 70.8 17 2 10 

5 68.2 24 2 5 

6 75.1 13 2 10 

7 69 14 1 16 

8 63.1 26 1 9 

9 64.3 13 0 23 

10 67.8 14 0 19 

Avg. 68.17 18.6 1.6 11.7 

 

 To explain an interesting observation, let us briefly talk 

about noisy data which is a synonym for the erroneous data 

[1].  Error (noise) in data is resulting from corruption of 

data at the time of collection and or inputting.  The noise in 

data is considered as an obstruction in any data mining 

process including prediction.  The improvement of the 

prediction results for the Reduced set, by both ID3 and 

Rough Sets algorithms, indicates the fact that the data in the 

Reduced set has less noise than data in the Original set.  

Therefore, the proposed data reduction methodology not 

only preserves the intrinsic properties of the Original set but 

it also decreases the noise in the set.   

  The neighborhood-based reduction system also 

increases the granularity of the dataset which is different 

from the increase in the granularity through the use of a 

generalization process.  To explain it further, let us assume 

that a dataset contains the monthly profit reported for a 

given company for duration of one year.  This dataset has 

12 records (one per month).  One may add up the monthly 

profits for each quarter to express the quarterly profit.  In 

this case, the dataset is reduced and it has only four records.  

The number of records may change into only 2 records, if 

bi-annual profits is sought.  The reduction of the records 

provides different granules in each case.  In the first and the 

second reductions each granule represents quarter profits 

and bi-annual profits, respectively. The reductions are also 

known as the representations of the profits for two foot-

steps (“quarter” and “bi-annual”) within the concept 

hierarchy of the time.   

 The prediction rules obtained from the higher granules 

may not preserve the properties of the dataset.  The reason 

stems from the fact that (i) a higher granule ignores the 

details of lower granules and (ii) the foot-steps in a concept 

hierarchy are natural steps within the domain of the interest 

(in our example time domain) and does not have anything to 

do with the closeness of values of the records’ attributes 

within the foot-step.   

 In contrast, the granularity provided by the proposed 

reduction methodology is only based on the closeness of 

values of the records’ attributes.  The foot-step based 

granularity still can be applied to the granules delivered by 

the proposed reduction system.     

 One of the challenges in this research effort was the 

selection of a representative for the interval produced in 

Step 8 of the Algorithm Organic. On the whole, there are 

seven possible options; thus, seven variations of the 

algorithm may be used.  The options are: (i) the median 

value within the interval when the number of records, n, in 

the interval is odd,  (ii) the (n/2)th value when n is even, (iii) 

the [(n/2) +1]th value when the n is even, (iv) average of 

(n/2)th value and [(n/2)+1]th value when n is even, (v) the 

first number in the interval, (vi) the last number in the 

interval, and (vii) average of all the values in the interval.  

We have chosen options (i) and option (ii) for the cases that 

n is odd and even, respectively.  The methodology used for 

selecting these two options was the “trial-and-error” 

approach.  

 It was also noted that the robust reduction methodology 

for mining the prediction rules, may not be able to preserve 

the properties of the dataset for another mining goal –say, 

association analysis.  For example, let us assume that   we 

are interested in learning about the correlation between two 

values of “a” and “b” that belong to two different attributes 
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of a given dataset.  The reduction process may change the 

value of “a” into possibly m new and different values.  The 

value “b” may also be changed into possibly k new and 

different values (m and k are not necessarily equal).  As a 

result, finding the correlation between values of “a” and “b” 

within the reduced dataset may be a moot point.  However, 

one may argue that the correlation between “a” and “b” may 

be preserved within the discretized values produced through 

application of the Algorithm Organic on the reduced 

dataset.  Such possibility is under investigation to determine 

whether or not the preservation of properties by a reduced 

dataset is sensitive to the purpose (goal) of mining.   

 In addition, the application of the proposed 

methodology on a very large dataset is under investigation 

which includes the viability study of the signatures as 

prediction rules along with the horizontal and vertical 

reductions of the signatures. 
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